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ABSTRACT. Our main aim is to show that the Randi¢ weight
of a connected graph of order n is at least /n — 1. As shown
by the stars, this bound is best possible.

Given adjacent vertices = and y of a graph, the Randié weight or simply
weight of the edge zy is R(zy) = (d(z)d(y))/?, where d(z) and d(y) are
the degrees of x and y. Also, the Randié weight or simply weight of a graph
G, R(G), is the sum of the weights of its edges. Randi¢ [3] introduced this
weight (which he called the branching indez, and is now also called the
Randié indez) in his study of alkanes: he showed that there is a strong cor-
relation between this index and chemical properties which critically depend
on molecular size and shape (see [2]). Earlier, Wiener [4] had proposed for
the same purpose an index he called the path number, which, for connected
simple graphs, is the sum of all the distances between pairs of vertices.

The Graffiti program of Siemion Fajtlowicz has made numerous conjec-
tures concerning, among others, the Randié weight of graphs with a given
number of edges, and of graphs with a given number of non-isolated vertices.

James Shearer was the first to prove that the minimal Randié¢ weight of
a connected graph of order n goes to infinity with n. In fact, he proved
in 1988 that the weight of a graph with n non-isolated vertices is at least
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v/n/2, and a little later Noga Alon improved this bound to v/n —8 (see [1]).
We shall show that the weight is, in fact, at least v/n — 1, the weight of a
star with n vertices. The proof of this result is based on two easy lemmas.

Lemma 1. Let ;x5 be an edge of a graph G of order n, with z; having
degree d;. If dy =1 then

R(G)—R(G-11272) 2 Vda — Vdy - 12 Vn—1-vn-2.

Proof: If d; = 1 then R(G) — R(G — z1z2) = 1; therefore we may and shall
assume that dy > 2.

Denote by S; the sum of the weights of the edges, other than z,z2,
incident with the vertex z;. Note that

R(G) - R(G—zlzz) = -\/17 + Ss —Szﬁﬁ—l.

Since S < (d2 —1)/+/dz, we have

R(G) - R(G - m1z2) > &{Hdz—l ~VE&& -1 =VE -V 1.

O
Lemma 2. Let z,22 be an edge of maximal weight in a graph G. Then

R(G - z122) < R(G)

Proof: As in Lemma 1, for ¢ = 1,2 set d; = d(z;) and denote by S; the
surn of the weights of the edges incident with x;, except for the edge z;z2.
If min{d,,ds} = 1, then we are done by Lemma 1. Otherwise we have

Si < (di —1)/V/d1dz,
so

R(G) — R(G — z172)

1 d d:
=—,al?;+31+32—slvdl—il—32—vdzil
1 ’ d d:

dl(dl—1)+d2—§—\/dz(dz—1)}>o.
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Our first main result easily follows from these two lemmas.

Theorem 3. Let G be a graph of order n, containing no isolated vertex.
Then

R(G) 2 vn-T, (1
with equality if, and only if, G is a star.
Proof: If G is a star then we do have equality in (1), since each of the
n — 1 edges has weight 1/y/n —1.

To prove the main assertion of the theorem we apply induction on n+m,
where m denotes the number of edges of G. 1t is trivial to check that the
assertion holds for n = 2,3, so let us assume that » > 4 and the result
holds for smaller values of n + m.

Let z1z, be an edge of maximal weight. By Lemma 1 and the induction
hypothesis, we may assume that G — z1z2 has at least one isolated vertex.

If G — z1x2 has two isolated vertices (so that zyz is an isolated edge)
then, by the induction hypothesis,

R(G)=14+R(G—z122) 21+ Vn—-3>vn-1.

Suppose then that G—z;z; has precisely one isolated vertex, say d(z;) =
1 and d(x2) > 2. Then, by Lemma 1 and the induction hypothesis,

R(G) 2 R(G-ziz2)+Vn—-1-vn-2>vn-1.

Furthermore, if the second of these inequalities is an equality then the graph
G — z175 is a star of order n — 1 and an isolated vertex. In that case G is
either a star or else

1 1 n—-3
R(G)=ﬁ+\/2(n—2) +‘/n_2 >vn-1.

o

Before we turn to the minimal Randié weight of a graph with m edges, we
consider another weighting. This time the weight of an edge is the product
of the degrees of the endvertices, and we are interested in the maximal
weight of a graph with m edges.

