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ABSTRACT. In this paper we prove some basic properties of
the g-centroid of a graph defined through g-convexity. We
also prove that finding the g-centroid of a graph is NP-hard
by reducing the problem of finding the maximum clique size of
G to the g-centroidal problem. We give an O(n?) algorithm
for finding the g-centroid for maximal outer planar graphs, an
O(m + nlogn) time algorithm for split graphs and an O(m?)
algorithm for ptolemaic graphs. For split graphs and ptole-
maic graphs we show that the g-centroid is in fact a complete
subgraph.

Introduction

In this paper we study some of the structural and algorithmic properties
of the g-centroid of a graph defined through g-convexity. We first show
that finding the g-centroid of a graph is NP-hard by reducing the problem
of finding the maximum clique of a graph to the problem of finding the
g-centroid of a graph. However, on special classes of graphs such as split
graphs, maximal outer planar graphs and Ptolemaic graphs, we present
polynomial time algorithms for finding the g-centroid.

Several concepts of convexity in graphs have been studied in the liter-
ature modelled on lines similar to the concepts in topology. Convex sets
play an important role in facility location theory (finding vertices simulte-
neously close to a family of vertices), dynamic search in graphs (meant for
optimal self adjusting algorithms for information retrieval) and models for
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measuring dissimilarities. For a detailed survey on convexity in graphs, see
Duchet [3].

By a graph we mean an undirected graph without loops and multiple
edges. A set S C V is geodesic convex (g-convex for short) if for every
u,v € S, all the vertices on any u — v shortest path also belong to S.
g-convexity has been studied by several authors. See for example Feldman-
Hogassen [5], Mulder [12], and Nieminen [14].

The concept of g-centroid is similar to the notion of branch weight cen-
troid for trees. For the definitions not mentioned here, one can refer the
book by Buckley and Harary [1].

Definition 1: Let G = (V, E) be a connected graph. For v € V, define
the weight w(v) = max {| S| : S is a g-convex set in G not containing v}.
Let g¢(G) = min {w(v) : v € V}. Then gc(G) is called the g-centroidal
number of G and the vertices v for which w(v) = gc(G) are called the g-
centroidal vertices. The g-centroid C,(G) is the set of all g-centroidal
vertices. For v € V, we denote by S, any g-convex set of G not containing
v for which w(v) =| S, |.

Section 1
In this section we give some basic properties of the g-centroid of a graph.

Proposition 1. For any connected graph G, C,(G) is a g-convex set of G
and < Cy(G) > is connected.

Proof: To prove the convexity of C,G), suppose there exists a pair of
vertices u,v in Cy(G) such that some vertex p on a u — v geodesic P is
not in Cy(G). Then w(p) > gc(G). Consider an S, with | Sp, |= w(p). If
u ¢ Sp, then gc(G) = w(u) 2| Sp |= w(p), a contradiction. Thus » and
similarly » are in Sp. Since S, is a g-convex set, P C S, a contradiction,
establishing the claim.

Connectivity of < C,(G) > follows from the convexity of Cy(G) and by
the connectivity of G o

We now give a generalization of the well-known result of Jordan [10] on
the centroid of a tree.

Proposition 2. For a connected graph G, C,(G) lies in a block of G.

Proof: Let G be a separable graph and u,v € C,(G). If possible let
u € B; and v € By , where B; and B are different blocks of G. Let P
be a u — v geodesic and p be any cut vertex on P. By the convexity of
Cy(G), p € Cy(G). Consider an S, with | Sp |= gc(G). Since p ¢ Sp, Sp
lies in some component A of G —p. Let A’ = AU {p}. Then | A’ |>| S, |.
Since for any z,y € A’, every z — y geodesic lies in < A’ > (because p is a
cutvertex), A’ is a g-convex set.
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Now A’ can contain atmost one of u or v say u. For the other vertex v,
w(v) 2| A’ |>| Sp |= gc(G), contradicting v is a centroidal vertex. Thus u
and v lie in the same block for every u, v in Cy(G) D

Proposition 3. Let G = (V, E) be a connected graph. For a vertex v of
G, if z,y are two vertices in Ni(v) NS, (Where Ni(v) = { y : d(v,y) = k})
then d(z,y) < 2k.

