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ABSTRACT. Let v and u be positive integers. It is shown in
this paper that the necessary condition for the existence of a
directed TD(5,v) - TD(5, u), namely v > 4u, is also sufficient.

1 Introduction

Let v, k and A be positive integers. A transversal design (TD) with pa-
rameters v, k and ), denote by TD(k, };v), is a triple (X, G, A) where
X is kv-set (of points), G is a collection of v-subsets of X (called groups)
which partition X and A is a collection of subsets of X (called blocks), each
meeting each group in exactly one point, such that every pairset of points
from different groups occurs in exactly X blocks of A. Thus it follows that
each block contains k points and there are A\v? blocks.

If we remove one or more subdesigns from a TD(k, \;v), we obtain a
holey transversal design with index A. In the case of one hole, it is called
incomplete transversal design with index A. This notion for A = 1 is intro-
duced by J. Horton [13] under the name of incomplete array. In the sequel,
we write TD(k, A; v) —E1<i<r TD(k, A; ;) for a structure (X, (Yi)i<r, G, A)
where X is a kv-set (of points), G = {G1,Gs, ..., Gk} is a partition of X
into k groups of v points each, each Y; (1 < i < r) is a set of ku; points
(a hole of size ku;) such that |[Y; NGj| =u; for 1<j <r, ¥;NnY; =0 for
1<i<j<randAis a collection of subsets of X (called blocks), each
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meeting each group in exactly one point, such that no block contains two
distinct points of any group or any hole, but any other pairset of points of
X is contained in exactly X blocks of A. When A = 1, we drop the notation
A and write TD(k,v) and TD(k,v) — E1<i<r TD(k, 4;) for TD(k, A; v) and
TD(k, \;v) — Zi<i<r TD(K, A; u;) respectively.

Now we define an analog of a transversal design TD(k, v) in the directed
case. A transitively ordered k-tuple (ay, @2, ..., ax) is defined to be the set
{(ai,a5): 1 < i < j < k} consisting of k(k —1)/2 ordered pairs. A directed
transversal design with block size k and order v, denoted by DTD(k, v),
is a triple (X, G, A) where X is kv-set (of points), G is a collection of
v-subsets of X (called groups) which partition X and A is a collection of
transitively ordered k-tuples of X (called blocks), each meeting each group
in exactly one point, such that every ordered pair of points from different
groups occurs in exactly one block of A. The concept of transversal design
with r holes extends naturally to the directed case as well. We use the
notation DTD(k, v) — £1<i<r DTD(k,u;) for such a design. In the case of
r = 1, we refer the design as a directed incomplete transversal designs and
denote it by DTD(k,v) - DTD(k, u).

We are particularly interested in the existence of directed incomplete
transversal designs, since they are very useful in the construction of other
types of directed designs such as directed BIBDs, directed packings and
coverings (see, for example, [3,9,15,16]). Simple counting arguments show
DTD(k,v) - DTD(k,u) is v > (k — 1)u.

The existence of a TD(k, v) - TD(k, u) implies the existence of a DTD(k, v)
- DTD(k,u). The directed design is obtained by writing each block of the
undirected one twice — once in some order and the other in the reverse
order.

The following known results are taken from [12] and a preliminary version
of [10] respectively.

Lemma 1.1. For any integer u > 2, a TD(4,v) - TD(4,u) exists if and
only if v > 3u.
Lemma 1.2. For any integer u > 1 a TD(5,v) - TD(5,u) exists if and
only if v > 4u except (v,u) = (6,1) and possibly the 65 values of (v,u)
shown in Table 1.

With the above observation, we have the following two theorems from
Lemmas 1.1 and 1.2.
Theorem 1.1. For any integer u > 2, a DTD(4,v) - DTD(4, u) exists if
and only if v > 3u.
Theorem 1.2. For any integer u > 1 a DTD(5,v) - DTD(5,u) exists if
and only if v > 4u except possibly (v,u) = (6,1) and the 65 values of (v,u)
shown in Table 1.
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u v K
1 10 6 2627283233
2 1314151617 3940444748
2021242526 5253
272831 7 30344145
3 2021252629 9 3842
3032333637 10 43
414244 11 50
4 1923253842 13 4
50 15 66
5 2223272834 17 74
38 21 90
29 122
30 123

Table 1

The purpose of this paper is to improve the result of Theorem 1.2 and
prove that the necessary condition of the existence of a TD(5, v) - TD(5, u),
namely v > 4u, is also sufficient.