Theorem 4. Let the weight of an edge e = zy be w(e) = d(z)d(y), and

for a graph G set
w(G) = Z w(e).
e€E(G)
Then every graph G of size m = e(G) satisfies
2
w(@) <m (__"8"";1“1) . @)
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Equality holds if, and only if, m is of the form m = (3) for some natural
number n and G is the union of K,, and isolated vertices.

Proof: Let G be a graph of size m, with vertex set V(G) = {zy,...,zn}.
For each i, 1 < i < m, set d; = d(z;) and F(z;) = V(G) — I'(z:) U {z:}.
Thus F(z;) is the set of vertices far from z;, at distance at least 2. Also,
write e; for the number of I'(z;) — F(z;) edges and f; for the number of
edges in F(z;). Note that

Z dj =2m—dg—e.-—2f¢.
z;€D(z:)

Consequently,

W(G)=%Z > wlzizg) =

i=1z;€0(z:)

P

z;€D(z:)

8O =

= 2> hem—di— e~ 253)
i=1

=2m? — 23" didi+ s+ 260, 3

i=1

Rather crudely,

da+e.-+f.'2maX{di,m— (?)}2v8m+1—1,

so (3) gives that
l n
w(G) < 2m? — 3 2i=l:d,-{\/8m +1-1}

=2m2—m{\/8m_+—1}=m(E;——1)2,

as claimed.
For equality to hold in (2), we must have

dtatfi=d=m-(3),

whenever d; > 0. Hence, G is a complete graph and isolated vertices. It is
immediate that if G is a complete graph then we do have equality in (2),
since if m = (3) thenn — 1= (vV8m +1-1)/2. O
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Theorem 4 easily implies analogous inequalities for more general weight.
To be precise, for a € R, o # 0, define the weight w,(e) of an edge e of
a graph to be wa(e) = (d(z)d(y))*. Thus w;(e) is simply the weight w(e)
appearing in Theorem 4, and w_y/2(e) is the Randié weight of an edge.
Also, set wa(G) = X cp(c) Wal€)-

Theorem 5. Every graph G of size m is such that

fo——r 2a
we(G) <m (_Sm_-;—_l) (3
for0<a<1,and
e 2a
wa(G)2m (_i"l%'__l) 4

for —1 < a < 0. Furthermore, in (4) or (5) equality holds for a particular
value of « if, and only if, G consists of a complete graph and isolated
vertices, in which case we have equality in (4) and (5) for every a, —1 <
a<l,a#0.

Proof: For a = 1, the assertion is precisely Theorem 4, so we may assume
that o # 1. Suppose first that 0 < a < landset § =1—-a, p = 1/,
g =1/8, so that 1/p +1/q = 1. By Hélder’s inequality and Theorem 4,

1/p 1/q
wa(G) =} w(e)*-1¥ < (Zw(e>"‘°) (Z l)
VBmFI-1\*
(=)

=w(G)*mP <m

implying(4). The case of equality follows from that in Theorem 4.

Inequality (5) is an immediate consequence of (4). Indeed, for a # 0 we

have
wo(G)w_a(G) 2 m2,

since by the Cauchy-Schwartz inequality,

1/2 1/2
m= Zw.,(e)l/ 2w_o(e)/? < (Zwa(e)) (Z w_a(e))

= wa(G)YV?w_o(G)2.
Therefore, by (4), if 1 < a < 0 then

ma( @2t /m o)z (LEELZLY ™y (RFT1)

as claimed. The case of equality is again immediate. 0
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Perhaps the most interesting case of Theorem 5 is & = 1. It is not unrea-
sonable to expect that in this case one can determine the exact maximum
of the weight of a graph with m edges. It is likely that if (3) < m < ("}1)
then the maximum is attained on a graph of order n + 1 which contains a
complete graph of order n.

As noted earlier, in the case @ = —1/2 we obtain precisely the Randi¢
weight of a graph. Therefore if G is a graph with m edges then

R(G) > 2m/{vVBm+1 -1} = (VBm+1+1)/4. ()

Also, equality holds in (6) if, and only if, G consists of a complete graph
and isolated vertices.

Since the weight of an edge is at most 1, the weight of a graph with m
edges is at most m. Our next aim is to determine the maximal weight of
an r-uniform multigraph with n vertices, with the natural definition of the
Randié¢ weight.

