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Abstract. It is known (cf. Hamada [12] and Brouwer and van Eupen
[2]) that (1) there is no ternary (230,6,153) code meeting the Griesmer
bound but (2) there exists a ternary [232,6,153] code. This implies that
n3(6,153) = 231 or 232, where n3(k,d) denotes the smallest value of n
for which there exists a ternary [n,k,d] code. The purpose of this paper
is to prove that n3(6,153) = 232 by proving the nonexistence of ternary
[231,6,153] codes.

1. Introduction

Let V(n,q) be an n—dimensional vector space consisting of row vectors
over the Galois field GF(q) of order g, where n > 3 and ¢ is a prime power.
A k-dimensional subspace C of V(n,q) is called an [r, k,d; g]-code (or a
q-ary linear code with length n, dimension k, and minimum distance d) if
the minimum Hamming distance of the code C is equal to d. In the special
case ¢ = 3, an [n, k, d; 3]-code is also called a ternary [n, k, d] code.

Let ng(k,d) denote the smallest value of n for which there exists an
[n, k,d; g]-code. In the case g = 3, the value of na(k, d) is known for £ < 5
and for all d (cf. References). But in the case ¢ = 3 and k = 6, the value
of n3(6,d) is unknown for many integer d and a table of the bounds for
n3(6,d), 1 < d < 243, was given by Hamada [13]. Recently the table has
been updated by Hamada and Watamori [16] using recent result. In the
special case ¢ = 3, k = 6 and d = 153, it is known (cf. Hamada {12} and
Brouwer and van Eupen [2]) that n3(6,153) = 231 or 232. The purpose of
this paper is to prove the following theorem.

Theorem 1.1. There is no ternary [231,6, 153] code and n3(6, 153) = 232.
In Section 2, we shall give the proof of Theorem 1.1. In Section 3, we

shall give the proof of the following theorem which was written in Hamada
and Watamori [16] as Theorem 6.3 without proof.
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Theorem 1.2. There is no ternary (204, 6, 135] code.
2. The proof of Theorem 1.1

In order to prove Theorems 1.1 and 1.2, we use the following two lemmas
due to Hill and Newton [18] and the MacWilliams identities.

Lemma 2.1. Suppose C is an [n,k,d; q]-code and suppose c € C has
weight w, where w < dg/(q ~ 1). Then the residual code of C with respect
to a codeword c is an [n — w, k — 1, dp; g]-code with dy > d — w + [w/q].

Lemma 2.2. Let C be an n,k,d;3]-code with k > 2. Then:
(1) Ai =0 or 2 fori> (3n— 2d)/2,
(2) if A; > 2, then Aj =0 for j > 3n—2d—i and j # 1,
where A; denotes the number of codewords of weight i in the code C.

Lemma 2.3. Let C be an [n,k,d;g]-code and let A; and B; denote the
number of codewords of weight i in the code C and in its dual code, respec-
tively. Then

n-1 t
2.1) ()45 = ¢ (D)B;
7=0 3=0

fort=0,1,---,n.

Lemma 2.4. If there ezists a ternary [231,6,153] code C, then w(c) =
153, 162, 176, 177, 230 or 231 for any codeword ¢ in C, where w(c) denotes
weight of the codeword c.

Proof. Suppose there exists a ternary [231,6,153] code C and suppose
c € C has weight w, where 153 < w < 229.

In the case w = 154, it follows from Lemma 2.1 that the residual code
of C with respect to a codeword c is a ternary (77,5, do] code with dg > 51.
This implies that there exists a ternary [77,5,d| code for some integer
d > 51, which is contradictory to Table A.1 in Appendix A. Hence there is
no codeword c in C such that w(c) = 154.

Similarly, it can be shown using Lemma 2.1 and Table A.1 that there
is no codeword c in C such that 155 < w(c) < 161, 163 < w(c) < 175 or
178 < w(c) £ 229. This completes the proof.

From Lemma 2.2, we have the following lemma.
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Lemma 2.5. If there ezists a ternary [231,6,153] code C, then:
(1) Ai =0 or 2 fori> 193.
(2) If Agz1 = 2, then Aj =0 for j > 156 and j # 231.
(3) If Aazo = 2, then Aj =0 for j > 157 and j # 230.

Lemma 2.6. If there ezists a ternary [231,6,153] code C, then w(c) =
153, 162 or 177 for any codeword c in C and (A,53, A1g2, A177) = (690,2, 36)
and By = 38.

Proof. Let C be a ternary [231,6,153] code. It follows from Lemmas
2.4 and 2.5 that w(c) = 153, 162, 176, 177, 230 or 231 for any codeword ¢
in C and A; = 0 or 2 for i = 230, 231.

(A) In the case Az3; = 2, it follows from Lemmas 2.5 and 2.3 (n =
231,k = 6,9 = 3,t = 1) that 784,53 = 231(3% — 1) = 55902, i.e., Ajs3 =
716.69 - - .. This is a contradiction.

