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Abstract

Let G = (V, E) be a graph and k € Z* such that 1 <k < |V|. A
k-subdominating function (kSF) to {—1,0,1} is a function f: V —
{-1,0,1} such that the closed neighborhood sum f(N[v]) > 1 for at
least k vertices of G. The weight of a kSF fis f(V) =} ., f(»).
The k-subdomination number to {—1,0,1} of a graph G, denoted by
752 °}(G), equals the minimum weight of a kSF of G. In this paper
we characterize minimal kSF’s, calculate v;!°! for an arbitrary path
and determine the least order of a connected graph G for which
7:2%%(G) = —m for an arbitrary positive integer m.

1 Introduction

Let G = (V,E) be a graph and let v be a vertex in V. The open neigh-
borhood of v is defined as the set of vertices adjacent to v, ie., N(v) =
{u|uv € E}. The closed neighborhood of v is N[v] = N(v) U {v}. For a set
S of vertices, we define the open neighborhood N(S) as UyesN(v), and the
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closed neighborhood N[S] as N(S)US. A set S of vertices is a dominating
sel if N[S] = V. The domination number of a graph G, denoted by 7(G),
is the minimum cardinality of a dominating set in G.

For any real valued function f: V = Rand SCV, let f(S) =Y yes fu)
The weight of f is defined as f(V'). We will also denote f(N[v]) by flv,
where v € V.

A minus dominating function is defined in [2] as a function f : V —
{~1,0,1} such that f[v] > 1 for every v € V. The minus domination
number of a graph G is y~(G) = min{f(V) | f is a minus dominating
function on G}.

A signed dominating function is defined in [3] as afunction f : V — {-1,1}
such that f[v] > 1 for every v € V. The signed domination number of a
graph G is 7,(G) = min{f(V) | f is a signed dominating function on G}.

A majorily dominating function is defined in [4) as a function f : V —
{=1,1} such that f[v] > 1 for at least half the vertices v € V. The
majorily domination number of a graph G is Ymae;j(G) = min{f(V) | fisa
majority dominating function on G}.

Let G = (V,E) be a graph and k € Z* such that 1 < k < V]. A
k-subdominating function (kSF) to {—1,1} for G is defined in (1] as a
function f : V — {—1,1} such that f[v] > 1 for at least k vertices of
G. The k-subdomination number to {—1,1} of a graph G, denoted by
viY(G), is equal to min{f(V) | f is a kSF to {-1,1} of G}. In the
special cases where k = |V| and k = [L‘%l], 7:.14(G) is respectively the
signed domination number and the majority domination number.

We now generalize the concept of minus domination. Let G = (V,E) be
a graph and k € Z* such that 1 < k < |V|. A k-subdominating function
(kSF) to {—1,0,1} for G is defined as a function f : V — {-1,0,1} such
that f[v] > 1 for at least k vertices of G. The k-subdomination number to
{-1,0,1} of a graph G, denoted by 75./°1(G), is equal to min{f(V) | fis a
kSF to {—1,0,1} of G}. Since functions to {—1,1} play no further role in
the remainder of this paper, we will omit the phrase to {—1,0,1} through-
out when dealing with a kSF to {—1,0,1} and with the k-subdomination
number to {—1,0,1}.

Alon (see [4]) proved that ¥ma;(G) < 2 for a connected graph G. Let k
be an integer such that 1 < k < [$|V/[]. Since every majority domination
function is a kSF to {—1,0,1}, it follows that 7, (G) < ¥ma; (G). Hence,
if G is connected, then 7;,'° (G) < 2.

There is a wide variety of possible applications for this variation of domina-
tion. By assigning the values +1, 0 and —1 to the vertices of a graph we can
model such things as networks of people or organizations in which global
decisions must be made (e.g. yes-abstain-no, agree-neutral-disagree, like-
neutral-dislike, etc.). In such a context, for example, the k-subdomination
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number represents the minimum number of people whose positive votes can
assure that at least k£ of the local groups of voters (represented by closed
neighborhoods) have more positive than negative voters, even though the
entire network may have a large majority of negative voters.