To be precise, for » > 1, an r-multiset on a set V is a map p: V —
{0,1,...,7}, with 3 v p(z) = r. We write V) for the set of all r-
multisets on V. An r-uniform multigraph is a pair (V, m), where V, the set
of vertices, is a finite set, and m is a map from V) to [0, c0). We think of
m(p) as the multiplicity of the ‘edge’ p.

The degree of a vertex z of a multigraph G = (V,m) is

dz)= Y m(p)p(x),
pGV(')
and the size of G is

e0)= Y mlo)=2 da).

pPEVN €V

Note that if r = 2, m(p) = 0 or 1, and m(p) = 1 implies that p(z) = 0 or
1 (and so p(z) = p(y) =1 for two distinct vertices, and p(z) = 0 for every
other vertex), then G is naturally identified with the graph (V, E), where
E = {zy € V®: p(z) = p(y) = 1 for some p € V{? with m(p) = 1}.
Define the weight of p € V(") to be

R(p) = {m(p)/ (py>0d@@) ™ it m(p) >0,
0 otherwise.

The weight R(G) of an r-multigraph G = (V, m) is the sum of the weights

of its edges:
R(G) = Z R(p).
pEVI(F)
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Theorem 6. For r > 1, the weight of an r-multigraph G with n vertices
is at most n/r. Furthermore, R(G) = n/r if, and only if, G is d-regular for
some d > 0, i.e. d(z) =d > 0 for every vertex z.

Proof: If G = (V,m) is d-regular for some d > 0 then R(p) = m(p)/d for
every pe V(" so

RG)= Y Rp)=3 ¥ m) =5 3 da)=n/r

pEV(D) peEVIT) z€EV

Now suppose that G = (V, m) is an r-multigraph with n vertices, having
k vertices of minimal degree d > 0, where 1 < k < n. To prove the
theorem, it suffices to show that there is a multigraph G’ = (V, m’) with
R(G) < R(G’), having at least k + 1 vertices of minimal degree.

Set U = {u € V: d(u) = d} and let e = min{d(v): v € V — U}. Define
mo: V(M —[0,00) by

(e —d)/r if p(u)=r for some u € U,
0 otherwise,

mo(p) = {

and set G’ = (V,m + myp). Then G’ has at least k + 1 vertices of minimal
degree e so to complete the proof, it suffices to show that R(G’) > R(G).
For simplicity, for 1 <i <r, set A; = {pe V(" Y uev P(u) =i} and

a= Y mp).

PEA;

(Note that if G is an r-graph then g; is the number of edges having precisely
i vertices in U.) Clearly

zr:ia,- =) d(u) = kd. (6)
i=1

uelU
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Also, writing R(p) for the weight in G,

R(G") - R(G) = + Z > R(p){(d/e)"/ -1}

i=1pEA;

22D L 50 5 m@e @ -1y
i=1 peA.

_Heod Z{( /@ =1} 3 mip)
PEA;
k(e_- _1 Z (5- )
k(e - edr Zta, 0,
where the final equality followed from (7). n]

What can one say about the minimal weight of an r-graph with n non-
isolated vertices? It seems likely that Theorem 3 can be generalized to the
assertion that if an r-graph G has n non-isolated vertices then R(G) >
(n — r +1)¥/7, with equality if, and only if, G consists of n —r + 1 edges,
sharing precisely the same r — 1 vertices. Similarly, we conjecture that
inequality (6) has the following extension: if G is an r-graph with m = (’)
edges then R(G) > z/r.

It would also be of interest to give a common refinement of Theorems 3
and 4, namely to determine the minimal weight of a graph containing m
edges and n vertices of degree at least 1.

Finally, it is likely that Theorem 5 has a great many interesting exten-
sions. First of all, a similar result is likely to hold for a variety of other
edge-weights. However, for the weights wg, the inequality ¢ < 1 is the
natural boundary if we wish complete graphs to be extremal: for a > 1
and large m complete graphs are no longer extremal. On a slightly differ-
ent note, instead of giving weights to the edges, we may give weights to
the complete r-graphs in our graph and then we may wish to maximize the
total weight of a graph with n vertices or with m edges or with n vertices
and m edges. For example, let the weight of a complete r-graph K c G
with vertex set V(K) = {zi,...,z,} be

@r(K) = [] d(=s),
=1
and let

@(G) =) _ w(K)
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where the summation is over all r-graphs in G. Show that if e(G) = (3)
then, for r > 2, w,r(G) < (’2') (n—1)". We hope to return to these question
in the near future.
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