2 Constructions

In order to establish our main result, we shall employ both direct and
recursive methods of construction which we describe in this section.

Our first two constructions are the extension of the working corollaries
of Theorems 1.1 and 1.2 in [6] to the directed case.

Lemma 2.1. Suppose that a TD(6,t) and & DTD(5, m+m;) - DTD(5,m;)
(for j =1,2,...,t) all exist. Then

(1) a DTD(S, mt + zlsjsgm,') - DTD(5, 215,-5,111_,-) exists,'

(2) a DTD(5,mt + Z;<j<em;) - DTD(5,my + m) exists if a
DTD(S, Elsjsgmj) - DTD(5, ml) exists’ and

(3) a DTD(5, mt + Elsj'sgm") - DTD(S, t) exists if a DTD(S, EISjStmj)
and a DTD(5, m+m;) - DTD(5, m;) - DTD(5,1) (for § =1,2,...,t)
all exist.

Lemma 2.2. Suppose that the following designs exist:
(1) a TD(5 + 4d,t);
(2) a DTD(5,m); and
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(3) a DTD(5,m + m;) - DTD(5,m;) (for j =1,2,...,d).

Then there exists a DTD(5, mt + L1<j<cam;) - DTD(5, m + Z1<j<am;).

The following is an extension of Wilson’s Construction [17] to the directed
case.

Lemma 2.3. Suppose that a TD(7,t), a DTD(5,m), a DTD(5,m + 1) -
DTD(5,1), and a DTD(5, m+2) - 2DTD(5,1) all exist. Then a DTD(5, mt+
a+b) - DTD(5,b) exists if a DTD(5, a) exists where 0 < a, b <t.

Now we consider the direct methods of construction. Most of our di-
rect methods of construction are a variation of using difference sets in the
construction of TDs (see [11]). We first make the observation that some
directed incomplete transversal designs can be constructed as follows. If
there exists a TD(k, 2;v) - TD(k, 2;«) which is generated by a set of base
blocks and the base blocks can be rearranged so that each difference ap-
pears exactly once, taken from left to right, then the resultant design is a
DTD(k,v) - DTD(k,u). In this fashion, we have the following results, in
which the corresponding TDs are taken from {11] and [10] respectively.

Lemma 2.4. There exists a DTD(7,6) - DTD(7,1).

Proof: Let X = (ZsU{z}) x Z7, the group set G = {(Z5U {z}) x {j}: j €
Z7}, the hole and Y = {z} x Z7 and A be the collection of blocks obtained
by developing the following two base blocks under the action of Zs x Z;:

(0,1) (1,2) (43) (44 (L5 (0,6) (z,0)
(=0 (0,6) (2,5 (3,4 (3,3) (22) (0,1)

Lemma 2.5. There exists a DTD(5,13) - DTD(5, 2).

Proof: Let X = (Z1, U {z,y}) x Zs, the group set G = {(Z1; U {z,y}) x
{7}: 7 € Z5}, the hole Y = {z,y} x Zs and A be the collection of blocks
obtained by developing the following base blocks under the action of Z;; x
Z5:

(3.0) (4,3 (91) (52 (1,4)

(10,4) (6,2) (2,1) (7,3) (8,0)

(=,0) (0,2) (2,1) (8,4) (0,3)

¥0) (0,3) (2,4) (8,1 (0,2)

(7,2) (1,3) (0,1) (0,4) (=,0)

(73 1,2) (0,4) (0,1) (0

Finally we describe the following direct constructions.

Lemma 2.8. There exists a DTD(5,v) - DTD(5, u) for each pair (v,u) €
{(15,2), (21,2), (20,3)}.
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Proof: Take the point set X = (Z,—y U H) x Zs, the group set G =
{(Zy—w U H) x {j}: j € Zs} and the hole Y = H x Z5 where H = {z,y}
or {z,y, 2z} depending on u = 2 or u = 3. The required blocks are listed
below.