Corollary 1. If for a vertex v of G, N1(v)NS, is non empty, then it forms
a clique.

The proof of Proposition 3 and the corollary 1 follows immediately from
the definition of Ni(v) and by the convexity of S,. Note that for a vertex
v of G, N1(v) NS, can be empty.

Section 2

In this section we study the intractability of finding the g-centroid, the
centroidal number ge(G) and weight of a vertex of a graph.

We now extend definition 1 to disconnected graphs. Let G = G; UGa U
.-+ UGg. For v € V(G;), define w(v | G) = w(v | G;) (where w(v |
H) denotes the weight of v with respect to the graph H) and Cy(G) =
UE1C(Gy).

By a clique we mean a vertex subset of G inducing a complete subgraph
of G. A clique M of G is a maximum clique if | M |> cardinality of any
other clique of G.

Lemma 1. Let G be a graph and u,v be any two vertices not in G. Let
G' be the graph obtained by joining u and v to all the vertices of G. Then

(i) If G has a unique maximum clique M then Cy(G') = M.

(i) If My, Ms,--- , M, are the maximum cliques of G and if N_,M; is
empty then Cy(G') = V(G’) otherwise Cy(G') = Ni_y M;.

In all the cases w(u) = w(v) = w(G) + 1, where w(G) is the maximum
clique size of G.

Proof: First we claim that if a g-convex set of G’ is a proper subset of
V(G’) then it is complete. Let § C V(G’) be a g-convex set of G'. If
u,v € S, then clearly § = V(G’) If S has two non adjacent vertices z and
y, different from u, v then z,u, y and z, v, y are geodesics joining z and ¥ in
G’'. Thus u,v € S and hence S = V(G’), a contradiction. This establishes
the claim.

(i) Let M be the maximum clique of G. Then every vertex other than
those in M has weight w(G) + 1 and every vertex in M has weight w(G).
Thus Co(G') = M.
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(i) Let My, Mo, ---, M, be the maximum cliques of G and let L =
N]_; M. Suppose that L is empty, then for each vertex z we can find a
maximum clique not containing z and hence Cy(G’) = V(G’). If L is non
empty then each vertex not in L has weight w(G) + 1 and every vertex in
L has weight w(G). Thus Co(G’) =L o

We now prove that the problem of finding the g-centroid of a graph is
NP-hard.

Proposition 4. Finding the g-centroid of a graph is NP-hard.

Proof: Let G be a graph whose maximum clique size w(G) has to be found.
Let H; = GUK; for 1 <i < n (where n = | V(G) |). Let G;_; be got by
joining two new vertices to H; and joining them to all the existing vertices
of H; . Let G’ = Go UG U---UGy_;. By the definition of g-centroid for
disconnected graphs, Co(G’) = U9 C4(G:). Then by Lemma 1, w(G) = i
if and only if 4 is the least integer such that Cy(G;) = Ki41. Thus finding
the g-centroid of a graph is NP-hard o

Let Gy = (W4,E1) and G2 = (V,,E;). The graph Gs = G; V Gs is defined
as follows

V(G3) =V(G1)UV(Gr)
E(G3) = E(G1)UE(G)U{uwv:u e V(G ),ve V(G2)}

Proposition 5. Finding the g-centroidal number gc(G) of a graph G is
NP-hard.

Proof: Let G be a graph whose maximum clique size w(G) has to be found.
Let G’ = K1 VG. It is easy to see that gc(G) = w(G). Thus finding gc(G)
of a graph G is NP-hard o

Proposition F.inding the weight of a vertex is NP-hard.

Proof: Let G be any instance and u be a vertex not in G. Let G'= {u}VvG,
then w(u) = w(G), proving the proposition o

Section 3

In this section we give a polynomial time algorithm for finding the g-centroid
for maximal outer planar graphs, split graphs and Ptolemaic graphs. For
trees the g-centroid coincides with the usual branch weight centroid. A nice
linear time algorithm for finding the branch weight centroid is due to Kang
and Ault [11]. In this section we consider only connected graphs.
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Subsection 3.1

In this subsection we prove some results on chordal graphs which we use
subsequently. A graph G is a chordal graph (also called triangulated graph)
if G has no induced cycle of length 4 or more.

Proposition 7. Let G be a chordal graph and v € V(G). For each
z € Ni(u), < Ai(z) > = < {y € N;_1(u) : zy € E(G)} > is complete.

Proof: Consider the set I(z,u) = { w : w lies on a z — u geodesic }.
Since G is connected, < I(z,u) > is a chordal graph by itself. Suppose
y(# z,u) € I(z,u) and d(u,y) = r, then we can find a € N,_;1(u) N I(z,u)
and b € Ny41(u) € I(z,u) such that ay,by € E(G). Thus y cannot be a
simplicial vertex of I(z,u) and hence only u and z are the simplicial vertices
of < I(z,u) >, establishing the proposition o

Lemma 2. Let G be a chordal graph and z,y € N;(u). If = and y are
adjacent, then A;(z) C A;(y) or Ai(y) C Ai(z) or Ai(z) = Ai(y).

Proof: Easy (]

Proposition 8. Let G be a chordal graph and u € V(G). Let S be any
maximal g-convex set not containing u; then SN Nj(u) is non empty.

Proof: Let S be a maximal g-convex set not containing u such that SN
Ny(u) is empty. Let z € N;(u) be a closest vertex to u in S. Let M be a
minimal separator for z and u. Since G is chordal, M induces a complete
graph. It is clear that A;(z) C M. Suppose M is disjoint from S, then §
will be completely contained in a component C of G— M. Thus CUM is a
g-convex set properly containing S, a contradiction. Let M’ = M N N;(u).
By lemma 2, A;(M’) = { y € N;_1(u): thereis an z € M’ and yz € E(G)}
forms a clique of N;_;(u), separates u and z and is disjoint from S, a
contradiction. Thus SN N;(u) is non empty for all maximal g-convex sets
not containing u o

Subsection 3.2

In this subsection we give a polynomial time algorithm for finding the g-
centroid for maximal outer planar graphs.

A graph is outerplanar if it can be drawn in the plane with all the vertices
in the exterior face; it is maximal outer planar (mop for short) if no edge
can be added without destroying its outer planar property.

All mops can be constructed according to the following recursive rule
(See, for instance Proskurowski [15])

(i) The triangle K3 is a mop.
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(ii) A mop with n+1 vertices can be obtained from a mop M on n vertices
(n > 3) by adding a new vertex and joining it to two consecutive
vertices on the hamilton cycle of M.

We list some of the properties of mops as a proposition which can be
proved easily.

Proposition 9.
(i) Mops are triangulated

(ii) Any two non adjacent vertices in & mop can be separated by a pair
of adjacent vertices.

(iii) A Mop has a unique hamilton cycle

The following characterization for outer planar graphs is due to Char-
trand and Harary (2]

Proposition 10. A graph is outer planar if and only if it contains no
subgraph homeomorphic from K4 or K3 3.

We quite often use the above proposition for proving our results on mops.

Definition 2: Let u € V(G) and y € N;(u). We say y is a successor of z
with respect to u if x € N;_1(u) and zy € E(G) and z is called a parent
or a predecessor of y.

Let u € V(G). Consider the successor relation with respect to u on G.
Let y € Nj(u). We say y is a descendant of z € N;(u) if i < j and there
is a sequence of vertices y = yo, %1, -, y¥j—i = z such that y; is a successor
of yp_y for0<i<j—1.

Proposition 11. Let G be a mop and let u € V(G). Let u;,uz,- -+ ,u, be
the vertices of G which are adjacent to u, then < N[u] >= PV {u} where
P is the path on r vertices.

Proof: Consider the hamilton cycle H of G starting and ending with u.
Let u;, be the first vertex of H occurring in N;(u) and u;, be the second
vertex. Consider the portion H’ of H from u;, to u;, not containing the
vertex u. ww;,;, + H' + u;,u is a cycle of length four or more. ( =3
only when u;, and u;, are consecutive vertices of H). By the chordal
property of G, u;,u;, € E(G). Proceeding like this we get a sequence of
vertices P: w;,, uy,, - - , uy, of Nj(u) occurring in H in that order such that
ui;_,ui; € E(G). Suppose that there is an edge between u;, u; and u;, u;
are not consecutive in the sequence P. Let w be any vertex in between u;
and u; in P. Then clearly G has a homeomorph of K}, a contradiction,
establishing the proposition (m]
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Consider G and the successor relation with respect to u. Let z,y € Ny(u)
such that zy € E(G). Suppose G’ = G - {z,y} is disconnected and C be
a component of G’ not containing u. Then every vertex of C is either a
descendant of z or y or both. In this case the hamilton cycle enters C
through z and exits through y after passing through all the vertices of C.
It is easy to see that if z and y are consecutive in the hamilton cycle then
G’ will be connected. We denote the component of G’ not containing u
together with z and y as C(z,y) and by H(z,y) the set of all vertices
which are either descendants of z or y or both.

Lemma 3. Let H(y/C(z,y)) be the set of all descendants of y in C(z,y).
Then H(y/C(z,y)) is a g-convex set.

Proof: We prove this using induction. Suppose that H (y/C(z,y)) contains
y and first level of descendants (H(y/C(z,y)) has k-levels of descendants
if H(y/C(z,y)) = { 2: z is a descendant of y in C(z,y) and d(z,y) < k b
Let a,b be a pair of vertices in H(y/C(z,y)) whose geodesic passes through
a vertex r not in H(y/C(z,y)). Let r # z then it is easy to see that G has
a homeomorph of K33, a contradiction. Assume that if H(y/C(z,y)) has
k-levels of descendants then it is a g-convex set.

Let H(y/C(z,y)) have k+1 level of descendants in C(z,y). Let z;,z5,- -+ ,
Zp and y1,¥2, - ,Yn be the successors of z and y respectively as they occur
in the order in the hamilton cycle H of G. Let C'(yi,%i4+1) be the compo-
nent of G - { y;, yi+1 } not containing y together with y; and y;;;. Next
we show z,, = y;. Trace the hamilton cycle of G from u. Without loss of
generality assume that z,, comes before ;. Let H’ be the portion of the
hamilton cycle from z, to y; not passing through u. Then zz, + H' +
1y + yz is a cycle of length four or more. Since G is a chordal graph we
have z,, = y;.

It is easy to show that H(y/C(z,¥)) = {y } U (U2 C" (i, :+1) UH(y/C
(z,¥)). By the induction hypothesis and by a trivial observation we can
show that H(y/C(z,y)) is a g-convex set u]

Proposition 12. Let G be a mop and u € V(G). Consider the successor
relation defined with respect to u. Then H(z,y) is a maximum g-convex
set not containing u whose intersection with Ny(u) is { z,y }.

Proof: H(z,y) = AUC(z,y) U B where A = H(z/C(zo,z)) and B =
H(y/C(y,y0)) where o, yo € Ni(u) such that zox, yy € E(G). Note
that A or B or both may be empty. The convexity of H(z,y) follows from
the previous lemma and by an obvious observation. The other part of the
propasition follows from the construction of H(z,y) ]