In this paper we characterize minimal k-subdominating functions, calculate
Yis *! for an arbitrary path and determine the least order of a connected
graph G for which 7;3101((?) = —m for an arbitrary positive integer m.

2 Minimal k-subdominating functions

Let, throughout this section, G = (V, E) be a graph. The kSF f is called
minimalifno g < fisa kSF. Following [1], we now characterize minimal
k-subdominating functions. Let f be a kSF for the graph . We use three
sets for such an f:

Bf {v € Vlf[’()] = 1})

P, = {veV|f(v)>0}

andCy = {veV|flv]>1}.

A vertex v € Cy is covered by f, otherwise it is uncovered by f. Note that
By C Cy.
For A,B C V we say that A dominates B (denoted by A > B) if for each
b € B we have N[JJN A # 0. We are now in a position to characterize
minimal kS F’s.
Theorem 1 A kSF f is minimal iff for each k-subset K of Cy we have
ByNK » Ps.
Proof. If f is a kSF satisfying the above condition which is not minimal,
then there is a kSF g with ¢ < f. Consider a k-subset K’ cCC, CCy
and a vertex v with g(v) < f(v). Then g(v) < 0 and f(v) >0, t.i. v € P;.
By the assumption, B; N K’ > {v}, i.e., there exists a w € B, N K’ N N[v].
But then f[w] =1 and v € N[w], hence g[w] < 0, contradicting w € C;.
Conversely, suppose f is a minimal kSF but there is a k-subset K C Cy
with By N K i {v} for some v € P;. Define h : V — {—1,0,1} by
h(v) = f(v)— 1 and h(w) = f(w) for w € V — {v}. We prove that h[w] > 1
for each w € K by considering two cases:

o If we KN By, then w ¢ N[v] so that v ¢ N[w] and hence h[w] =

flul = 1.
o If w € K ~ By, then f[w] > 2 so that Alw] > flw] —1> 1.

Hence the set K shows that h is a kSF. This contradicts the minimality
of f. n
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3 The value of v;,; % (P»)

In this section we calculate v;,'%'(P,). We start with following result.

Lemma 1 Let the vertez sequence of Po, n >3 bel,...,n and let k be an
integer such that 1 < k <n—1. There ezisls a minimum kSF f such that
either {1,...,k} C Cy or {1,n} € Cy.

Proof. Let V = {1,...,n} and let f : V — {-1,0,1} be a kSF of
weight v ,!°' (Pp). If 1 ¢ Cy orn & Cj or {1,...,k} € C; we are done.
Hence, we assume that 1 € C; and n € Cy and {ii ¢ Cs} # 0. Let
nc; = max{ili ¢ Cy}. Note that nc; is not an endvertex of P,, that
(F(1), £2)} = {0,1) or {£(1), F(2)} = {1,1} and that {f(n— 1), f(n)} =
{0,1} or {f(n—1),f(n) = {1,1}. Let ¢y = nc; +1. When the function f
is clear from context, we will find it convenient to use ¢ for ¢s and nc for
ney.

Case 1 f(c) =-—1.

Since ¢ € Cy, we must have that f(nc) = f(c+ 1) = 1. Note that ¢+ 1 1is
not an endvertex and that f(c +2) = 1. Before proceeding, we prove the
following claim.

Claim If ¢ + 2 is not an endvertez, there exzisls a minimum kSF h such
that h(z) = f(z) for allz € {1,...,c+2} and {h(c+3),...,h(n)} C {0,1}.
Proof. If {f(c+3),...,f(n)} C {0,1}, let h = f. If this is not the
case, there exists an i € {c+ 3,...,n} such that f(i) = —1. Let m =
max{i]f(i) =.—1}. Then, since m € Cy, it follows that f(m —1) =
f(m +1) = 1. Furthermore, since m + 1 € Cy, it follows that m + 1 is not
an endvertex and f(m +2) = 1. Define g: V — {-1,0,1} by 9(z) = f(z)
for all z € V — {m,m+ 1} and g(m) = g(m+1) = 0. Then g is a minimum
kSF such that g(z) = f(z) for all z € {1,...,c+2} and with fewer vertices
in {c+3,...,n} having the value —1 under g. The required function h will
be found by iterating this procedure. O