A DTD(5,2;15) - DTD(5,2;2):

(X,O) (0)1) (312) (7!3) (2i4) (mOd 13, —)
(x:l) (210) (0,2) (3!3) (7’4) (mOd 13, -)
(x,2) (710) (2v1) (0:3) (314) (mOd 13!_)
(x3) (30) (71) (22) (04)  (mod13,-)
(xs4) (0)0) (3'1) (7!2) (2:3) (mOd 13: -)
(01,) (10,2) (6,3) (11,4) (x,0) (mod 13,-)
(11,0) (072) (10,3) (6!4) (xnl) (mOd 13, —)
(6,00 (11,1) (03)  (104) (x,2) (mod 13,-)
(100) (6.1) (11.2) (04) (x,3)  (mod 13,-)
(0’0) (10’1) (6»2) (11’3) (x:4) (mOd 13, ")
(Y:o) (0)1) (11:2) (4)3) (3:4) (mOd 13! _)
(»1) (300 (02 (11,3) (44) (mod 13, -)
(»2) (40 (31 (03 (11,4) (mod13,-)
»3) (11,00 (4,1) (3,2) (04) (mod 13,-)
(v4) (000 (11,1) (42) (33) (mod 13,-)
(0,1) (2v2) (913) (10s4) (Y»o) (mOd 13» —)
(10»0) (0»2) (2l3) (9:4) (yvl) (mOd 13:—)
(9»0) (10:1) (0»3) (2:4) (Y)2) (mOd 13: —)
(2'0) (911) (10,2) (0a4) @»3) (mOd 13) —)
(0»0) (2r1) (9,2) (10)3) (y'4) (mOd 13: '-)
(070) (011) (0:2) (0:3) (014) (mOd 13: _)
(04) (03 (02) (01) (00) (med 13,-)
(0,4) (2,3) (2%2,2) (27*3,1) (27*%,0) (mod 13,-)
G=0,1,...,11)

A DTD(5,21) - DTD(5, 2):

(x0) (01) (7.3) (3,2) (84) (mod 19,5)
(11,4) (162) (12,3) (0,1) (x,0 (mod 19,5)
®0) (01) (9,2) (104) (163) (mod 19,5)
(33) (9:4) (10,2) (0,1) (,0) (mod 19,5)
(13,2) (74) (153) (0,00 (18,1) (mod 19,5)
1,1) (00) (43) (124) (62) (mod 19,5)
(17,3) (00) (144) (9,2) (13,1) (mod 18,5)
(6,1) (10,2) (54) (0,00 (2,3) (mod19,5)
(911) (2’3) (2:4) (0’0) (0,2) (mod 19,-)
(912) (2v0) (214) (001) (0t3) (mOd 19,—)
(93) (20) (1) (0,2) (04) (mod19,-)
(9»4) (2s1) (212) (0!0) (0’3) (mOd 19)—)
(910) (2:2) (2:3) (0»1) (014) (mOd 19"‘)
(014) (013) (0!2) (071) (0’0) (mOd 19)"')
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A DTD(5,20) - DTD(5, 3):

