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ABSTRACT. We give short proofs of theorems of Nash-Williams
(on edge-partitioning a graph into acyclic subgraphs) and of
Tutte (on edge-partitioning a graph into connected subgraphs).
We also show that each theorem can be easily derived from the
other.

1 Introduction

Throughout this paper, the word graph will refer to an undirected graph
with multiple edges but no loops. Other terminology and notation will be
standard except as indicated. A good reference for any undefined terms is
(1].

One of the most fundamental problems in graph theory is to determine
whether a graph can be vertex- (or edge-) partitioned into a given number
of subgraphs, all having a specified property. In this paper, we will be
concerned with two classical problems of this type.

Problem 1. Given a graph G and a positive integer k, can G be edge-
partitioned into k acyclic subgraphs? (The smallest integer k for which
such an edge-partition exists is called the arboricity of G, denoted a(G).)
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Problem 2. Given a graph G and a positive integer k, can G be edge-
partitioned into k connected spanning subgraphs (equivalently, does G con-
tain k edge-disjoint spanning trees)?

Elegant solutions for these two problems were given in the early 1960’s
in the following theorems of Nash-Williams and Tutte, respectively.
Nash-Williams’ Theorem [9]. A graph G can be edge-partitioned into
k acyclic subgraphs if and only if for all nonempty X C V(G),|E(X)| <
k(X|-1).

Before stating Tutte’s theorem, we introduce the following notation.
Given a partition P of V(G), let |P| denote the number of sets in the
partition P and let E(P) denote the set of edges in G which join different
sets in P.

Tutte’s Theorem (8], [11]. A graph G can be edge-partitioned into k
connected spanning subgraphs if and only if for every partition P of V(G),
|E(P)] 2 k(|P] - 1).

Nash-Williams’ theorem is certainly one of the best known results in
graph theory (see for example [6]), though it is more often expressed in the
equivalent form below.

Nash-Williams’ Theorem (Alternate Form). For any graph G, a(G) =

. [IE(X)I }
xcve) | |X]| -1

Tutte’s theorem, on the other hand, does not appear to be as well known
as it deserves to be. Our goal in this paper is to present a short proof
for each of these theorems, and also to show that either theorem can be
easily derived from the other. We hope thereby to make both theorems
more accessible, and to help give Tutte’s theorem the recognition it de-
serves. In Section 2 of this paper, we give a short proof of Nash- Williams’
theorem, and then show that Tutte’s theorem can be easily derived from
Nash-Williams’ theorem as a corollary. In Section 3, we reverse this order—
we begin by giving a new proof of Tutte’s theorem, and then derive Nash-
Williams’ theorem as a corollary.

Several other proofs of these theorems, besides the originals cited above,
have appeared in the literature. Edmonds gave a constructive generaliza-
tion of both theorems via his matroid partitioning algorithm (see [4] and {7,
Section 8.7]). Nash-Williams even suggested in 1982 [10] that the applica-
tion of Edmonds’ algorithm to the special case of graphs provided ‘probably
the neatest proof’ of the two theorems up to that time. In 1976, Bollobas [2]
gave an alternate proof of Tutte’s theorem, which is easier than the original
proofs in [8] and [11] and uses only ideas from graph theory. More recently,
Enomoto [5] and Chen et. al. [3] have given new proofs of Nash-Williams’
theorem, and we consider the proof of Chen et. al. to be especially elegant.
Both of these recent proofs are quite different from our proof in Section 2.
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2 A Short Proof of Nash-Williams’ Theorem

We now give a short proof of Nash-Williams’ theorem which does not as-
sume Tutte’s theorem, and then show how Tutte’s theorem can be easily
derived as a corollary.

2.1 Proof of Nash-Williams’ Theorem

The necessity is clear and thus we establish just the sufficiency.

Suppose G cannot be edge-partitioned into k forests and that G is edge-
minimal in this regard. Let e, be any edge of G. Then G — e, can be
edge-partitioned into k forests, say Fy, F»,... , Fi.

Label as many edges of G as possible using the following simple labelling
algorithm.

algorithm {edge-labelling}

Initially all edges in G are unlabelled. Label e, with 0. If the end vertices
of an edge labelled r are joined by a path P entirely contained in one of
the forests Fy, ... , F, give any unlabelled edge on P label r + 1. o

Let us call an edge forest-complete if its end vertices are joined by a
path in each of the forests Fy, Fy, ..., Fx. Clearly we may assume e, is
forest-complete. We now establish the following lemma.

Lemma. Every labelled edge is forest-complete.

