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Abstract. It is known that there exists a one-to-one correspondence
between the classes of equivalent [n, n - k, 4]-codes over GF(q) and the classes
of projectively equivalent complete n-caps in PG(k - 1, q) (see [20], [40]).
Hence all results on caps can be translated in terms of such codes. This fact
stimulated many researches on the fundamental problem of determining the
spectrum of the values of k for which there exist complete k-caps in PG(n, q).
This paper reports the result of a computer search for the spectrum of k's that
occur as a size of a complete k-cap in some finite projective spaces. The full
catalog of such sizes k is given in the following projective spaces: PG(3, q), for
q <5, PG4, 2), PG4, 3), PG(5, 2). Concrete examples of such caps are
presented for each possible k. *

1 Introduction

A k-cap K in PG(n, q), the n-dimensional projective space over the finite
field GF{(q), is a set of k points, no three of which are collinear. If n = 2, then a
k-cap is also called a k-arc. A k-cap K is called complete if it is not contained
in a (k + 1)-cap of the same projective space.

It is known that there exists a one-to-one correspondence between the
classes of equivalent [, n - k 4]-codes over GF(g) and the classes of
projectively equivalent n-caps in PG(k - 1, q) (see [20], [40]). Hence all results
on caps can be translated in terms of such codes. This fact stimulated many
researches on the fundamental problem of determining the spectrum of the
values of k for which there exist complete k-caps in PG(n, q).

This paper reports the result of a computer search for the spectrum of £’s
that occur as a size of a complete k-cap in the following finite projective spaces:
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PGQ3, q), for q < 5, PG(4, 2), PG(4, 3), PG(5, 2). Concrete examples of such
caps are presented for each possible £.

Looking back at the progress made in this area, in [8] the spectrum of k’s
that occur as a size of a complete k-arc in PG(2, q), for q < 23, has been
investigated.

2 Preliminaries

The subject of complete caps in PG(n, q) is vast and we will introduce only
the concepts and the results that we need in this paper. For more details, one
can refer to the excellent books [16], [18], [20].

The cardinality of the largest complete k-cap in PG(n, q) is denoted by
my(n, q), while the cardinality of the smallest complete k-cap is denoted by
na(n, q). In our context, also the cardinality of the second largest complete k-
cap in PG(n, q) is very important. Let us denote this by m’y(n, q). The
definition of m ",(n, g) can be formulated as an embedding theorem, namely any
complete k-cap having more than m ',(n, g) points can be embedded in a k-cap
of size my(n, q), i.e. an ovaloid. Some lemmas will be helpful in the following
section.

Lemma2.1 (@) Forq>2, m3, )=¢ +1 (Bose [3], Qvist [30]).
() my(n, 2)=2" (Bose [3)).
(c) my4,3)=20 (Pellegrino [27)).
(d) my(5,3)=56 (Hill [14]).
Lemma 2.2 (a) For q odd or q =4, an ovaloid in PG(3, q), is an elliptic
quadric (Barlotti [2], Panella [26]).
(b) In PG(n, 2), a 2"-cap is the complement of a hyperplane (Segre [33]).
(¢c) There are nine projectively distinct 20-caps in PG(4, 3) (Hill [15]).
(d) The 56-cap in PG(5, 3) is projectively unique (Hill [14]).
Lemma 2.3 (a) m’,(3, 4) = 14 (Hirschfeld and Thas [21]).
b) m’x(3,5)=20 (Abatangelo et al. [1]).
(c) m’y4,3)=19 (Tallini [39], Penttila and Royle [29]).
(d) myn, 2)=2"" +2"3 (Davydov and Tombak [5]).
Lemma 2.4 (a) ny3,2)=5 (Hirschfeld [16)).
(b) ny(4,2) (Gabidulin et al. [11)).
() m(5,2)=13 (Gabidulin et al. [11]).

Lemma 2.5 In PG(n, q), if K is a complete k-cap, then
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k
(2)@ +1)—k(k-2) 2|PG(n,q)|.

