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ABSTRACT. In this paper, we show that if G is a connected
SNz-locally connected claw-free graph with §(G) > 3, which
does not contain an induced subgraph H isomorphic to either
G or G such that Ni(z, G) of every vertex z of degree 4 in H
is disconnected, then every Na-locally connected vertex of G is
contained in a cycle of all possible lengths and so G is pancyclic.
Moreover, G is vertex pancyclic if G is N2-locally connected.

1 Introduction

In this paper we deal with finite simple graphs. Let G be a graph of
order n. We denote by 6(G) the minimum degree of G. For a vertex
v of G, the neighborhood of v, defined in the obvious sense, i.e., as the
induced subgraph on the set of all vertices that are adjacent to v, will
be called the neighborhood of the first type of v in G and denoted by
Ni(v,G) or briefly, Ni(v). We say that an edge zy € E(G) is adjacent
to v if z #v# y and z or y is adjacent to v. We define the neighborhood
of the second type of v in G (denoted by Nz(v, G), or briefly, Na(v)) as
the edge-induced subgraph on the set of all edges that are adjacent to v.
We say that a vertex v is locally connected if its neighborhood N;(v) is a
connected graph. G is called locally connected if every vertex of G is locally
connected. G is called S-locally connected if every vertex-cut of G contains
a locally connected vertex. Obviously, every locally connected graph is S-
locally connected. Analogously, a vertex v is Na-locally connected if the
second-type neighborhood Na(v) is connected. G is Na-locally connected
if every vertex in G is Np-locally connected. G is SN-locally connected if
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every vertex-cut of G' contains an Np-locally connected vertex. Obviously,
every No-locally connected graph is SNp-locally connected, every locally
connected graph is No-locally connected, and every S-locally connected
graph is SN-locally connected. G is called claw-free if it does not contain
a copy of K 3 as an induced subgraph. G is called pancyclic if G contains
a cycle of all possible lengths. G is vertex pancyclic if every vertex of G is
contained in a cycle of all possible lengths. A cycle C in G is extendable
if there exists a cycle C’ in G such that V(C) C V(C’) and |[V(C')| =
[V(C)|+1. G is called full cycle extendable if G contains at least one cycle
and every nonhamiltonian cycle in G is extendable and every vertex of G
lies on a triangle of G. Obviously, if G is full cycle extendable then G is
vertex pancyclic.

For a subgraph H of a graph G and a subset S of V(G), we denote
by G — H and GI[S] the induced subgraphs of G by V(G) — V(H) and S,
respectively, and we denote by Ny (S) the set of all vertices v in H adjacent
to some vertex of S. Let dy(S) = |[Nu(S)|. For a cycle C with a fixed
orientation, and two vertices z and y on C, we define the segment Cfz,y]
to be the set of vertices on C from z to y (including z and y) according to
the orientation. Let C(z,y) = C[z,y] — {z, ¥}, and =+ and z~ denote the
successor and predecessor of z according to the orientation, respectively.
We say that zy is a chord on C if z, y € V(C), =z # y*, y~, y and
zy € E(G). A cycle C of G is called chord-free if there is no chord on C.
We call z and y on C consecutive vertices if z = y* or z = y~. Other
notation and terminology not defined here can be found in [1].

There have been many papers dealing with hamiltonicity in claw-free
graphs. M.M. Matthews and D. P. Sumner [7] proved the following result.

Theorem A. (Mattthews and Sumner, [7]). Every 2-connected claw-free
graph G of order n contains a cycle of length at least min{26(G) + 4,n},
and is hamiltonian if n < 36(G) + 2.

Let D be the set of all the graphs defined as follows:
Any graph H of order at most (96(H))/2 -1 in D can be decomposed into
three disjoint hamiltonian subgraphs H,, H and Hj such that Ey(H;, H;) =
{usuy,vv;} fori # jand ¢, j =1,2,3 (whereu; # v; € V(H;) fori=1,2,3,
and Ey(H;, H;) denotes the set {zy € E(H) : z € V(H;) and y € V(H;)})
and at most one subgraph H; has at most 26(H) — 2 vertices.