Proposition 13. Let G be a mop and u € V(G). Let S be any maximal
g-convex set not containing u, then S = H(z,y) for some z,y € Ny(u).
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Proof: Since mops are triangulated, by Proposition 8, SN Nj(u) is non
empty. We can easily show that the vertices of SN Ny(u) form a complete
subgraph of < Ny(u) >. Suppose SN Ni(u) = { z}. In this case we claim
that S contains only the descendants of z. Suppose that a € S and an
y(# z) € Ni(u) such that a is a descendant of y. Then d(a,y) < d(a,z)
and hence the a — z geodesic will contain y, a contradiction. Let y € Ny(u)
such that zy € E(G). It is easy to see that S C H(z,y), contradicting the
maximality of S, establishing | S N Ni(x) |> 1. Since Nj(u) has no clique
of size 3 or more we have | SN Ny(u) | =2. Let SNNy(u) = { =,y } Then
by the maximality of S and H(z,y), S = H(z,y) u]

Now we are ready to give a polynomial time algorithm for finding the
g-centroid for a mop. Assume that MBFS(v) is a procedure which gives
the successor relation with respect to v. It is easy to see that MBFS will
take O(n + m) time for each vertex v.

Procedure GCENTMOP(G)
Begin
For each vertex u € V(G) do
Execute MBFS to get the successor relation.
For each adjacent vertices z,y in N(u)

find H(z,y)
w(u) = max { | H(z,y) | }
end for

output the least weighted vertices.
end.

Complexity Analysis: For each vertex u, MBFS(u) will take O(n + m)
time. Finding H(z,y) will take O(n + m) time for each pair of vertices
z,y. For each u there will be d(u) ( d(u) is the degree of the vertex u)
adjacent pairs z,y in N(u). Thus finding the weight of a vertex will take
O((n + m)d(u)) time. Hence finding the g-centroid of a mop takes O(m?)
time. Since m < 3n — 6, our algorithm indeed takes only O(n?) time.

Theorem 1. If G is a maximal outer planar graph, then its g-centroid can
be found in O(n?) time m]

Subsection 3.3

In this subsection we give a polynomial time algorithm for finding the g-
centroid for a split graph. An undirected graph G = (V,E) is defined to be
a split graph if there is a partition V = SUK of its vertex set into a stable
set S and a complete set K. There is no restriction on the number of
edges between S and K.
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Theorem 2. Let G be a split graph with stable set S and a complete set
K as a partition of V with | S| = a(G) and | K | = w(G) then SUK is
unique. (]

Theorem 3. Let G = (V,E) be a simple graph with degree sequence
di>dy>--->d,. Let m =max{i:d; >i—1}. ThenG is split if and
only if 337", di =m(m —1) + Y. ., di. Further in this case w(G) = m.
]

For detailed proofs of the above theorems refer Golumbic [7]. From these
two theorems if G is a split graph one can find w(G) in O(nlogn) time. If
| K | = m then SU K is unique, otherwise we have to ‘switch’ a vertex of
degree m-1 from S to K. After a switching SU K will be unique. We now
present our algorithm.

Procedure GCENTSPLIT(G)
begin
For each u € K do
w(u)=n-1-|N@@)NS|
output the least weighted vertices.
end.

It is easy to see that any vertex in S will have weight n-1, therefore it
is enough to compute the weights of the vertices in K. For any k € K,
Sk =V - {k} - { z: z € N1(u) N S}. The algorithm given above will take
O(m + nlogn) time.

Note. It is easy to see that if G is a split graph then the g-centroid induces
a complete graph as C,(G) C K.

Theorem 4. If G is a spilt graph then the g-centroid can be found in
O(m + nlogn) time. o

Subsection 3.4

In this subsection we give a polynomial time algorithm for finding the g-
centroid for Ptolemaic graphs. A Ptolemaic graph is a connected graph
such that for every four vertices vy, v2,vs,v,, the following inequality is
satisfied.

d(v1,v2) * d(v3,v4) < d(vy,v3) * d(v2,v4) + d(v1, v4) * d(v, v3)

A graph is distance hereditary if every two vertices have the same
distance in every connected induced subgraph containing both. Howorka
[9] proved that ptolemaic graphs are precisely chordal distance hereditary
graphs. The following theorem is due to Howorka [8].
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Theorem 5. Given a graph G = (V,E) the following statements are
equivalent.

(i) G is distance hereditary.
(ii) Every cycle in G with five or more vertices has two crossing chords.

(iii) Every induced path in G is a geodesic path. (u]

We quite often use the second equivalent definition of the above theorem
for proving our results.

Proposition 14. Let G be a Ptolemaic graph. Let M be any maximal
clique of Ny(u). Let = € No(u) such that Az(z)N M # 0 then Ax(z) C M.
(that is for any x € Na(u), A2(z) will be contained in a maximal clique of
Ni(u))

Proof: Suppose that there exists a vertex z of Na(u) such that Ay(z) is
partially contained in a maximal clique M of N1(u). Let M’ =MnN As(z).
Let p € A2(z)\ M’', g€ M’ andr € M\ M'. Then C : z,p,u,1,q forms
a cycle of length five with gp and qu as its chords. Since G is a Ptolemaic
graph, it must have two intersecting chords. Hence pr € E(G). Since r
is any arbitrary vertex of M \ M’, p is adjacent to all the vertices in M,
and hence {p}UM is a clique of N (u), contradicting the maximality of M.
Thus A2(z) S M (n]

Proposition 15. Let M be a maximal clique of Ni(u). Let H(M) = {y
: y is a descendant of some z € M }. Then H(M) is a g-convex set of G.

Proof: Follows from the above Proposition and Lemma 2 0

Proposition 16. Let G be a Ptolemaic graph and u € V(G). Let S be any
maximal g-convex set not containing u then S = H(M) for some maximal
clique M of Ny(u).

Proof: Let S be any maximal g-convex set not containing u. By Propo-
sition 8, $ N Ny(u) is a non empty clique of Ny(u). Let B = SN Na(u).
It is easy to see that Ap(B) is a clique of N;(u). Suppose that Ay(B) is
not a maximal clique of Nj(u). Let M be any maximal clique of N1(u)
containing A2(B). Then S C H(M), contradicting the maximality of S.
Thus Az(B) is a maximal clique of Ny(u) and S = H(A2(B)) u]

Proposition 17. If G is a ptolemaic graph then Cy(G) is a complete
subgraph of G.

Proof: Assuming the contrary, let z,y € Cy(G) be at a distance 2 apart.
Let = — z — y be a distance path joining z and y in G. It is easy to see
that S, cannot contain both z and y. Without loss of generality assume
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that z ¢ S;. Observe that if G is a ptolemaic graph, for each vertex u,
{u} US, is also a g-convex set. Thus w(z) >| S, U {z} |> w(z). Thisis a
contradiction. Hence Cy(G) is a complete subgraph of G a

We now give a polynomial time algorithm.

Procedure GCENTPTOLEMAIC(G)
begin
For each u € V(G) do
Execute MBFS(u) to get the successor
relation with respect to u.
For each maximal clique M of Nj(u) find H(M).
w(u) = max {| H(M) [}
endfor
Output the least weighted vertices.
end.

Complexity Analysis For each vertex u, MBFS(u) will take O(n + m)
time. Let m(N(u)) be the number of edges in < N(u) >. Then finding
all the maximal cliques of Nj(u) will take O(d(u) + m(N(u))) time and
there will be O(d(u)) maximal cliques. Finding H(M) for each M will take
O(n + m) time. Thus fining w(u) will take O(n + d(u)m) time and hence
finding the g-centroid will take O(m?2) time.

Theorem 6. If G is a ptolemaic graph then the g-centroid can be found
in O(m?) time o

Conclusion
It is well known that

mazimal outer planar C chordal C perfect
split C chordal C perfect
ptolemaic C distance heriditary C parity C perfect

We have given polynomial time algorithm to find the g-centroid for maximal
outer planar, split and ptolemaic graphs. It will be quite interesting to nar-
rowdown the gap between P and NP along these hierarchies of graphs. Spe-
cially, the complexity status of the problem on distance heriditary graphs
will be an interesting open problem. Improving the complexity of existing
polynomial time algorithm, investigating on other classes of perfect graphs
such as interval graphs, permutation graphs cocomparability graphs etc.
are other open problems in this direction.
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