Proof of the Lemma: Suppose some labelled edge e, with label » > 1
is not forest-complete. In particular, suppose the endvertices of e, are not
joined by a path in the forest F;. Since e, is labelled r, there is a sequence
of edges e,,er_1,...,e1,€, such that for j = 1,2,...,r, e; is labelled j
and belongs to a path entirely contained in one of the forests joining the
endvertices of e;_;.

For any edge e # e,, let ind(e) permanently denote the index of the forest
in F1U...UFj to which e belongs. Define the set of edges X initially to be
E(Fj), for j =1,2,...,k, and then perform the edge relocations below in
the order indicated (here e — X means to move the edge e from the set—if
any—to which it currently belongs into the set X):

er — Xg,6p1 = Xind(e,.): SERINY-) B Xind(eg)s €o = Aind(e;)

Note that X; U...U X, is now a partition of E(G), and thus if (X;) were
acyclic for every i, we would have the contradiction that G could be edge-
partitioned into k forests, and the proof of the Lemma would be complete.
Thus, we now complete the proof of the Lemma. by showing that every (X;)
remains acyclic after each of the edge relocations above.

Certainly this is true after the first relocation e, — X,. Suppose it is
true after the relocations of er,e,_j, ..., €511, and consider the relocation
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ej — Xind(e;1)- The path P4y in Find(e;,,) joining the endvertices of
e; has largest edge label j + 1, and thus P;4; remains intact in the forest
(Xind(e;41)) after relocating each of the edges er,€r—1,...,€j+2. So when
we finally do the relocation €j+1 — Xind(e;42) there will no longer be a
path in the forest (Xind(e;,,)) joining the end vertices of e;, and thus the
relocation e; = Xind(e;41) would leave (Xind(e;.,)) acyclic. This proves the
Lemma.

Let G = (Vi, EL) denote the subgraph of G induced by the labelled
edges. It is trivial that G, is connected. Let F] denote the forest on Vi,
with edge set E(F;) N Eg, for j =1,2,... ,k.

We now prove F is a connected forest (i.e., a spanning tree) on V. Let
v,w € Vi. Since G|, is connected, v and w are joined by a path of labelled
edges €} €}...€,. Since each €] is forest- complete by the Claim, the end
vertices of e} are joined by a path P;; in Fj. Since ] is labelled, every edge
in P; must also be labelled, and thus P;; belongs to Fj. Thus v,w are
joined by the walk Py Py;...P,; in FJf, and so FJ’ is a connected forest as
asserted.

By the above paragraph, we have |E(F;)| =|Vi| — 1, for every j. Thus,

k
|E(VL)| 2 |ELl =1 +Z |E(FD|=1+k(VL| - 1).
=1

Taking X = V},, the theorem is proved. ]

2.2 Tutte’s Theorem as a Corollary of Nash-Williams’ Theorem

The necessity is clear; we will prove the sufficiency by induction on n =
|[V(G)), the result being obvious for n = 2.

Let P be a partition of V(G), say V1 U...UV,, with |[P| =7 > 2 and
such that |E(P)| — k (|P| — 1) is as small as possible. Denote this optimal
difference by d; by hypothesis d > 0. In order to derive a contradiction,
suppose G does not contain k edge-disjoint spanning trees. We consider
two cases.

Case 1. |V;| > 2, for some 1.
We begin by proving two lemmas.

Lemma 1. (V;) contains k edge-disjoint spanning trees.

Proof of Lemma 1: Otherwise by induction there exists a partition P; of
Vi with |E(P:)| < k(|Pi| — 1)—1. Consider the refinement P’ of P obtained
by replacing V; in P by the sets of P;. Then |P'| = |P|+ |P| -1 > 2,
while |E(P')| = |E(P)| + |E(P)| < k(JP| - 1) +d+k(R|-1)-1=
k(|P’| = 1) + (d — 1). Thus, |E(P’)| — k(|P’| —1) < d, contradicting the
optimality of P. This proves Lemma 1.
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Let G’ denote the graph which results when V; is contracted to a single
vertex v (keeping all resulting parallel edges, but eliminating any loops).

Lemma 2. G’ contains k edge-disjoint spanning trees.

Proof of Lemma 2: Otherwise by induction V(G’) has a partition P’ with
|E(P")| < k(|P’| — 1) — 1. Construct the partition @ of V(G) by deleting
v from its partition set in P’, and adding to this partition set the vertices
in V;. We find |Q| = |P’| > 2 while |E(Q)| = |E(P")| < k(|P'|-1)-1=
k(|Q| — 1) — 1, contradicting the optimality of P since d > 0. This proves
Lemma 2.

By these two lemmas, G’ (resp, (V;)) contains k edge-disjoint spanning
trees Ty, ... , T} (resp, T, ..., T}'). But then G itself would contain k edge-
disjoint spanning trees Ti,...,Tk, a contradiction, where Tj; is obtained
from T by replacing v in T; by the tree T}’ as shown in Figure 1. This
completes Case 1.