The author [5] improved Theorem A and proved the following result in
1992.

Theorem B. (M.Li, [5]). Every 2-connected claw-free graph G ¢ D of
order n contains a cycle of length at least min{36(G) + 2, n}, and is hamil-
tonian if n < 486(G).

Flandrin, Fournier and Germa [3] proved that a graph G satisfying the
conditions of Theorem A is pancyclic. R. Shi [9] improved this result as
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follows.

Theorem C. (R.Shi, [9]). Every 2-connected claw-free graph G of order
n(> 100) with 2:;1 d(v;) > n—2 for any three nonadjacent vertices vy, vy
and vs of G is pancyclic.

The author [6] improved this result and showed the following result.

Theorem D. (M. Li, [6]). Every hamiltonian claw-free graph G of order
n(> 100) with max{d(u), d(v), d(w)} = (n—2)/3 for any three nonadjacent
vertices u, v and w of G is pancyclic.

Let G be a connected claw-free graph on at least three vertices. Oberly
and Sumner [8] proved that G is hamiltonian if G is locally connected. Clark
[2] showed that G is vertex pancyclic and Hendry [4] proved that G is fully
cycle extendable if G is locally connected, and Zhang [11] proved that G is
vertex pancyclic if G is S-locally connected. Let G be a connected claw-
free graph without vertices of degree 1 which does not contain an induced
subgraph H isomorphic to either Gy or G, (Figure 1) such that Ny(z,G)
of every vertex x of degree 4 in H is disconnected. Z.Ryjacek [10] proved
that G is Hamiltonian if G is Na-locally connected. In this paper, we prove
that G is Hamiltonian if G is SNj-locally connected, G is pancyclic if G
is SNa-locally connected and 6(G) > 3, and G is vertex pancyclic if G is
Na-locally connected and §(G) > 3.

2 Lemmas

In this section, we assume that G is a Hamiltonian, SN»-locally connected
claw-free graph of order n with §(G) > 3. Obviously, every vertex of G is
contained in a cycle of length 3. Suppose that there exists an Na-locally
connected vertex in G such that it is contained in a cycle of length m but
is not contained in a cycle of length m + 1. Then wehave 3<m <n-—2.

In order to prove our main theorems, we need to prove the following two
preliminary results.

Lemma 1. Let u be an Na-locally connected vertex in G such that G has a
cycle C of length m which contains the vertex u but has no cycle of length
m + 1 which contains u, let zo ¢ V(C) and zou € E(G), and let P be a
shortest path in Na(u) from zo to ut and zo,z1, ..., zx(= ut) be vertices
of P. Then we have

(1) ziz; ¢ E(G) for [i —j| > 1,
(2) utu~ € E(G) and utzo,u"zo ¢ E(G).

Proof: From the minimality of P we immediately obtain (1). Since G is
claw-free, by the choice of C and G[u, u*,u~, zo) # K13, we immediately
know that (2) holds.
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Lemma 2. Let u, o, C and P satisfy the conditions of Lemma 1 and let
C and x4 be chosen so that P = zgx;...zx(= ut) is shortest possible in
Na(u). Then we have the following

(1) zk-1 is not adjacent to u,

(2) zi-1 is the only vertex of P that is nonadjacent to u,
(3) 2<k<3,

(4) If k=3, then either z1,z2 € V(C) or z1,z2 ¢ V(C),
(5) If k=2, then z; ¢ V(C),

(6) If k=3 and 72 € E(C) and z} = 1, then we have zyz{,z;u™,
z%’zi, :1:3:1:21 ¢eE(g()G) but u:cg' 1T, U T2, ToTy :r:o(:r:'l")"',:z:1 z5,
:L'l‘u ,zlu .

Proof: (1). Suppose that zx— u € E(G). By the choice of C and zo,
we obtain that zx_; is on C. Clearly, uz}_,,uz;_, ