Spanning Sets and Scattering Sets in Handcuffed Designs of order v and block size 3^*

Gaetano Quattrocchi
Dipartimento di Matematica
Universita' di Catania
viale A. Doria 6
95125 Catania, Italy
e-mail quattrocchi@dipmat.unict.it

ABSTRACT. For each admissible v we exhibit a H(v,3,1) with a spanning set of minimum cardinality and a H(v,3,1) with a scattering set of maximum cardinality.

1 Introduction

Let K_v be the complete undirected graph on v vertices. A handcuffed design H(v,3,1) [3] is a pair (V,\mathcal{B}) where V is the vertex set of K_v and \mathcal{B} is an edge disjoint decomposition of K_v into copies of P_2 (the simple path with 2 edges) such that each vertex belongs to exactly r copies of P_2 . We call the elements of \mathcal{B} blocks. Given a block $b \in \mathcal{B}$, we will use the same symbol b to denote its vertex set.

A handcuffed design H(v,3,1) exists if and only if $v \equiv 1 \pmod 4$ [4]. It can be shown [3] that every element of an H(v,3,1) must occur in an exterior (that is, the first or last) position of the same number of blocks, say u. Further, if $|\mathcal{B}| = t$, the following equalities can be shown: $u = \frac{v-1}{2}$, $r = \frac{3(v-1)}{4}$, $t = \frac{v(v-1)}{4}$.

A subset $S \subseteq V$ is *independent* if b is not a subset of S for every $b \in \mathcal{B}$. An independent set S is *maximal* if for all $y \in V \setminus S$, $S \cup \{y\}$ is not independent. An independent set $S \subset V$ is an arc if for all $b \in \mathcal{B}$, $|b \cap S| \leq 2$. An arc is *complete* when it is not contained in a larger arc. For H(v, 3, 1) the notions of a (complete) arc and of a (maximal) independent set coincide.

^{*}Research supported by MURST and GHSAGA-CNR.

Let $X \subseteq V$. A block $b \in \mathcal{B}$ is called *secant* or *tangent* or *exterior* to X if $|b \cap X| = 2$ or 1 or 0 respectively.

The spanned set C(X) is the set of $y \in V \setminus X$ such that there exists at least one secant meeting y. The subset X is a spanning set if for every $v \in V \setminus X$, $v \in C(X)$.

A scattering set $X \subseteq V$ is an arc for which every $y \in V \setminus X$ has the property that y appears in at most one secant.

It is straight-forward to verify that every complete arc is a spanning set; the converse need not hold.

Spanning and scattering sets in Steiner triple systems are studied in [1]. In this note we exhibit, for each $v \equiv 1 \pmod{4}$, an H(v, 3, 1) with a spanning set of minimum cardinality and an H(v, 3, 1) with a scattering set of maximum cardinality.

2 Scattering and spanning sets

Consider an H(v,3,1), $\mathcal{H}=(V,\mathcal{B})$. Using the terminology of [1] we define the scattering number $scat(\mathcal{H})$ to be the size of a largest scattering set in \mathcal{H} , and we define the spanning number $span(\mathcal{H})$ to be the size of a smallest spanning set in \mathcal{H} . Let scat(v) be the maximum scattering number of a H(v,3,1), and let span(v) be the minimum spanning number. Let X be a subset of V of cardinality x. It is easy to see that for X to be a scattering set, $x+\binom{x}{2}\leq v$. This implies $scat(v)\leq L(v)=\left\lfloor \frac{\sqrt{8v+1}-1}{2}\right\rfloor$.

A handcuffed design \mathcal{H} is scattered if $scat(\mathcal{H}) = L(v)$.

The following result is proved in [4].

Lemma 1. ([4,Theorem 1]). For every admissible $v \ge 5$ it is possible to embed an H(v,3,1) in an H(v+4,3,1).

Proof: Let v = 4m + 1, $m \ge 1$, and let (V, \mathcal{B}) be an H(v, 3, 1) on $V = 1, 2, \ldots, v$. Put $W = V \cup \{v + 1, v + 2, v + 3, v + 4\}$. Form the block set \mathcal{C} by putting on it the following blocks:

- (i) All the blocks of B.
- (ii) The blocks of an H(5,3,1) on the vertex set $\{v,v+1,\ldots,v+4\}$.
- (iii) For $h = 1, 3, 5, \ldots, 2m-1$ the blocks $\{4m+2, 2h-1, 4m+3\}, \{4m+2, 2h, 4m+3\}, \{2h-1, 4m+4, 2h\}, \{2h-1, 4m+5, 2h\}.$
- (iv) For h = 2, 4, 6, ..., 2m the blocks $\{4m + 4, 2h 1, 4m + 5\}, \{4m + 4, 2h, 4m + 5\}, \{2h 1, 4m + 2, 2h\}, \{2h 1, 4m + 3, 2h\}.$

It is straight-forward that (W, C) is an H(v4, 3, 1).

Theorem 1. For every $v \equiv 1 \pmod{4} \ge 17$, span(v) = 4. For v = 5, 9 and 13, span(v) = 3.

Proof: Let X be a spanning set of minimum cardinality x in a handcuffed design (V, \mathcal{B}) . Clearly $x \geq 2$. Since every element of V occurs in an exterior position of exactly $\frac{v-1}{2}$ blocks, we obtain $2(v-x-\binom{x}{2})+\binom{x}{2} \leq \frac{(v-1)x}{2}$. Clearly this inequality implies that x > 2. The value x = 3 is possible only for $v \in \{5, 9, 13\}$, whereas x = 4 is possible for every admissible v. To prove that span(v) = 3 for v = 5, 9, 13 it is sufficient to see that the following H(5, 3, 1), H(9, 3, 1) and H(13, 3, 1) contain the spanning set $X = \{a, b, c\}$:
1) Vertex set $V = X \cup \{0, 1\}$. Block set (all commas and brackets are omitted) $\mathcal{B} = \{ba0, 0bc, c01, 1ca, a1b\}$; 2) $V = X \cup \{0, 1, \dots, 5\}$. $\mathcal{B} = \{ab1, ac2, bc3, a4b, a5c, b0c, 1a2, 3a0, 3b5, 21c, 314, 52b, 230, 54c, 051, 401, 024, 534\}$; 3) $V = X \cup \{0, 1, \dots, 9\}$. $\mathcal{B} = \{1ab, 2bc, 3ca, a4b, b5c, c6a, a7b, b8c, c20, c9a, a0b, 2a3, 5a8, 1b3, 6b9, 4c7, 0c1, 123, 134, 142, 516, 718, 910, 250, 269, 275, 829, 397, 308, 536, 738, 460, 476, 485, 498, 540, 659, 786, 907\}$.

To prove that span(v) = 4 for every admissible $v \ge 17$, take the following H(9,3,1) $V = \{1,2,\ldots,9\}$; $\mathcal{B} = \{126,237,348,419,135,246,617,728,863,965,674,875,185,983,493,792,154,952\}$. By Lemma 1 embed (V,\mathcal{B}) in the H(v+4,3,1) (W,\mathcal{C}) , $W = \{1,2,\ldots,v+4\}$. Since $X = \{1,2,3,4\}$ is a spanning set in (V,\mathcal{B}) , then for each $x \in V$ there is a secant X. Moreover $\{3,v+1,4\}$, $\{3,v+2,4\}$, $\{1,v+3,2\}$ and $\{1,v+4,2\}$ are secants X. This implies that X is still a spanning set in (W,\mathcal{C}) .

We observe that $X = \{a, b, c\}$ is not a scattering set in the H(5, 3, 1) given in 1), X is a scattering set of maximum cardinality in the handcuffed design given in 2), and a scattering set, but not of maximum cardinality in 3). It follows from $x + {x \choose 2} \le v$ that scat(5) = 2 and scat(9) = 3.

Moreover it is easy to see that all the spanning sets constructed in the Theorem 1 are also complete arcs. This establishes the existence of hand-cuffed designs with complete arcs of minimum possible cardinality (the analogous problem for Steiner triple systems is posed in [2] and completely solved in [1]).