Proof. Let K = {P], Pz, ey Pk} and K; = {Pi+|, P;‘+2, veey Pk}, i= 1, 2, ey k-1,
Let I' be the set of all the pairs {(P, b)) | P € PG(n, q), b € B, and P € b}, where

k
),and|b|=

B is the set of all bisecants of K in PG(n, q). We recall that |B| = (2

k
q + 1, for all b € B. Thus we have that 0= ( 2] (g + 1). Furthermore, since K

is a complete cap, it follows that every point of PG(n, q) belongs to at least a
bisecant of X , and that |[PG(n, ¢)| < |T | Since there are k - 1 bisecants of X
through P,, it follows that |PG(n, q)| < IT | - (k - 2). Also, there are k - 2
bisecants of K, through P,, but P, and every point of K, belong to a bisecant of
K through P,. Since |K;| = k - 2, it follows that [PG(n, g)| < IC|-(k-2) - 2(k - 2).
Furthermore, there are & - 3 bisecants of K through Ps, but P; and every point
of K belong to a bisecant of X through Py. Since |K;| = k - 3, it follows that
|PG@, @) <IC |- (k-2)=-2(k-2)- 2(k - 3), and so on for P; € K. Finally, we
have that

k k2 (K
IPG(n, 9] < [2)(q+l)-(k-2)-2 W [2) @+ D-(k-2k
j=

Regarding the spectrum of the values k for which there exists a complete k-
cap, general methods were developed for constructing such structures in
PG(n, q). In our context, the following list shows the most significant among
them.

Lemma 2.6 (a) In PG(n, 3), n 2 3, there exist complete (2")-caps.
(Segre [33)).
(b) Suppose n 2 3. In PG(n, 4), there exist complete k-caps withk=2"*1-2
(Segre [33)).
(¢) In PG(4, q), q > 2 even, there exist complete k-caps withk=2q*+q+5
(Tallini [39)).
(d) In PG(@&, q), q = 3 odd, there exist complete k-caps with k = 2¢2+1
(Tallini [39)).
(e) Foreachg=0,2,3, ..., r-1, there exists a complete
@'+ 27! "®-cap in PG(r, 2) (Davydov-Tombak[5]).
(/) There exist complete (3q + 2)-caps in PG(3, q), 9 = 28 (Segre [32]).
(g) In PG(3, 4), there exist: (i) a complete 10~cap  (Faina-Pambianco [10D).
(ii) a complete 12-cap (Segre [33].
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(h) Let r be the remainder of the division [((q - 3)/2) : 3). In PG(3, q), q=9 or
q prime with q 2 5, there exist complete k-caps with k = (¢*+ rq + 6)/3
(Faina-Pambianco [9]).

m
(i) Let q=4t X 1 and let n be the maximum integer such that (2J <tlIn

PG(3, q), there exist complete k-caps with k= (n + 1)(g+ 1) +2

(Pellegrino [28)).

() Let q= 4t x 1. In PG(3, q), there exist complete k-caps with
k=4+[(@q-1¥2] (Pellegrino [28)).
(m) In PGQ3, 5), there exist complete 16-caps (Faina [7]).

Lemma 2. 7 In PG(3, 2), a complete k-cap K is one of the following:
(i) k=8 and K is the complement of a plane;
(ii) k=5 and K is an elliptic quadric (Hirschfeld [18)).

Two k-caps in PG(n, q) will be considered equivalent if there is a
projectivity which maps one onto the other. Since the group of projectivities is
transitive on the coordinate systems of PG(n, g), any two (7 + 2)-cap in
PG(n, q) are equivalent. It follows that if / is an (n + 2)-cap and H' is a k-cap
(k2 n + 3), then H can be extended to a k-cap which is equivalent to /. Let
U, ..., Un be the points (1, 0, ..., 0), ..., (0, ..., 0, 1) respectively and let U, ., be
(1, 1, .., 1) (i.e. the n+2 points of the canonical coordinate system of
PG(n, q)). A k-cap which contains Uy, Uy, ..., U, . will be said standard.
Every k-cap (k 2 n + 2) is equivalent to a standard k-cap. So, an exhaustive
computer search to produce a complete k-cap for each admissible & in every
fixed PG(n, q), can be performed by trying to complete in all possible ways the
standard (n + 2)-cap S = {U,, U, ..., U, +1}. In the following sections we
describe the results of our computer search for the values & for which there
exists a complete k-cap in PG(3, q), for ¢ < 5, PG(4, 2), PG4, 3), PG(5, 2).