H =

TreeTjt in G TreeT}inG
Figure 1

Case 2. |V;| =1, for all 1.

Then, |E(G)| = k(n—1)+d with d > 0. Delete d edges from G arbitrarily
to obtain a subgraph G’ with exactly k(n — 1) edges. Clearly, G’ does
not contain k edge-disjoint spanning trees (else G would); equivalently,
G’ cannot be edge-partitioned into k forests. By Nash-Williams’ theorem,
there exists a subset S C V(G') = V(G) with |Eg/(S)| > k(|S| — 1) + 1.
Consider the partition Q of V(G) consisting of the set S together with n—|S3|
singletons. Then |Q| =n —|S|+1 > 2, while |E(Q)| = |E(G)| — |Ec{S)| <
|E(G)| — |Ec(S)| < k(n— 1) +d~ (k(IS| = 1) +1) = k(IQ| - 1) +d - 1,
again contradicting the optimality of P.

This completes the proof of Tutte’s theorem. 0O

3 A Short Proof of Tutte’s Theorem

We now give a short proof of Tutte’s theorem which does not assume Nash-
Williams’ theorem, and then show how Nash-Williams’ theorem can be
easily derived as a corollary.
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3.1 Proof of Tutte’s Theorem

The necessity is clear and thus we prove only the sufficiency.

Suppose G does not contain k edge-disjoint spanning trees and is edge
maximal in this regard. Then G contains k edge-disjoint spanning forests
Fy, F,,..., F, where F; has two components and F3, ... , F) have one com-
ponent each. We now describe a simple algorithm to label certain edges in
Fiu...UF.

algorithm {labelling edges in F{U...U Fi}

initially all edges in Fy U...U Fy are unlabelled;

Fiy+— F;, forall i;r 1,

while there is an unlabelled edge in some F;, joining different

components in some Fjr,j # 1

begin {another round of labelling edges}

label all such edges with the label r;

F;ry1— Fi; —{ edgesin F;, labelled 7}, for i =1,2,... , k;

re—r+1

end;

end. {labelling edges in F; U...U Fi} 8]

Suppose the labelling algorithm concludes with final forests Fy 7, Fo ¢, . . .,
Fy g, where F; ¢ has exactly ¢; components. Then there are exactly ¢; — 2
labelled edges in Fy, and c; — 1 labelled edges in Fj, for j = 2,3,... ,k.
Define an equivalence relation ~ on V(G) by v ~ w if and only if v and
w belong to the same component of Fj s for every j = 1,2,... ,k. Let the
partition P of V(G) consist of the equivalence classes of vertices under ~.
It is immediate that |P| > max{eci,...,cx}. In a moment, we will prove
the following lemma.

Lemma. |E(P)| is precisely the set of labelled edges.

Assuming the truth of the Lemma, we find |E(P)| = (c1 —2)+ (c2 — 1)+
it (k=) =(c1+...+ck)—(k+1) <kmax{c;+...+ck}—(k+1) <
k|P|-(k+1) = k(|P|-1)—1 < k(|P|-1). This contradicts the hypothesis,
and thus Tutte’s theorem would be proved. It remains only to prove the
Lemma.

Proof of the Lemma: It is clear from the definition of P that every
labelled edge belongs to E(P). On the other hand, suppose some unlabelled
edge e, = vow, belongs to E(P). By the definition of P, e, must join
different components in some forest F;, s. If e, belonged to F1 U...U F,
then of course e, would have been labelled by the labelling algorithm, and
hence we may assume e, € F; U...U Fj.

We now describe an edge-exchange procedure which begins by adding
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eo to F;, and ultimately produces k edge-disjoint spanning trees in G, a
contradiction.

Consider the path P, in F;_ joining the endvertices of e,. P, must contain
a labelled edge (otherwise v,,w, would not be in different components of
Fi,.r). Select as e; the labelled edge on P, with smallest label ¢(e;), and
do the edge exchange F;, — F;_ + e, —e1. Move e; = vjw; into the forest
F;, which “caused” e; to be labelled ¢(e;) during the labelling algorithm
(because e; joined two different components of F;, g(,)). The path P; in
F;, joining v; and w, must contain at least one labelled edge. Select as e,
the labelled edge on P; with smallest label £(e3). Of course, £(e1) > £(ez),
since for e; to be labelled £(e;) in Fj, g(,), at least one edge on the path
in F;, joining the end vertices of e; must have been previously labelled.
Assuming we could continue this exchange process, we would eventually
move an edge e, with label (e,) = 1 into F;, = F}. But when e, is moved
into F, the forests Fy,... , F; would be k edge-disjoint spanning trees in
G, yielding the contradiction mentioned above.