Corollary 1. For every $v \equiv 1 \pmod{4}$ there exists an H(v, 3, 1) containing a complete arc of minimum cardinality. Which is 4 for $v \geq 17$ and 3 for v = 5, 9 and 13.

For every integer $x \ge 2$ define $\alpha(x) \in \{0, 1, 2, 3\}$ by putting $\alpha(x) = 0$ for $x \equiv 1, 6 \pmod{8}$, $\alpha(x) = 1$ for $x \equiv 0, 7 \pmod{8}$, $\alpha(x) = 2$ for $x \equiv 2, 5 \pmod{8}$ and $\alpha(x) = 3$ for $x \equiv 3, 4 \pmod{8}$. The following theorem is an easy consequence of the inequality $x + {x \choose 2} \le v$.

Theorem 2. Let X be a scattering set of maximum cardinality x in an H(v,3,1), then $v \ge {x+1 \choose 2} + \alpha(x)$.

Theorem 3. For every integer $x \ge 2$ there exists a scattered H(v,3,1) \mathcal{H} on $v = {x+1 \choose 2} + \alpha(x)$ vertices such that $\operatorname{scat}(\mathcal{H}) = x$.

Proof: Let $X = \{1, 2, ..., x\}$ and $V = X \cup \{a_1, a_2, ..., a_{v-x}\}$. We split the proof into two different cases: x even and x odd. Suppose x is even (see Example 1). Since scat(5) = 2, the theorem is proved for x = 2. Put in \mathcal{B}_1 the following blocks (where h+j is reduced to the range $\{1, 2, ..., x\}$ modulo x):

- (1) $\{a_{(h-1)x+j}, j, h+j\}$, for $h=1,2,\ldots,\frac{x-2}{2}$ and $j=1,2,\ldots,x$.
- (2) $\{a_{\frac{x(x-2)+2j}{2}}, j, \frac{x}{2}+j\}$, for $j=1,2,\ldots,\frac{x}{2}$.

It is easy to verify that: $|\mathcal{B}_1| = {x \choose 2} = v - x - \alpha(x)$; each element of $\{1, 2, \dots, \frac{x}{2}\}$ is in the middle, resp. exterior, position of exactly $\frac{x}{2}$ resp. $\frac{x-2}{2}$, blocks of \mathcal{B}_1 ; each element of $\{\frac{x}{2}+1, \frac{x}{2}+2, \dots, x\}$ is in the middle, resp. exterior, position of exactly $\frac{x-2}{2}$, resp. $\frac{x}{2}$, blocks of \mathcal{B}_1 .

Since v-x is odd we can construct the difference sets $F_k = \{\{a_j, a_{k+j}\}: j = 1\}$ $1, 2, \ldots, v - x$ for every $k = 1, 2, \ldots, \frac{v - x - 1}{2}$. (In the indices the sum is reduced to the range $\{1, 2, \dots, v - x\}$ modulo v - x). Using the first $\frac{v - 2x - 1}{2}$ difference sets construct $\frac{(v-2x-1)(v-x)}{4}$ blocks such that any element of $V\setminus X$ appears $\frac{v-2x-1}{4}$ times in the middle position. Say \mathcal{B}_2 be the set of these blocks. With the last $\frac{x}{2}$ difference sets and the elements of X form the set \mathcal{B}_3 of $(v-x)^{\frac{x}{2}}$ blocks such that: every block of \mathcal{B}_3 contains exactly one vertex $s \in X$; s is always in an exterior position; the number of blocks of \mathcal{B}_3 in which every s occurs is either $\frac{v-x+1}{2}$ if $s \in \{1, 2, \dots, \frac{x}{2}\}$, or $\frac{v-x-1}{2}$ if $s \in \{\frac{x}{2}+1, \frac{x}{2}+2, \dots, x\}$; every block in $\mathcal{B}_1 \cup \mathcal{B}_3$ does not contain a repeated edge. At last using all the edges of K_v missing in the above blocks of $\mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3$ construct the block set \mathcal{B}_4 in such a way that an element of X appears always in the middle position of any block of \mathcal{B}_4 (note that it is possible to form \mathcal{B}_3 or \mathcal{B}_4 in many different ways). It is easy to see that $\mathcal{H}=(V,\cup_{i=1}^4\mathcal{B}_i)$ is an H(v,3,1) and $X\subseteq V$ is a scattering set of maximum cardinality.