Our computer program tried to find the complete k-caps by an exhaustive
backtrack search. Anybody who interested can get a copy of our programs from
the authors.

3 The spectrum of the values & for which there exists a complete k-cap in
some PG(3, q)

Let s(n, q) be the set {na(n, q), ..., m'2n, q), my(n, q)} of all the integer & for

which there exists a complete k-cap in PG(n, ¢). We can now state the main
result of this paper.
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Theorem (i) s(3,2)=1{5, 8}.

@i s(3, 3) = {8, 10}.

(iii) s(3, 4= 1{10, 12, 13, 14, 17}.

(iv) s(3, 5)= {12, 13, 14, 15, 10, 17, 18, 20, 206}.
) s4, 2)=1{9, 10, 16}.

(vi) s(4, 3)= {11, 16, 17, 18, 19, 20}.

wii) 85, 2)={13, 17, 18, 20, 32}.

Proof. (i) We have our result as a direct consequence of Lemma 2.7.

(1)) In PG(3, 3), from Lemmas 2.1 (a) and 2.6 (a) it follows that m,(3, 3)
= 10 and that complete 8-caps there exist. After trying out all the cases, we
have not found complete k-caps with & ¢ {8, 10}. Therefore n,(3, 3) =
m (3, 3), and s(3, 3) is as desired.

(iii) In PG(@3, 4), from Lemmas 2.1 (a), 2.3 (a) and 2.5 it follows that
mq(3, 4) = 17 (see also [35]), m 5(3, 4) = 14 and n,(3, 4) 2 8, respectively. From
Lemma 2.6 (g) it follows that 10-caps and 12-caps there exist in PG(3, 4). Our
computer search finished without finding complete k-caps with k< 9 and &k =
11. Finally, we have found a unique (up to projectivities) complete 13-cap.
Therefore n5(3, 4) = 10, and s(3, 4) is as above desired. Below we list the points
for the complete 13-cap K;1(3, 4) found under our computer search. We recall
that S denotes the point set of the canonical coordinate system of PG(n, ¢). In
our search has been proved that, every complete k-cap, for k= 10, 13, 14, 17, is
unique (up to projectivities) and that there are five non equivalent complete 12-
caps.
G3(3,4) =S {(0,1,1,2),(0,1,2,1), (9, 1,3,3),(1,0,1,2),(1,0,2,1),(1,6,3,3),
1,1,0,2),(1,1,2,0)}.

(iv) In PG(3, 5), from Lemmas 2.1 (a), 2.3 (b) and 2.5, it follows that
my(3, 5) = 26, m'y(3, 5) = 20 and n,(3, 5) 2 10, respectively. From Lemina 2.6
(h), and (m), it follows that complete 12-caps and 16-caps’ there exist. Our
exhaustive computer search finished without finding complete k-caps with
k<1l and £ = 19, but we have found complete k-caps with
ke {13, 14, 15, 17, 18}. So ny(3, 5) = 12, and (3, 5) is as above desired.
Examples of complete k-caps, with k£ € {13, 14, 15, 17, 18}, in PG(3, 5) are
given below. In [1], it is shown that there are two non equivalent 20-caps.
Ki3(3,5) =S U {(0,1,1,2),(0,1,2,1),(0, 1,3,3),(1,0,1,2), (1,0,2, 1), (1, 1, 0, 2),
(1,4,0,1),(1,4,2,0)}.
K14(3,5)=Su {©,1,1,2),0,1,2,1),(0,1,3,3),(1,0,1,2),(1,0,2,1),(1, 1,0, 2),
1,1,2,3),(1,2,0,3),(1,4,2,0)}.
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Ki5(3,5)=Su {(0,1,1,2),(0,1,2,1),(0, 1,3,3),(1,0,1,2),(1,0,2, 1), (1, 1,0, 2),
(1,1,4,4),(1,3,0,4),(1,3,4,2),(1,4,0,1)}.