By the Claim we may assume that {f(c+3),...,f(n) C {0,1}. We define
a new function h : V — {-1,0,1} as follows: (k(1),...,h(n)) = (f(e+1)—
L,f(c+2),..., f(n), F(1), £(2),..., f(ne), f(c) + 1). The function h still
covers at least k vertices and h(V) = f(V). Since nc & Cy and f(nc) = 1,
we have that f(nc—1) < 0. If f(nc; — 1) = —1, then ncp = n—1 and
the function h is an example of Case 2.1, below. If f(nc; — 1) = 0, then
in the function |Cx| > |Cy| + 1. If {ili ¢ Cr} = 0, we are done. If not
we proceed to find ncy. If h(cn) > 0, then the function h is an example
of Case 2 below. If h(cy) = —1, we repeat the above procedure which will
lead to a function in which the vertices 1,. ..,k are covered.

Case 2 f(c) > 0.

Since ¢ € Cy, it follows that f(nc) + f(c) 2 0. Furthermore, since nc ¢
Cy, f(nc) + f(c) < 1. Thus we have two cases.
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Case 2.1 f(nc) + f(c) = 1.

Since nc & Cy, we have that f(nc—1) = —1. Define h: V — {~1,0,1} by
(h(1), .., () = (F(ne), £(e), fe+1),..., £(n), F(1), F(2), .., f(me—1)).
Then |Ch| > k and A(V') = f(V). Since h[n] < 0, h is the required function
Case 2.2 f(nc) + f(c) = 0.

Since ¢ € Cy, we have that f(nc — 1) + f(nc) < 0. Define h : V —
{=1,0,1} by (h(1),...,h(n)) = (f(e), f(e+1),..., f(n), fF(1),..., f(nc)).
;hen |Cn] > k and h(V') = f(V'). Since h[n] < 0, & is the required function.

Proposition 1 Let n > 3 be an integer. Then, for an integer 1 k<L
n—1, there exists a minimum kSF f of P, such that {1,2, ..., k} C Cy.

Proof. The proof is by induction on n, the number of vertices of the path.
The result is trivial for paths of order 3, so suppose n > 4 and assume the
result is true for all P, 3 < m < n— 1. Let k be an integer such that
1<k<n-—1landlet V=V(R,).

Suppose k = n— 1. By Lemma 1, there exists a minimum kSF f such that
{l,...,n—=1} C Cy or {1,n} € Cy. Since k = n — 1, there is at most one
vertex not covered by f. So by reversing the path if necessary, we obtain a
minimum kSF such that {1,...,n -1} C C;.

Now suppose that £ < n — 2. By the induction hypothesis, there is a
minimum kSF f on P,_; such that {1,...,k} C Cy. Define g : V —
{—1,0,1} by g(é) = f(i) for 1 <i < n—1and g(n) = —1. Now g is a kSF
for P,. It remains to be shown that g is the smallest such function.

By the Lemma 1, there exists a kSF h of P, such that {1,...,k} C C; or
{1,n} € Ci. In the first case we are done. So assume that {I,n} € Ch.
By reversing the path, if necessary, we may assume that n & Ch. Assume
that A(V) < g(V) and let U’ = V — {n}. Then h(U) + h(n) < g(U) +
9(n), so that h(U) < f(U) — 1 — h(n). If h(n) < 0, then A’ defined as h
restricted to U covers k vertices and h'(U) < f(U) = v ,'°!(P,_,), which
is a contradiction.

If A(n) = 1, then, since A is minimal and n ¢ C}, we must have that
h[n — 1] = 1. This implies that h(n — 1) = —1 and h(n — 2) = 1. Define
h' : U — {~1,0,1} by h'(i) = h(i) for ] < i< n—2and h'(n — 1)=0.
Then A’ covers k vertices and h'(U) = h(U) + 1 < f(U) - h(n) < f(U) =
75,19 (Pa_1), which is a contradiction.

The following lemma was proved in [2] and is given without proof here.