Let x be odd (see Example 2). Let $\mathcal{B}_1=\{\{a_{(h-1)x+j},j,h+j\}\colon h=1,2,\ldots,\frac{x-1}{2},j=1,2,\ldots,x\}$ (h+j) is reduced to the range $\{1,2,\ldots,x\}$ modulo x). It is easy to verify that: $|\mathcal{B}_1|=\binom{x}{2}=v-x-\alpha(x);$ each element of $\{1,2,\ldots,x\}$ appears in an exterior position and in an interior position of exactly $\frac{x-1}{2}$ blocks of \mathcal{B}_1 . Since v-x is even we can construct the following difference sets, where we put $n=\frac{v-x}{2}$: $F=\{\{a_j,a_{j+k}\}\colon j=1,2,\ldots,v-x\}$ for $k=1,2,\ldots,n-1$, and $F=\{\{a_j,a_{j+n}\}\colon j=1,2,\ldots,n\}$ (in the indices the sum is reduced to the range $\{1,2,\ldots,v-x\}$ modulo v-x). Let $\overline{F}_1=F_1\backslash\{\{a_n,a_{n+1}\},\{a_{2n},a_1\}\}\cup\{\{a_n,a_1\},\{a_{2n},a_{n+1}\}\}$ and $\overline{F}_{n-1}=F_{n-1}\{\{a_1,a_n\},\{a_{n+1},a_{2n}\}\}\cup\{\{a_{n+1},a_n\},\{a_1,a_{2n}\}\}$. Clearly $\overline{F}_1\cup\overline{F}_{n-1}=F_1\cup F_{n-1}$. With the edges of \overline{F}_{n-1} we form the block set $\mathcal{B}_2=$

 $\{\{a_2,a_{n+1},a_n\},\{a_3,a_{n+2},a_1\},\{a_4,a_{n+3},a_2\},\ldots,\{a_n,a_{2n-1},a_{n-2}\},\{a_1,a_{2n},a_{n-1}\}\}$. Take F_n and others $\frac{x-1}{2}$ difference sets F_h , $h\neq 1$, n-1. Form the set \mathcal{B}_3 of blocks such that any element of X appears in the exterior position exactly $\frac{v-x}{2}$ times, $|b\cap X|=1$ for every $b\in\mathcal{B}_3$, every block in $\mathcal{B}_1\cup\mathcal{B}_3$ does not contain a repeated edge. Using the remaining $\frac{v-2x-3}{2}$ difference sets (where we take \overline{F}_1 instead of F_1) construct $\frac{(v-2x-3)(v-x)}{4}$ blocks such that any element of $V\setminus X$ appears $\frac{v-2x-3}{4}$ times in the middle position. Say \mathcal{B}_4 be the set of these blocks. At last using all the edges of K_v missing in the above blocks of $\mathcal{B}_1\cup\mathcal{B}_2\cup\mathcal{B}_3\cup\mathcal{B}_4$, construct the block set \mathcal{B}_5 in such a way that every block of \mathcal{B}_5 has always in the middle position an element of X. It is easy to see that $\mathcal{H}=(V,\cup_{i=1}^5\mathcal{B}_i)$ is a H(v,3,1) and $X\subseteq V$ is a scattering set of maximum cardinality.

Example 1. Let x=4. Then it is $\alpha(x)=3$ and v=13. The blocks (1) of \mathcal{B}_1 are (we omit all the commas and brackets) a_112 , a_223 , a_334 , a_441 ; the blocks (2) of \mathcal{B}_1 are a_513 , a_624 . The blocks of \mathcal{B}_2 are $a_ja_{j+1}a_{j+3}$ for every $j=1,2,\ldots,9$. It is easy to see that we can put $\mathcal{B}_3=\{2a_1a_4,1a_2a_5,1a_3a_6,1a_4a_7,2a_5a_8,1a_6a_9,2a_7a_1,2a_8a_2,1a_9a_3,3a_1a_5,4a_2a_6,2a_3a_7,3a_4a_8,3a_5a_9,3a_6a_1,4a_7a_2,4a_8a_3,4a_9a_4\}$ and $\mathcal{B}_4=\{a_14a_3,a_23a_7,a_42a_9,a_54a_6,a_71a_8,a_83a_9\}$.