Ki(3,5) =S U {©,1,1,2),(0,1,2,1),(0,1,3,3),(1,0,1,2), (1,0, 2, 1), (1, 1, 0, 2),
(1,1,3,0),(1,1,4,4),(1,2,2,0),(1,2,4,3),(1,3,2,4),(1,4,0, 1)}

Ki5(3,5)=Su {(0,1,1,2),(0,1,2, 1), 0, 1,3,3),(1,0,1,2),(1,0,2, 1), (1, 1,0,2),
(1,1,3,0),(1,1,4,4),(1,2,2,0),(1,2,3,4),(1,2,4,1),(1,3,2,3),
(1,3,4,2)}.

w) From Lemmas 2.1 (b), 2.3 (d), and 2.4 (b), it follows that m(4,2) =
16, m’,(4, 2) = 10, and ny(4, 2) = 9, respectively. So s(4, 2) is as desired.

i) In PG4, 3), from Lemmas 2.1 (¢), 2.3 (c¢) and 2.5, it follows that
my(4, 3) = 20, m’y(4, 3) = 19 and nx(4, 3) 2 11, respectively. From Lemma 2.6
(a) it follows that complete 16-caps there exist. Our exhaustive computer
search finished without finding complete k-caps with k< 10 and &
€ {12, 13, 14, 15}, but we found complete k-caps with k£ € {11, 16, 17, 18}. So
ny(4, 3) = 11, and s(4, 3) is as desired. Examples of complete k-caps, with
k e {11, 16, 17, 18}, in PG(4, 3) are given below. Finally, it is also shown that
there is a unique (up to projectivities) 11-cap.
11(4,3)=SuU {(0,1,1,2,2),(1,0,2,1,2),(1,1,2,2,0),(1,2,0,2,1),(1,2, 1,0,2)}.
Ki6(4,3)=SuU {(0,0,1,1,1),0,1,0,1,1),(0, 1, 1,0, 1),(0, 1, 1, 1,0),(1,0,0, 1, 1),
(1,0,1,0,1),(1,0,1,1,0),(1,1,0,0,2),(1, 1,0,2,0),(1, 1, 1,0, 0)}.
Ki7(4,3)=SuU {®,0,1,1,1),(0,1,0,1,1),(0,1,1,0,1),(0, 1,1, 1,0),(1,0,0, 1, 1),
1,0,1,0,1),(1,0,1,1,2),(1,1,0,0,2),(1,1,0, 1,0), (1, 1,2, 0, 0),
1,2,1,0,2)}.
Kis(4,3)=SuU {(,0,1,1,1),(0,1,0,1,1),(0,1,1,0,1),(0, 1, 1, 1,0),(1,0,0, 1, 1),
(1,0,1,0,1),(1,0,1,1,0),(1,1,0,0,2),(1,1,0,2,0), (1,1, 1,2, 2),
(1,1,2,0,1),(1,1,2,1,0)}.

(vii)  In PG(S, 2), from Lemmas 2.1 (b), 2.3 (d) and 2.4 (¢), it follows that
mx35, 2) = 32, m"y(5, 2) = 20 and ny(5, 2) = 13, respectively. From Lemma 2.6
(e), it follows that complete 17-caps and 18-caps there exist. Our exhaustive
computer search finished without finding complete k-caps with
k € {14, 15, 16, 19}. So s(5, 2) is as above desired.

4 Concluding Remarks

The problem of compiling the full catalog of the possible sizes of the
complete k-caps in PG(n, q) seems to be extremely hard. Practically nothing is
known about exact values of the cardinality of the second largest complete cap
and the size of the smallest complete cap in PG(3, q) for g =2 7 or in PG(n, q)
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for n 2 6. However, many people have put a lot of work also in this area, and
the main results obtained are given in [24].
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