Theorem 2 v'1(P,) = [2]. |

Theorem 3 Ifn > 2 is an integer and 1 < k < n — 1, then iU P,) =
l'-g-] +k-—n+1.

181



Proof. We start by showing that e (Pa) < [81+k—-n+lfor 1<k<
n — 1, using induction on n.

Suppose n = 2. Then k = 1 and it is clear that TN P)=1= £ +k—
n+ 1 and the result holds. Let n > 2 be given and assume for all paths of
order j(< n) that 75" (P;) < [§]+k—j+1holdsfor L<k<j—1.
Suppose 1 < k <n—1. If k=n—1, then the path P,_, with vertex set
{1,...,n — 1} has minus domination number [251]. Assigning the value 0
to n allows an (n — 1)SF with weight [251], and the result holds in this
case.

If k£ < n— 2, then by the inductive hypothesis and Proposition 1 applied
to P._,, the first k vertices can be covered by a kSF with weight at most
[£14+k—(n—1)+1. If the remaining vertex is given the value —1, none of
the covered vertices will be affected, and so 7;31°I(P,,) <1 (Pac) -1 L
|'§'| +k—(n—1)+1—1 and the inequality follows.

To show that 7' (Pn) > [£]+ k—n + 1, assume g is a minimum kSF
and suppose, by Proposition 1, that g covers the first k vertices of P,. If
k+1 < n, let P’ be the subgraph spanned by the vertices {k +2,...,n}.
If k+1 = n, let P' be the empty graph. We obtain the required lower
bound in cases by calculating g(V) in each case: the result then follows
since 7, (Pa) = g(V).

Case 1 If k = 0 (mod3), then g(V) = g(1) + g[3] + g[6] + ... + g[k] +
g(V(P')). Because g[1] > 1, we must have g(1) = 0. Thus g(V) > 0+
f-1n—k-1)=[§l-n+k+1

Case 2 If k = 1 (mod3), then g(V) = g[1] + g[4] + ... + g[k] + g(V(P")).
So in this case g(V) > [£] - l(n—k—-1) = [S]-n+k+1

Case 3 If k = 2 (mod3), then g(V) = g[2] + g[5] + ... + g{k] + g(V(P)).
Sointhiscaseg(V)Z[%]—l(1l—k—l)=[§'|—n+k+l. |

4 The least order of a connected graph G
for which 7;'"(G) = -m

In this section we determine the least order of a connected graph G for
which 7 !°'(G) = —m, where m is a positive integer m.

Theorem 4 Let m be a positive integer and let G = (V, E) be a connecled
graph such that —y,:,wl(G) = —m with k an integer such that 1 < k < p=
p(G). Then '

(a) if k=1, then p>m+3,

(b)if2<k<p-2, thenp>m+4,

(c) ifk =p—1, then p > 20+ m, where £ = min{£ € Ztim < (£-1)2 -4},
(d) if k = p, then p > 2+ m, where £ = min{f € Z*|m < %—35}