Example 2. Let x=5. Then it is $\alpha(x)=2$ and v=17. The blocks of \mathcal{B}_1 are $a_112, a_223, a_334, a_445, a_551, a_613, a_724, a_835, a_941, a_{10}52$. With the edges of \overline{F}_5 form the block set $\mathcal{B}_2=\{a_2a_7a_6, a_3a_8a_1, a_4a_9a_2, a_5a_{10}a_3, a_6a_{11}a_4, a_1a_{12}a_5\}$. We use F_6, F_2 and F_3 to construct the block set $\mathcal{B}_3=\{a_1a_71, a_2a_81, a_3a_91, a_4a_{10}1, a_5a_{11}1, a_6a_{12}1, a_1a_32, a_2a_42, a_3a_52, a_4a_62, a_5a_73, a_6a_82, a_7a_93, a_8a_{10}3, a_9a_{11}3, a_{10}a_{12}3, a_{11}a_{15}, a_{12}a_{23}3, a_{14}45, a_2a_54, a_3a_64, a_4a_74, a_5a_85, a_6a_95, a_7a_{10}2, a_8a_{11}5, a_9a_{12}5, a_{10}a_{14}, a_{11}a_24, a_{12}a_34\}$. With the edges of \overline{F}_1 and F_4 form the block set $\mathcal{B}_4=\{a_1a_2a_6, a_2a_3a_7, a_3a_4a_8, a_4a_5a_9, a_5a_6a_{10}, a_6a_1a_5, a_7a_8a_{12}, a_8a_9a_1, a_9a_{10}a_2, a_{10}a_{11}a_3, a_{11}a_{12}a_4, a_{12}a_7a_{11}\}$. At last let $\mathcal{B}_5=\{a_21a_3, a_41a_5, a_12a_9, a_{11}2a_{12}, a_84a_{10}, a_{11}4a_{12}, a_25a_3, a_65a_7\}$.

Theorem 4. For every $v \equiv 1 \pmod{4}$ it is scat(v) = L(v).

Proof: Since scat(5) = 2 and scat(9) = 3 we suppose $v \ge 13$. Obviously it is $\binom{L(v)+1}{2} \le v$ for every admissible v. Put $w = \binom{L(v)+1}{2} + \alpha(L(v))$; it is easy to verify that $w \equiv 1 \pmod 4$. If it is w > v we can put $w = v + 4\sigma$, $\sigma \ge 1$. Then $w = v + 4\sigma \ge \binom{L(v)+1}{2} + 4\sigma > \binom{L(v)+1}{2} + \alpha(L(v))$, this is impossible. Therefore $w \le v$. By Theorem 3 there exists a scattered H(w,3,1) $\mathcal H$ with scat($\mathcal H$) = L(v). Then we can consider only the v such that w < v. Let $X = \{1,3,5,\ldots,2L(v)-1\}$ be the scattering set of maximum cardinality in $\mathcal H$. Since $L(v) \le \frac{v-5}{2}$ for $v \ge 17$, then by the embedding $w \to w + 4$ (Lemma 1) we construct a scattered H(v,3,1) having X as scattering set of maximum cardinality L(v) (note that no any block of (ii), (iii) and (iv) of Lemma 1 is secant to X).

References

- C.J. Colbourn, J.H. Dinitz and D.R. Stinson, Spanning Sets and Scattering Sets in Steiner Triple Systems, J. Combin. Theory (A) 57 (1991), 46-59.
- [2] M. de Resmini, On complete arcs in Steiner systems S(2,3,v) and S(2,4,v), Discrete Math. 77 (1989), 65-73.
- [3] P. Hell and H. Rosa, Graph decompositions, handcuffed prisoners, and balanced P-designs, Discrete Math. 2 (1972), 229–252.
- [4] S.H.Y. Hung and N.S. Mendelsohn, Handcuffed designs, Aequationes Math. 11 (1974), 256-266.