If this edge-exchange procedure ever gets blocked, say for the first time
when we attempt to move e; into the current F; ;» it would be because the
path then in Fj; joining the end vertices of e; contains no labelled edge
with label less than ¢(e;). We now complete the proof of the Lemma by
showing this never happens.

Claim. Consider the path P; in the original forest F;; joining the endver-
tices v;,w; of e;. Let ¢’ denote the edge on P; with smallest label £(¢’) (so
£(e’) < £(e;)). Then e’ will still be on the path in F;; joining v; and w; at
the time we move e; into Fj;.

Proof of the Claim: Otherwise, consider the first edge exchange F; 5 —
Fi; + ek — ext1(k < j) after which the path in F;; joining v; and w; no
longer contains ¢’. Consider the situation in Fj; just before this exchange
occurs. Let P’ denote the path then in Fj; which joins v; and w;. The
path in F;; joining the endvertices vk, wi of ei consists, without loss of
generality (see Figure 2), of a path from vy to some z € P’, a subpath
P’[z,y] of P’ containing ex41, and a path from y € P’ back to wx. There
are just two possibilities now.

Case 1. ¢’ € P'[z,y).

Then the path in Fi; + ex — exy1 joining v; and w; still would contain
¢/, a contradiction.
Case 2. ¢’ € P'[z,y).

Then P’[z,y] contains both the labelled edges ex4; and e’. Since we
selected ek 1 rather than e’ to exchange out of F;, it must be that £(ex41) <
¢(e') < ¢(e;). But since we moved e before e;, and the exchange process
does not fail until we attempt to move e;, it must also be that £(ex+1) >
£(e4), a contradiction.
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&% w,
Figure 2

This completes the proof of the Claim, and thereby the proof of Tutte’s
theorem. o

3.2 Nash-Williams’ Theorem as a Corollary of Tutte’s Theorem

The necessity is clear; we prove the sufficiency by induction on n > 2, the
result being trivial for n = 2.

Let S C V(G) with |S| > 2 be such that the deficiency d(S) = k(|S]| -
1) — |E(S)] is as small as possible. By hypothesis, d(S) > 0. Suppose,
trying for a contradiction, that G cannot be edge-partitioned into k forests.
We consider two cases.

Case 1. S # V(G).

Let G’ denote the graph which results when S is contracted to a single
vertex vs (keeping all resulting parallel edges, but eliminating any loops).
We first establish the following lemma.

Lemma. G’ can be edge-partitioned into k forests F{, Fj, ..., F{.

Proof of the Lemma: Since |S| > 2, we have |V(G’)| < n. So, by
induction, if G’ cannot be so partitioned, there exists a nonempty S’ C
V(G') with |Eg:(S")| = k(|S’| — 1) + 1. We may assume vs € S’, or else
S’ C V(G) would satisfy |Ec(S’)| > k(|S’| — 1) + 1 and we would be done.

Consider the set T' C V(G) given by T = (8’ — vg) US. Note that
IT| = |S| +|S’| — 1 > 2. We have

|Ec/(S")| + |Ec(S)]
k(|S’] - 1) + 1+ k(|S| — 1) — d(S)
k(T - 1) = (d(5) - 1)

|Ec(T)|

v i

So k(|T| — 1) — |Ec(T)| < d(S), contradicting the optimality of S. This
proves the Lemma.

264



We also have by induction that (S) can itself be edge-partitioned into k
forests FY', ..., F{! (since the subgraph of (S) induced by any X C S is, of
course, an induced subgraph of G itself). But then G can be partitioned
into k forests Fi, ... , Fx, where we obtain F; from FJ’ in G’ by replacing vs
in F by F} as indicated earlier in Figure 1. This contradiction completes
Case 1.

Case 2. §$ =V(G).

We have |E(G)| = k(n—1)—d, where d = d(S). Arbitrarily add d edges to
G to get G/, with |E(G)| = k(n—1). Clearly, G’ cannot be edge-partitioned
into k forests (else G could be), and so G’ does not contain k edge-disjoint
spanning trees. By Tutte’s theorem, there exists a partition P of V (G), say
ViU...UV,, with |E(P)| < k(]P| —-1) — 1. If |[E(V;)| < k(|V;] — 1) for all
J, we would have

|E(G)| |E(P)|+ Y_|EVi)
i=1

K(PI=1) =143 k(Y- 1)
= kn-1)-1,

IN

contradicting |E(G’)| = k(n — 1). It follows that |E{(V;)| > k(|V;| - 1) +
1 for some j. Taking X = Vj, the proof of Nash-Williams’ theorem is
complete. 0
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