All these bounds are best possible.
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Proof. Let, throughout this proof, f be a kSF of weight 154 G) = —-m.
For such an f, let P, Z and M denote the subsets of V that are assigned
the values +1, 0 and —1 respectively by f. Then |P| - |M| = —m, so that
M| = |P| + m. Also, since k > 1, at least one vertex, say v, is assigned
the value +1. It follows that p = |P|+ |[M|+|Z] > 2|P|+ m > 2 + m.
(a) We now prove that p > m + 3 if k = 1. Suppose, to the contrary, that
p=m+2. Then, since G is connected, v is adjacent to some vertex of M.
But then f[u] < 0 for all u € V(G), which is a contradiction. This result
is best possible, since, by Theorem 3, 71;'°!(Pnys) = —m.
(b) Before proceeding further, we prove the following for f: If |P| = 1,
then |Z| > 2: Assume, to the contrary, that |P| = 1 and |Z| < 2. Clearly,
flw] < 0for all w € M. Hence the only vertices that can have f[w] > 1 are
the vertex in P and vertices of Z (if any). Since k > 2 we must have |Z| = 1.
But then there can be no edges between P U Z and M, contradicting the
connectedness of G.
Note that p = [P| + M|+ |Z| = |P|+ |P|+ m+ |Z| = 2|P| + |Z| + m. If
|P| = 1, then our claim implies that 2|P|+ |Z| +m > 2+ 2+ m =4+ m.
If |P| > 2, then 2|P|+ |Z| + m > 2|P|+m >4 4 m.
To see that this result is best possible, consider the graph G = Kio4m
with partite sets U = {u;,u2} and V = {v1,...,9m42}. We will show that
—101 vy _ :
Vis (G) =-—m
To prove the inequality 'y,c',ml(G) > —m, suppose there is a kSF g of
weight v, (G) < —m — 1. Let P’, Z’ and M’ denote the subsets of V
that are assigned the values +1, 0 and —1 respectively by g. Note that
the weight of g is g(u1) + g(u2) + |P’| — [M’'| < —m — 1, therefore we have
|M'| > g(u1) + g(uz) + m+ 1+ |P'|.
If a vertex u; € U has g[u;] > 0, then g[u;) = g(u;) + |P'| = |[M'| > 0
implying that —1 < g(uy)+g(u) +|P'|— |M’| = 75N < —-m—1< =9,
a contradiction. Hence neither vertex of U is covered.
The covered vertices are therefore all in V. However, a vertex w € V can
only be covered if w € P’ and g(u;) + g(uz) > 0 or w € M' U Z' and
9(u1) + g(uz2) > 1. In both cases we have |P'| + g(u;) + g(uz2) > 1 and
hence that [M’'| > m +2 and therefore that M’ = V and P’ = Z’ = §. But
then, to cover a vertex, we must have g(u;) = g(u,) = 1, causing g to have
weight —m, a contradiction.
To show that ;' (G) < —m we exhibit a kSF of G of weight —m. Define
gbyg(v)=1ifve U and g(v) = ~1if v € V. It is easily seen that at
least k, k= 1,...,m+2=p—2, of the vertices of G are covered by ¢ and
that g has weight —m. This proves assertion (b).
(c) and (d) Let f be as before.
Suppose first that  is the only vertex not covered by f. We distinguish
two cases:
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Caselz€ P

Each u € M is adjacent to at least two vertices of P. Hence there exists
at least 2|M| edges between M and P. To ensure that w € P—{z}is
covered, it is adjacent to at most |P] — 1 vertices in M. Hence there are
at most |M| + (|P| — 1) edges between P and M. But then 2|M| <
|M| + (|P| — 1)* which implies that |P|+m = |M| < (IP| - 1), whence
m < (|P| = 1)2 — |P]. Let & = min{€ € Z*|m < (£~ 1) — £}. Then
4L < |P|, so that p > |P|+|M| >4hH+6 +m =24 +m.

Case 2z € MU Z.

As before, there exists at least 2(J]M| — 1) edges between M and P. To
ensure that w € P is covered, it is adjacent to at most | P|—1 vertices in M.
Hence there exists at most |P|(|P| — 1) edges between P and M, so that
2|M|—2 < |P|? —|P|, which implies that 2|P|+2 < |P|? —|P|+ 2, whence
m < ]2]1—_;2]2]4-_2. Let £ = min{f € Z*|m < ‘2—'%*'-3} Then |P| > £3, so
that p > |P|+ M| > f2 + (L2 + m) =202 + m.

Now suppose that all the vertices of G are covered by f. Then each vertex
of M is adjacent to at least two vertices of P. Again, there are at most
|P|(|P]-1) edges between P and M, so that 2|P|+2m = 2|M| < |P[2-|P],
whence m < ]ﬂz—;—:’]ﬂ. Let £3 = min{f € Z*|m < %—3—‘} Then £3 < |P|,
so that p > 203 + m.

The inequalities £; < £, and ¢; < £3 now follow readily. This proves (<)
and (d).

We now show that these results are best possible by constructing a con-
nected graph G of order p = 2¢; + m such that 1 9YG) = —m. Let
L= ll .

