On interval colourings of bi-regular bipartite graphs
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ABSTRACT. In this paper we consider interval colourings — edge
colourings of bipartite graphs in which the colours represented
at each vertex form an interval of integers. These colourings,
corresponding to certain types of timetables, are not always
possible. In the present paper it is shown that if a bipartite
graph with bipartition (X,Y) has all vertices of X of the same
degree dx = 2 and all vertices of Y of the same degree dy, then
an interval colouring can always be established.

1 Introduction

Call a colouring of the edges of a graph with colours 1,2,3,... an ‘interval
colouring’ if the colours received by the edges incident to each vertex are
distinct and form an interval of integers. Let G be a bipartite graph with
vertex-partition (X,Y). If all vertices of X have the same degree dx and
all vertices of Y have degree dy, does G allow an interval colouring?

This is an instance, due to Hansen [4], of a general problem, which is
discussed in the book Graph Coloring Problems by T.R. Jensen and B.
Toft [5] under the name consecutive colouring. It arose from a practical
scheduling problem: At the Saint Canute High School in Odense, Den-
mark, parent consultations are arranged by letting each parent, or couple
of parents, decide beforehand on a list of teachers that he/she/they would
like to consult. Each meeting between parent(s) and a teacher lasts for the
same fixed amount of time. The problem is to create a schedule without
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waiting periods for either the parents or the teachers. Letting X represent
the set of teachers and Y the set of parents/couples of parents, and letting
an edge zy represent a meeting of teachers z with parent(s) y, we obtain
an instance of the above-mentioned colouring-problem (without the degree
constraints), in which each colour corresponds to an assigned time slot.

This particular variation of edge-colouring for multigraphs in general
seems first to have been studied by Asratian and Kamalian [1] and by
Sevast’janov [8]. There are further results due to Asratian and Kamalian in
[2], in particular if a triangle-free simple graph G has an interval colouring
using ¢ colours then ¢ < |V(G)| — 1. Independently of these, with the
timetablelling problem as a starting point, Hansen [4] obtained a number
of fundamental results.

Consider the problem for bipartite graphs without degree constraints. In
this case it is not always possible to colour the edges such that the graph
will have an interval colouring. The first example showing this seems due to
Sevast’janov [8]. In 1991 examples were found independently by P. Erdds
and by A. Hertz and D. de Werra. To obtain Erdés’ example, take a finite
projective plane P of order p and let X represent the set of points of P and
Y the set of lines, with zy an edge if and only if the point z belongs to the
line y. Finally join one new vertex z to all the vertices of Y. For p > 3, this
bipartite graph G cannot be given an interval colouring. The vertices of
the part X U{z} of the bipartition contains vertices of two different degrees
p+1 and p? + p + 1 whereas the vertices in Y all have degree p + 2. For
p =3, G has 27 vertices and A = 13. The example by Sevast’janov has 28
vertices and A = 21. A smaller example, due to Hertz and de Werra has
21 vertices and A = 14. We do not know any examples with A < 12. For
A < 3, such examples do not exist as proved by Hansen [4).

It is noteworthy that the above-mentioned examples have the property
that vertices of both low and high degree appear on the same side of the
bipartition. We consider graphs where this is not the case. If G is A-regular,
then by the 1-factor theorem of D. Konig [6], it is always possible to A-
edge-colour G, and naturally such a colouring is also an interval colouring.
For bi-regular bipartite graphs, where all vertices in X have degree dx and
all vertices in Y have degree dy, Hansen [4] noted that the answer to the
question initially asked is affirmative in the where case dx = 2 and dy is
any even number, and that this statement is in fact equivalent to the 2-
factor theorem of Petersen [7]: Every 2r-regular graph has a decomposition
into 2-regular edge-disjoint subgraphs.

In this paper we shall give an affirmative answer also in the case in which
dx = 2 and dy is any odd number. It is interesting to note that if there is
a meeting between two people which must take place at a certain time then
it is possible to arrange this and still keep all the meetings consecutive for
everybody. The simplest unsolved cases of the problem stated above are
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thus (dx,dy) = (3,4). A.V. Kostochka, Novosibirsk, has informed us that
he also obtained a solution in the case dx = 2 and dy odd.

2 Thecasedy =2 and dy =3

Lemma 1. Let H be a bipartite graph with bipartition (X,Y), and with
dx = 2 and dy = 3, then H can be given an interval colouring using 4
colours. Moreover, in such a colouring, we can choose any edge e of H and
give it a specific colour.

Proof: H being bipartite implies that the edge-chromatic number satisfies
x' = A =3, [6] (this is not an interval colouring however). Consider the
colours represented at the vertices of X and Y in a proper colouring of
H. The colours 1, 2 and 3 are represented at each y € Y. Each vertex
z € X has one of the following pairs of colours represented there: 1 and 2,
2 and 3, 1 and 3. The only vertices which cause a problem for an interval
colouring are those in X with colours 1 and 3 represented there. At these
vertices, change colour 1 to colour 4. These vertices now have the colours 3
and 4 represented at them and the colouring forms an interval on X. The
colouring remains an interval colouring on Y as any y € Y now has either
the colours 1, 2 and 3 or 2, 3 and 4 represented there. Thus H has been
given an interval colouring using 4 colours.

Now suppose that we wish to give a particular edge e a specific colour.
Again, we begin with a proper colouring of H using the colours 1, 2 and 3.
If we want e to have colour 2 or 3, we simply permute the proper colouring
to give the desired colour to e and then make the colouring an interval
colouring as above. Forcing e to have the colours 1 or 4 takes a bit more
manipulation. First, permute the proper colouring of H so that e has the
colour 1. Let z be the endpoint of e in X. If we want e to keep the colour
1 when we make the proper colouring an interval colouring, we first insure
that f, the other edge with z as an endpoint, has colour 2. If f has colour
3, exchange the colours 2 and 3 in the proper colouring. If we want e to
change to the colour 4, we first insure that f has colour 3. If f has colour 2,
exchange the colours 2 and 3 as before. Now make the colouring an interval
colouring as above and we obtain the required colouring. ]

3 Factors in regular graphs
In the cases where dy > 5 we make use of the following theorem of Tutte
[9] on factors in a regular graph.
Theorem. (Tutte [9]). A multigraph G° contains a k-factor if and only
if 9(S,T) + X ,er(k — dgo—s(v)) < k|S| for all choices of disjoint sets S,
T C V(G®), where q(S,T) is the number of components Q of G° — S — T
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for which |[V(Q), T)| + k|V(Q)| is odd ([R, L} denotes the set of edges with
endpoints in both the sets R and L).

Theorem 1. Let G° be a (2n + 1)-regular graph. If n > (3k — 1)/2 and
G° has at most [(1/k)(2n — k+ 1)) bridges, then G° has a 2k-factor, k > 1.

Proof: From Tutte’s Theorem, G° does not have a 2k-factor if and only if

(S, T) = Y dge—s(v) = 2k(|S| - IT|) + 1. (1)

veT

In this instance, ¢(S,T) counts the components @ of G° — S — T for which
[V(Q), T is odd since 2k|V (Q)| is always even. Note that } . dge—s(v) =
Y ver d(v) — h = (2n + 1)|T| — h, where h = |[S, T]|. Define ¢1, ¢2 and g3
as follows (see Figure 1):

(¥ Y J)EC&\,\,\}\O\)

Figure 1
g1 = the number of components Q of G° — S —T for which |[V(Q),T]| =1
and |[V(Q),S]| =0
g2 = the number of components Q of G° — S — T for which |[V(Q),T]| =1
and |[V(Q)S]| 21

g3 = the number of components Q of G° — S — T for which |[V(Q),T]| =
(2p+1),p21.
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Let ¢ = ¢q(S,T). Notice that ¢ = q1 + g2 + g3 and that ¢ is bounded
above by the number of bridges in G°. Inequality (1) is equivalent to the
following:

q+h > 2k|S|+ (2n — 2k + 1)|T| + 1. (2)

Since G° is (2n + 1)-regular, the number of edges originating in T is
bounded above by (2n + 1)|T|, thus 2n+ 1)|T| > q1 + g2 +3gs + h =
q+h+2g3 > 2k|S|+(2n—2k+1)|T|+1+2¢5 giving 2k|T| > 2k|S|+1+2¢3
and by parity arguments, 2k|T| > 2k|S| + 2 + 2¢qs, i.e.

IT| 2 |S|+ 1/k + (1/k)gs 3)

Substituting (3) into (2) we obtain the inequality ¢ + k > (2n + 1)|S| +
(1/k)(2n — 2k + 1) + (1/k)(2n — 2k + 1)g3 + 1. The number of edges that
originate in S is bounded above by (2n+1)|S| thus (2n+1)|S|+q1 + 4¢3 >
g+ h. Now we can write

@n+1)IS|+q +gs 2 g+h 2 (2n+1)IS|+ (1/k)(2n — k+ 1)

+ (1/k)(2n — 2k + 1)gs, 4)
ie. ¢ > (1/k)(2n — k + 1) + (1/k)(2n — 3k + 1)g3. If G° has at most
[(1/k)(2n — k + 1)] bridges, then q; < (1/k)(2n — k + 1). Thus inequality
(4) implies 0 > (1/k)(2n — 3k + 1)g3, which then implies that either (3k —
1)/2 > n or g3 = 0. We must have g3 = 0 since we have assumed that
(Bk-1)/2 < n.

Substituting ¢; < (1/k)(2n — k + 1) and ¢3 = 0 into (4) we have (2n +
DISI+@1 2 q1+g2+h 2 (2n+1)|S|+q1, ie
(2n+1)IS|=g2+h ()
and, by (3),
[T > |S|+1/k. (6)

From (5) along with ¢ = ¢; + ¢2 and (2) we obtain ¢; + g2+ h > 2k|S| +
(2n — 2k +1)|T| + 1 giving (1/k)(2n — k+1) + (2n +1)|S] > 2k|S| + (2n ~
2k + 1)|T| + 1, which implies 1/k'+ |S| 2 |T|. By (6) we have

1/k +|S| = |T)|. (M

Since |S| and |T| are both natural numbers, we have a contradiction for
k>1.

Now we must consider the case when k =1, i.e. when we are looking for
a 2-factor. In this instance, we obtain the following from inequality (4):

q 2 2n+ (2n - 2)gs. (8)
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Thus we know that G° has a 2-factor whenever ¢; < 2n. We must, therefore,
investigate the case when ¢q; = 2n. Assume in this case that G° does not
have a 2-factor, implying g3 = 0 by inequality (8). Equation (7) becomes
1+|S| = |T|. This along with equation (5), g1 = 2n and ¢3 = 0 leads to

@2n+D)IT|=2n+1)|S|+ (2n+1)=@+h+2n+1=q+h+1.

We conclude that there is one edge originating in T that has not been
accounted for. Let this edge be edge f. Both endpoints of f cannot be in T'
since (2n+ 1)|T| = g+ h+ 1. Also, the other endpoint of f cannot be in S
as f was not counted by k, hence it is in some component Q of G° - S -T..
Therefore [V(Q), T] = f and Q would have been counted by ¢ = ¢; + g2, a
contradiction.

We conclude that G° has a 2k-factor whenever (3k — 1)/2 < n and G°
has at most [(1/k)(2n — k + 1)] bridges. a

Corollary 1. Let G° be a (2n + 1)-regular graph, n > 2, with at most 2n
bridges, then G° has a 2-factor .

For n. = 1 Corollary 1 is a famous theorem of Petersen [7]. For general n
and graphs with at most one bridge it is due to Bébler [3].

Corollary 2. Let G° be a (2n + 1)-regular graph, n > 3, with at most
n — 1 bridges, then G° has a 4-factor .

4 The case dx =2 and dy odd and greater than one

Theorem 2. A bipartite graph G with bipartition (X,Y), and dx = 2
and dy = 2n+1, n > 1, can be given an interval colouring using 2n + 2
colours; further, we can choose any edge of G and specify its colour.

Proof: By Lemma 1, the theorem is true for n =1 (dy = 3). We induct
on n. Assume that the theorem is true for n = m; let n = m + 1. In this
case G is a bipartite graph with dx = 2 and dy = 2m + 3. Let G° be the
condensed version of G on the vertices of Y, that is, if each edge of G° is
subdivided once, we obtain G. The vertices used to subdivide the edges of
G° are the vertices of the set X of G. Note that G° is (2m + 3)-regular.
There are two cases which we must consider:

1) Assume that G° has at most one bridge. By Corollary 1, G° has a
2-factor, J°, and a (2m + 1)-factor, H°. Let J and H be the bipartite
subdivisions of J° and H° (see Figure 2). Note that J and H are edge-
disjoint subgraphs of G such that JUH =G. In H, dw = 2 and dy =
2m + 1, while in J, dy = 2 and dy = 2, where W = X(H) and U = X(J).
By assumption, H can be given an interval colouring using 2m + 2 colours.
‘We must now colour the edges of J, so that colouring J finishes the interval
colouring on G. J is the union of even cycles, thus, J has two edge disjoint
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perfect matchings. Give the edges in one of the perfect matchings the
colour 2m + 3. Now consider the vertices of Y (in G). Either the colours 1
to 2m + 1 and 2m 4 3 or 2 to 2m + 2 and 2m + 3 are represented at these
vertices. Also, each y in Y has one edge which as yet, has no colour. If
v has the colours 1 to 2m + 1 and 2m + 3, give the uncoloured edge the
colour 2m + 2. If y has the colours 2 to 2m + 3, give the uncoloured edge
the colour 2m + 4. We now have a colouring of G which forms intervals on
W and Y. At each vertex z of U, either the colours 2m + 2 and 2m + 3 or
the colours 2m + 3 and 2m + 4 are represented. Therefore, the colouring
also forms intervals on U implying G has an interval colouring using 2m+4
colours.

We will now prove that we can specify the colour for a particular edge
e in the interval colouring of G. We consider the cases where m = 1 and
where m > 2 separately.

W Y U
) N /r:\
o |/ [=><
o> >§
S
— o< ~0
O<\ - \—>o
\___/ ___/ \___/
N’ Nt
H J

Figure 2

Assume that m =1 (i.e. dy = 5). Split G into J and H as above. If
e is in H, we can give it any colour from 1 to 4 by Lemma 1 and then we
complete the colouring of G. If we want e to have colour 5 (6 respectively),
first give e the colour 2 (1 respectively), then complete the colouring of
G. Once this has been done, permute the colouring of G in the following
manner: exchange 1 and 6, exchange 2 and 5, and exchange 3 and 4. Edge
e now has colour 5 (6 respectively). If e is in J, we can give it any colour
from 4 to 6 when we complete the colouring of G. To give e the colour 5,
we simply insure that e is in the perfect matching of J that receives the
colour 5. On the other hand, to give the colour 4 (6 respectively) to e, we
must first insure that e is in the perfect matching which is not coloured 5.
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Then y, the endpoint of e in Y, must have the colours 1, 2, and 3 (2, 3 and
4 respectively) represented at it in H. This is done by choosing one of the
edges coming out of y in H and giving it the colour 1 (4 respectively) in
the interval colouring of H. Thus, when we finish the interval colouring of
G, the colour 4 (6 respectively) will be given to e. To give e the colour 1, 2
or 3, first give e the colour 6, 5 or. 4, then permute the colours as described
previously.

Assume that m > 2. By Corollary 2, G° has a 4-factor which implies that
G° has two edge-disjoint 2-factors, J{ and J3. Let Hf and H3, respectively,
be the (2m + 1)-factors that complement these 2-factors. Let J;, H; and
Ja, H be the bipartite subdivisions of the factors. Split G into J; and H;.
If e is in H;, then by assumption we can give e any colour we wish from 1
to 2m + 2. To give e the colour 2m + 3 (2m + 4 respectively), first give e
the colour 2 (1 respectively), and then, in G, permute the colours. If e is
in J;, we will use the other subgraphs of G, J2 and Hs. Thus e is in Hp,
and we can give e any colour we wish in the interval colouring of G.

2) Assume that G° has more than one bridge. This implies that G° has
more than two bridgeless subgraphs. Take a bridgeless subgraph of G°,
along with the bridge(s) that connects (connect) it to the rest of G°, and
call this B°. Now construct D°, a (2m + 3)-regular supergraph of B° as
follows: If B° has an even number of bridges, group the bridges into pairs
and connect their endpoints of degree 1 (in B°) with 2m + 2 edges. If B°
has an odd number of bridges, group all but one them into pairs; these
pairs, we treat as above. We attach a triangle, F°, to the remaining bridge,
and add m extra edges between each pair of vertices of F°. Finally, add
one extra edge between the two vertices of F° which are not incident with
the bridge. In the Figure 3 we have demonstrated the case when m = 1.

Figure 3

Thus D° is a (2m + 3)-regular supergraph of B® with at most 1 bridge.
Let D be the bipartite subdivision of D°. We can use the method of case
1) to give an interval colouring to D using 2m + 4 colours. However, D
isn’t quite what we’re interested in. Define B as the bipartite subdivision of
B° excluding the edge(s) of the subdivided bridge(s) which doesn’t (don’t)
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have an endpoint in the bridgeless subgraph (such a constructed subgraph
B of G will be called a section of G). B has been given an interval colouring
using 2m + 4 colours via the interval colouring of D. Thus we can give an
interval colouring to each section of G using this method.

We represent a section of G by a circle along with the edge(s) attached
to it (see Figure 4, the square vertices are in Y and the round vertices
are in X). Colouring each section of G colours G and this colouring will
be an interval colouring, except possibly at certain vertices. Such vertices
belong to two sections and will be called joining vertices. Since case 1)
applies to the constructed supergraphs of the sections of G, we can use this
to make the colours represented at these joining vertices an interval in the
following manner. Pick a section of G. Manipulate the interval colouring
of the neighbouring sections so that the colours represented at the joining
vertices form an interval. Repeat, moving outward along the subdivided
bridges. Eventually G has an interval colouring with 2m + 4 colours. A
particular edge e of G can be given a specific colour as follows: Identify
the section e is in and arrange it so that e has the desired colour. Now we
manipulate the colours of the other sections as described above to insure
that the colours at the joining vertices form an interval. o

Figure 4
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5 Concluding Remarks

In [4] Hansen proved that the complete bipartite graph K » has an interval
colouring using m + n — gcd(m, n) colours, and he claimed that in general
dx+dy —ged(dx,dy) colours are necessary for a bi-regular bipartite graph
with bipartition (X, Y’). He also noted, however, that this number of colours
is not always sufficient.

Asratian and Kamalian [1] proved that for a given bipartite graph with
bipartition (X,Y) it is an NP-complete problem to decide if there exists a
proper edge-colouring such that edges incident with each vertex z in X are
coloured with colours 1,2, ...,d(z). Sevast’janov [8] proved that in general
it is an NP-complete problem to decide for a given bipartite graph if it has
an interval colouring (allowing any number of colours).

For non-bipartite graphs, interval colourings were studied by Asratian
and Kamalian [1). Jensen and Toft [5] noted that a k-regular graph can be
given an interval colouring if and only if it can be k-edge-coloured.
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