Minimum Order of a Graph with Given Deficiency and Either Minimum or Maximum Degree

Purwanto*

Jurusan PendMatematika IKIP Malang, Malang, 65145 Indonesia

W.D. Wallis

Southern Illinois University Carbondale, IL 62901-4408 USA

ABSTRACT. Let G be a simple graph of order n having a maximum matching M. The deficiency def(G) of G is the number of vertices unsaturated by M. In this paper we find lower bounds for n when def(G) and the minimum degree (or maximum degree) of vertices are given. Further, for every n not less than the bound and of the same parity as def(G), there exists a graph G with the given deficiency and minimum (maximum) degree.

1 Introduction

In this paper all graphs are finite and have neither loops nor multiple edges. For most of our notation and terminology we follow that of Bondy and Murty [3]. Let G = (V, E) be a graph with vertex set V(G) and edge set E(G). The order and size of G are |V(G)| and |E(G)| respectively. The minimum and maximum degrees are denoted by $\delta(G)$ and $\Delta(G)$ respectively.

A matching M in G is a subset of E(G) in which no two edges have a vertex in common. M is a maximum matching if $|M| \ge |M'|$ for any other matching M' of G. A vertex v is saturated by M if an edge of M is incident

^{*}This research was carried out while this author was visiting Southern Illinois University, Carbondale, sponsored by Proyek PS2PT Dirjen Dikti.

with v, otherwise v is said to be unsaturated. A matching M is called a perfect matching (or one-factor) if it saturates every vertex of the graph.

The deficiency def(G) of a graph G is the number of vertices unsaturated by a maximum matching. Thus, if def(G) = 0, then G has a perfect matching. If M is a maximum matching, then def(G) = |V(G)| - 2|M|, so def(G) and |V(G)| have the same parity.

Many problems concerning matchings in graphs have been studied; [6] is a very good reference. Bollobás and Eldridge [2] have studied the greatest lower bound of the size of a matching in a graph of given order, minimal degree and maximal degree of vertices. The deficiencies of regular graphs have been studied in [4] and [5].

In this paper we study the lower bound of the order of a connected graph G when def(G) and $\delta(G)$ are given. We obtain a lower bound and show that for every n not less than the bound and of the same parity as def(G), there exists a connected graph of order n having deficiency def(G) and minimum degree δ . We also obtain the corresponding result when minimum degree is replaced by maximum degree.

2 The Bounds

Let G be a graph. If S is a subset of V(G), G-S denotes the graph formed from G by deleting all the vertices in S together with their incident edges. A component of G is called *odd* or *even* according as its order is odd or even. The number of odd components of a graph G is denoted by o(G). We need Berge's formula ([1], p159) to establish our results.

Berge's Formula:

$$\operatorname{def}(G) = \max_{S \subset V(G)} \{ o(G - S) - |S| \}$$

Our first result is on the lower bound of the order of a connected graph G when def(G) and $\delta(G)$ are given.

Theorem 1. Let G be a connected graph of order n with $\delta(G) = \delta$, $\delta \geq 1$. If def(G) = d, then

- (a) $n \ge \delta + 1$, for odd δ and d = 0 or even δ and d = 1
- (b) $n \ge \delta + 2$, for even δ and d = 0 or odd δ and d = 1
- (c) $n \geq 2\delta + d$, otherwise.

Proof: Parts (a) and (b) are obvious. So suppose that $d \ge 2$. By Berge's formula, there exists a vertex set $S \subset V(G)$ such that

$$o(G-S)=|S|+d.$$

Since $d \ge 2$, therefore $|S| \ge 1$.

Let n_0 be the minimum order of odd components of G - S. Since the minimum degree is δ ,

$$|S| \geq \delta + 1 - n_0.$$

Counting the number of vertices, we have

$$n \ge |S| + o(G - S)n_0$$

= |S| + (|S| + d)n_0.

If $n_0 \geq \delta$, then

$$n \ge 1 + (1+d)\delta$$

$$= 1 + \delta + d\delta$$

$$> 2\delta + d$$

If $n_0 \le \delta - 1$, then we use $|S| \ge \delta + 1 - n_0$, and

$$n \ge |S| + (|S| + d)n_0$$

$$\ge (\delta + 1 - n_0) + (\delta + 1 - n_0 + d)n_0$$

$$= -n_0^2 + (\delta + d)n_0 + \delta + 1$$

Since $1 \le n_0 \le \delta - 1$, we have

$$n \ge \min\{-(1)^2 + (\delta + d)(1) + \delta + 1, - (\delta - 1)^2 + (\delta + d)(\delta - 1) + \delta + 1\} = \min\{2\delta + d, 2\delta + (\delta - 1)d\} = 2\delta + d.$$

When a graph G of even order has no perfect matching, obviously $def(G) \ge 2$. Theorem 1 has the following corollary.

Corollary 1. Let G be a connected graph of order n, n even, with minimum degree δ . If G has no perfect matching, then $n \geq 2\delta + 2$.

Let G be a connected graph with $\Delta(G) = \Delta$. If $\Delta = 0$, then def(G) = 1; if $\Delta = 1$, then def(G) = 0; and if $\Delta = 2$, then def(G) is 0 or 1 according as the order of G is even or odd. The next result is on the lower bound of the order of G when def(G) and the maximum degree Δ are given, and $\Delta > 2$.

Theorem 2. Let G be a connected graph of order n with $\Delta(G) = \Delta, \Delta \geq 3$.

If def(G) = d, then

- (a) $n \ge \Delta + 1$, when $d < \Delta$ and d has a different parity from Δ ,
- (b) $n \ge \Delta + 2$, when $d < \Delta$ and d has the same parity as Δ ,
- (c) $n \ge 2\lceil \frac{d-1}{\Delta-2} \rceil + d$, otherwise.