Construct the graph G as follows: take a complete graph K, with vertex
set U = {uy,...,ur} and a set of isolated vertices V = {vi,...,ve4m}-
Join uy to every vertex in the set V, join u; to every vertex in the set
{n4G-1)-1),- -+ Wie-n}fori=1,..., [-’;‘—_fl—‘J and join U mtt) to every
vertex in the set {v,, Lt (2-1)r vm+¢}. Note that this is possible since

(£-1)%2 > m+ £. Note also that every u;, i # £, has at most £ — 1
neighbors in V and that every v; has two neighbors in U. We now prove
that 7(1:11)3(G) = —m: Define g by g(v) = 1if v € U and g(v) = =1 if
v € V. It is easy to check that every vertex, except ug, is covered by g, so
that g is gp —1)SF of G. Since the weight of g is equal to —m, it follows
that 'y(;l_ol)s(G) < —-m.

To prove the inequality -y(;l_oll),(G) > —m, let f be a (p — 1)SF of weight

7(;?11)3(0). Since the vertex u, dominates the graph G, it follows that

flueg] = 7(',,1_011)3 (G) < —m. However, since only one vertex is not covered,
every other vertex must be covered.

184



We now prove that u, € P. Suppose, to the contrary, that u, € MUZ. Let
j€{1,...,m+£}. Then, since f[v;] = f({vj, ui,ue}) > 1, we must have
that f(v;) + f(u;) > 1, which implies that f(v;) > 0 and f(u;) > 0. Hence
f(vj) > 0forall j € {1,...,m+€} and f(w;) > Oforalli = 1,..., | B +1.
If [ZL] + 1 > £~ 1, then, since there is at least one vertex that has been
asmgned the value +1 under f, it follows that f(V(G)) > 0, which is a
contradiction. We may, therefore, assume that |23£] + 1 < £ — 1. Then
Nlug_1] = U, so that flue1] = f[U) > 1, whence flu] = f(V(G)) =
J[UI+ f[V] > 1, which is a contradiction. We conclude that u; € P and
that Case 1 can be applied.
Suppose 7(;1_011)3(6) =-m'< —m. Let £ = min{f € Z*|m’ < (£—1)2-¢}.
Then m' < (¢ — 1) — 2, so that m < (& — 1)? — ¢ (since m < m’).
We conclude that £ < ¢. The proof of Case 1 then implies that p >
20/ +m'. But 20+ m=p > 2/ +m' > 20+ m’, so that m > m’, which
is a contradiction. The proof that (c) is best possible is now complete.
Assertion (d), albeit in a different guise, first appeared in [2], where it is
also shown that this result is best possible.
For each integer ¢ > 1, let I, = {q(q+1)/2,9(qg+1)/2+1,...,9(qg+1)/2+4}.
Then the smallest integer in I, is one larger than the largest integer in I,_
(if ¢ > 2), while the largest integer in I, is one smaller than the smallest
integer in I,4;. Hence each positive integer is contained in a unique interval
I, for some ¢ > 1. The following theorem appears in [2].

Theorem 5 Let ¢ > 1 be an mteger and m € I;. Let G be a connected
graph of order p with v;;!°'(G) = —m. Thenp > 2(q +3)+m. n

The statement of Theorem 5 and statement (d) of Theorem 4 are equivalent,

as may be seen from the following: If ¢ = £— 3, then m < £ '3‘ if and only
if m< f-(f"'—ll +gq.

For each mteger q>Llet J, ={(¢g—1)gq,(¢g—1)g+1,...,(g—1)g+2¢—1}.
Then the smallest integer in J, is one larger than the largest integer in
Jg—1 (if ¢ > 2), while the largest integer in Jg is one smaller than the
smallest integer in Jg41. Hence, each positive integer is contained in a
unique interval J, for some ¢ > 1. In this way we obtain an equivalent
statement for statement (c) of Theorem 4 by letting ¢ = £ — 2.

Theorem 6 Let ¢ > 1 be an mteger and m € J,. Let G be a connecled

graph of order p with 'y('pl_oll)s(G) . Thenp 2 2(q +2)+ m. |
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