(B) In the case Az = 2, it follows from Lemmas 2.5 and 2.3 that
78A153 + A239 = 55802, i.e, Ajs3 = 55900/78 = 716.66-... This is a
contradiction.

(C) In the case Ay = Agg; = 0, it follows from (2.1) that

(2.2) A1s3 + Asg2 + Arre + Arrr = 728,

(2.3) T8A153 + 69A162 + 55A176 + 544177 = 55902,
24) (DAss+ (5)A162 + (F)Arr6 + (5) Arrr = 2125200 + 81B,.

Since Ays3, A162, A176, A177 and B are even, there exist nonnegative
integers a, b, c, d and § such that A1s3 = 2a, Aje2 = 2b, A1z = 2c,
Arr = 2d and By = 28. It follows from (2.2) x 2691 — (2.3) x 73 + (2.4)
and (2.2) x 78 — (2.3) that

(2.5) 161c = 9(189 + 98 — 20d),

(2.6) 9b + 23c + 24d = 441,

respectively. It follows from (2.5) and (2.6) that ¢ must be a multiple
of 27 and d must be a multiple of 3. Hence there exist two nonnegative
integers co and dj such that ¢ = 27¢y, d = 3dy, 161cy = 63 + 35 — 20dy and
b+69co+8do = 49. Since b and 3 are nonnegative integers, this implies that
c0=0,dg=6,3=19 and b = 1. Hence Ayg2 = 2b = 2, Ay76 = 54co = 0,
Ay7r = 6dg = 36, By = 28 = 38 and A153 = 690. This completes the proof.
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Proof of Theorem 1.1. Suppose there exists a ternary [231,6,153]
code C. Then it follows from Lemma 2.6 that w(c) = 153, 162 or 177 for
any codeword c in C and (Aiss, A162, A177) = (690,2,36) and By = 38.
Hence there exists a ternary [229, 5,153] code C such that w(c) = 153, 162
or 177 for any codeword ¢ in C and Ajge = 0 or 2, where A; denotes the
number of codewords ¢ in C such that w(c) = i. It follows from (2.1) that

(2.7) Az + Ae2 + Arrr = 242,

(2.8) 76A153 + 67A162 + 524177 = 18320.

Hence it follows from (2.7) x 76 — (2.8) that 3462 + 84177 = 24.

(A) In the case Aig2 = 0, it follows that Ai77 = 3. Since A177 must be
even, this is a contradiction.

(B) In the case Aj52 = 2, it follows that Aj77 = 18/8 = 2.25. Thisis a
contradiction.

It follows from (A) and (B) that there is no ternary [231,6,153] code.
This completes the proof.

8. The proof of Theorem 1.2

Using Lemmas 2.1, 2.2 and Table A.1, we have the following two lemmas.

Lemma 8.1. If there exists a ternary [204,6,135] code C, then w(c) =
135, 149, 150, 203 or 204 for any codeword c in C.

Lemma 3.2. If there ezists a ternary (204, 6, 135) code C, then:
(1) A; =0 or2 fori> 171.
(2) ifAzo.; =2, then AJ' =0 fO‘l‘J > 138 andj 95 i
(3) if Aggz = 2, then Aj =0 for 7 > 139 and j # 1.

Proof of Theorem 1.2. Suppose there exists a ternary (204, 6,135
code C. It follows from Lemmas 3.1 and 3.2 that Azgs = 0 or 2 and Azgq =0
or 2.

(A) In the case Aygq = 2, it follows from Lemmas 3.1, 3.2 and 2.3
(n = 204,k = 6, = 3,¢t = 1) that 694155 = 204(3% — 1), ie, Ayzs =
49368/69 = 715.47 - - .. This is a contradiction.

(B) In the case A3 = 2, it follows from Lemmas 3.1, 3.2 and 2.3
(t = 1) that 694135 + Azo3 = 49368. This implies that Ay35 = 49366/69 =
715.44 - - -, a contradiction.
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(C) In the case Azo3 = Aggq = 0, it follows from Lemmas 3.1 and 2.3
(t=0,1,2) that

(3.1) Args + Apgg + Arso = 728,
(3.2) 69A135 + 55A149 + 54 A ;150 = 49368,
(3.3) (629)14135 + (525).4149 + (5;)/1150 = 1656480 + 81B,.

It follows from (3.1) x 3795 — (3.2) x 123+ (3.3) x 2 and (3.1) x 69— (3.2) that
15A150 = 3456+ 162B; and 14A;49+15A150 = 864. Since B; > 0, it follows
that Ay50 > 230 and 144,49 = 864— 154150 < —2586, a contradiction. This
completes the proof.
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Appendix A. Table of the values of n3(5,d), 1< d< 81

Let d = 34 - E"izoci3i) g = v — z?:oeivﬂ-l and ¢ = (50151762)63))
where ¢; =0, 1 or 2 for ¢ = 0,1,2,3. Let n = n3(5, d) denote the smallest
length of codes of dimension 5 and minimum distance d over the Galois
field GF(3). The value of n3(5,d), 1 < d < 81, is given in Table A.1.
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Table A.1. The values of n3(5,d) for 1 < d < 81.
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