Proof: Parts (a) and (b) are obvious, since $n \ge \Delta + 1$ and n has the same parity as d. Suppose $d \ge \Delta$. By Berge's formula, there exists a vertex set $S \subset V(G)$ such that

$$o(G-S) = |S| + d.$$

Since G is connected, we must have

$$\Delta |S| \ge o(G - S) + |S| - 1$$

= $2|S| + d - 1$,

OL

$$|S| \ge \left\lceil \frac{d-1}{\Delta - 2} \right\rceil.$$

Hence

$$n \ge |S| + o(G - S)$$

$$= 2|S| + d$$

$$\ge 2\left\lceil \frac{d - 1}{\Delta - 2} \right\rceil + d$$

3 The Constructions

In this section we will show that, for every n not less than the bounds in Theorem 1 or Theorem 2 such that n has the same parity as def(G), there exists a connected graph of order n with deficiency def(G) and with given minimum or maximum degree. This implies that the bounds are sharp.

Theorem 3. Let δ and d be non-negative integers and let

$$n_1 = \begin{cases} \delta + 1, & \text{if } \delta \text{ is odd and } d = 0 \text{ or } \delta \text{ is even and } d = 1 \\ \delta + 2, & \text{if } \delta \text{ is even and } d = 0 \text{ or } \delta \text{ is odd and } d = 1 \\ 2\delta + d, & \text{otherwise.} \end{cases}$$

Then for every integer $n \ge n_1$, there exists a connected graph G of order n with $\delta(G) = \delta$ and def(G) = d.

Proof: Choose d=0 or d=1 and $n \ge n_1$. A graph G_1 of order n with $\delta(G_1) = \delta$ and $\operatorname{def}(G_1) = d$ can be formed from K_n by deleting $n-1-\delta$ edges which have one vertex in common.

Choose $d \geq 1$ and $n \geq 2\delta + d$. A graph G_2 of order n with $\delta(G_2) = \delta$ and $def(G_2) = d$ can be formed as follows. Take an empty graph \bar{K}_n with vertices $v_1, v_2, \ldots, u_a, u_1, u_2, \ldots, u_b$, where $a = \frac{n+d}{2}$ and $b = \frac{n-d}{2}$. Then for every i, $1 \leq i \leq a$, join v_i to every u_j where $j \equiv i + t \pmod{b}$, $1 \leq t \leq \delta$. \square

Theorem 4. Let Δ and d be non-negative integers, $\Delta \geq 3$, and let

$$n_1 = \begin{cases} \Delta + 1, & \text{if } d < \Delta \text{ and } d \text{ has a different parity from } \Delta, \\ \Delta + 2, & \text{if } d < \Delta \text{ and } d \text{ has the same parity as } \Delta, \\ 2\lceil \frac{d-1}{\Delta - 2} \rceil + d, & \text{otherwise.} \end{cases}$$

Then for every integer $n \ge n_1$, there exists a connected graph of order n with $\Delta(G) = \Delta$ and def(G) = d.

Proof: Suppose $d < \Delta$ and $n \ge n_1$. We form a graph G_3 as follows. Take a star $K_{1,\Delta}$ with center v_1 and other vertices $v_2, v_3, \ldots, v_{\Delta+1}$. If $d \le \Delta - 3$, then join v_{2i} , to v_{2i+1} for every i such that, $1 \le i \le \frac{\Delta - 1 - d}{2}$. Also, if $n > \Delta + 1$, then take a path $u_1, u_2, \ldots, u_{n-\Delta-1}$ and join u_1 to $v_{\Delta+1}$. The resulting graph G_3 is a connected graph of order n with $\Delta(G_3) = \Delta$ and $def(G_3) = d$.

Suppose $d \ge \Delta$ and $n \ge n_1$. Let $s = \lceil \frac{d-1}{\Delta-2} \rceil$. We form a graph G_4 as follows. Take an empty graph \bar{K}_{2s+d} with vertices $v_1, v_2, \ldots, v_s, u_1, u_2, \ldots, u_{s+d}$. For every v_i , $1 \le i \le s$, join v_i to u_j , for every $j \equiv (\Delta-1)(i-1)+t \pmod{s+d}$, $1 \le t \le \Delta$. If n > 2s+d, which implies $n \ge 2s+d+2$, then also take a path $w_1, w_2, \ldots, w_{n-2s-d}$ and join w_1 to u_1 . The resulting graph G_4 is connected, of order n, with $\Delta(G_4) = \Delta$ and $\operatorname{def}(G_4) = d$.

References

- [1] C. Berge, Graphs and Hypergraphs, North Holland, Amsterdam, (1973).
- [2] B. Bollobás and S.E. Eldridge, Maximal matching in graphs with given minimal and maximal degrees, Math. Proc. Cambridge Philos. Soc 79 (1976), 221-234.
- [3] J.A. Bondy and U.S.R. Murty, Graph Theory With Applications, The Macmillan Press, London (1977).
- [4] L. Caccetta and Purwanto, Deficiencies of r-regular k-edge connected graphs, Australian Journal of Combinatorics 4 (1991), 199-227.

- [5] L. Caccetta and Purwanto, Deficiencies and vertex clique covering numbers of cubic graphs, in R.S. Rees (editor), *Graphs, Matrices and Designs*, Marcel Dekker, New York (1993), 51-72.
- [6] L. Lovász and M.D. Plummer, Matching Theory, Annals of Discrete Math. 29, North Holland, Amsterdam (1986).