(x,O) (1414) (11|3) (912) (3t1) (mOd 17! _)
(X,l) (1114) (9’3) (372) (14v0) (mOd 171 _)
(xtz) (954) (3:3) (14!1) (1110) (mOd 17: _)
(X,3) (3a4) (14»2) (1111) (9:0) (mOd 17: _)
(x4) (14,3) (11,2) (9,1) (3,0 (mod 17,-)
(yso) (12:4) (713) (1512) (5,1) (mOd 17! -)
(y:l) (7’4) (15,3) (5a2) (12,0) (mOd 171 _)
(yiz) (15:4) (5’3) (12:1) (7:0) (mOd 17) —)
(3) (54) (122) (7,1) (150) (mod17,-)
(y:4) (1213) (7’2) (1531) (5:0) (mOd 171 -)
(2,0) (3:4) (6’3) (8'2) (14v1) (mOd 17: _)
(Z,l) (6:4) (8)3) (14:2) (330) (mOd 17' "’)
(2»2) (8»4) (14’3) (3»1) (6’0) (mOd 17: —)
(213) (14,4) (312) (6)1) (8’0) (mOd 17: —)
(2)4) (313) (6v2) (811) (14'0) (mOd 17: _)
(54) (103) (22) (121) (x0) (mod 17,-)
(10:4) (2!3) (12)2) (5:0) (x)l) (mOd 17, -)
(24) (12,3) (51) (100) (x,2)  (mod 17,-)
(1214) (5t2) (10»1) (2’0) (X,3) (mOd 17, —)
(53) (10,2) (2,1) (12,0) (x4)  (mod 17,-)
(04) (1,2) (1.3 (01) (v0)  (mod17,-)
(1:3) (1'4) (0»0) (0!2) (Yal) (mOd 17r —)
(1’4) (0»1) (033) (1 )0) (Y:z) (mOd 171 -)
(0’2) (014) (1:0) (l’l) (Y:s) (mOd 17»_)
(0)3) (1)1) (1’2) (0!0) (ys4) (mOd 17, _)
43) (1) (04) (42) (z0) (mod17,-)
(4’4) (4’3) (0’2) (0’0) (z71) (mOd 17, _)
(0:3) (410) (4:4) (Orl) (z!2) (mOd 17, _)
(0:4) (0’2) (4!1) (4:0) (Z,3) (mOd 17, -)
(42) (000 (03) (41) (z4) (mod 17,-)
(4:1) (0,0) (6:2) (1114) (713) (mOd 17’ —)
(13,1) (0,0) (11,2) (64) (10,3) (mod 17,-)
(00) (12,2) (81) (14,3) (54)  (mod 17,-)
(0’0) (1:1) (6:3) (10’2) (7s4) (mOd 17, —)
(00) (43,1) (64,2) (75,3) (115,4) (mod 17,-)
{j € Z:17{0,1,2,13,16})

Lemma 2.7. There exists a DTD(5, 3).

Proof: Take the point set X = Z;5, the group set G = {{5,5+ 5,10+
7}:3=0,1,2,3,4}. Then the required blocks are
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12 O 1 14 8
13 1 2 9 0
14 2 3 10 1
3 0 4 11 2
4 1 5 12 3
5 2 6 13 4
6 3 7 14 5
i i+12 i+l i+14 i48

i 43 j+6 j+9 j+12
where 1 =17,8,...,14, § = 0,1,2 and all sums are calculated in Z;s. a

3 Results

In this section we apply the previous constructions to establish our re-
sults. For this purpose, we make extensive use of the obvious fact that
the existence of TD(5,v) - TD(5, 1) implies the existence of a DTD(5, v),
a DTD(5,v) - DTD(5,1) and a DTD(5,v) - 2DTD(5, 1) (the latter only if
v > 4). We also require the following two known results. The first one can
be found in [1, 2, 4, 6, 7, 8, 14] and the second is taken from [16].

Lemma 3.1. For any integer v > 5 and v # 6,10, 14, 18,22, 34 or 42, there
exists a TD(6, v).

Lemma 38.2. There exists a DTD(5, 2).

Now we work towards establishing our results.
Lemma 3.3. There exists a DTD(5,v) - DTD(5,1) when v = 6 or 10.

Proof: A DTD(5,6) - DTD(5,1) follows from Lemma 2.4. From Brouwer
[5] we have a TD(5, 10) - TD(5, 2) - TD(5, 1). Filling the hole of size 10 by
a DTD(5,2) creates a DTD(5,10) - DTD(5,1). m}

Lemma 3.4. A DTD(5,v) - DTD(5, 2) exists for each v € {14,16,17,20,24,
25,26,27,28,31}.

Proof: For v € {14, 16, 24, 28}, there is a TD(5,v/2) - TD(5, 1) by Lemma..2.
We then apply Wilson’s Fundamental Construction [18] with weight 2 to
obtain the result, since a DTD(5,2) exists by Lemma 3.2.

For v = 20, we give weight 2 to a TD(5,10) - TD(5,2) - TD(5,1). Wil-
son’s Fundamental Construction then produces a TD(5,20) - TD(5,4) -
TD(5,2). Filling the hole of size 20 by a DTD(5,4) establishes the result.

For the remaining values of v, we apply Lemma 2.1 (1) and Lemma 2.3
with the equations:
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17=385+(1+1)
25 =3.7+4+2+2
27 =37+2+4
31=39+2+2

where we used the results in Lemmas 1.2, 3.1 and 3.2. (]

Lemma 3.5. A DTD(5,v) - DTD(5, 3) exists for eachv € {21, 25, 26,29, 30,
32,33,36,37,41,42,44}.

Proof: For each of these values of v, simple calculations show that it can
be written in the form v = 3t + w where ¢t € {7,9,11,13} and 0 < w < &.
Therefore the result follows from Lemma 2.1 (2) with m = 3, m; = 0 and
mj=0o0r1 (2<j<t)sothat Z;<j<im; = w. The required DTD(5, 3) is
constructed in Lemma 2.7. o

Lemma 3.6. A DTD(5,v) - DTD(5,4) exists for eachv € {19,23, 25, 38,42,
50}.

Proof: For the cases v = 19 and v = 25, the result follows from Lemma
21 (1) with m = 3, t € {5,7} and Z)cj<emj = 1+1+1+1. For
v € {23, 38,42, 50}, the result is taken care of by Lemma 3.2 and Lemma 2.1
(2) withm =4, m; =0and m; =0or1(2<j <t) where t € {5,9,11}. O

Lemma 3.7. A DTD(5,v) - DTD(5, 5) exists for eachv € {22, 23,27, 28, 34,
38}.

Proof: Taking (m,t,a,b) = (3,7,5,1),(3,7,5,2),(3,9,5,2) and (3,9,5,6)
in Lemma 2.3 gives the result for v € {27, 28, 34, 38}. Lemma 2.1 (3) works
for the cases v=22=45+(1+1)andv=23=45+(1+1+1). W]

Lemma 3.8. A DTD(5,v) - DTD(5, 6) exists for each v € {26,27,28, 32, 33,
39,40,44,47,48,52,53}.

Proof: For v € {32,33,44,47,48,52,53}, we can write v = 6t + w such
that ¢t € {5,7,8} and 0 < w < t. The result then follows from Lemma 2.1
(2) withm; =0, m=6and mj =0or 1 (2 < j < t), since a DTD(5, 6)
exists by Lemma 3.3. Lemma 2.2 takes care of the cases v =26 = 5.5+ 1
and v =27=3.8+(1+1+1+1). The remaining values of v are covered
by Lemmas 2.1 (1) and 2.3, since 28 = 3.7+ 1+ 6, 39 = 3.11 + 6 and
40=3.9+47+6. m}

Lemma 3.9. There exists a DTD(5,v) - DTD(5,u) for any pair (v,u) €
{(30,7),(34,7), (41,7), (45, 7), (38,9), (42,9), (43, 10), (50,11), (54, 13), (66, 15),
(74,17), (90, 21), (122, 29), (123, 30)}.
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Proof: Because of Lemmas 2.7, 3.1 - 3.3 and Theorem 1.2, Lemma 2.1
(3) with t = u, m; = 0 or 1 works for all cases except for (v,u) €
{(41,7), (43,10)}. For the case (v,u) = (41,7), the result follows from
Lemma 2.1 (1) witht =5, m =7, m; = ma =0 and m3 = mg = ms = 2.
The auxiliary design DTD(5, 9) - DTD(5, 2) comes from Theorem 1.2. Since
43 = 3.11 + 10, a DTD(5, 43) - DTD(5, 10) exists by taking ¢ = 11, m = 3,
mil=0and mj =1 (2 <7 <10) in Lemma 2.1 (1). This completes the
proof. a
The foregoing can be summarized as follows.

Theorem 3.10. Let v, and u be positive integers. Then a DTD(5,v) -
DTD(5,u) exists if and only if v > 4u.
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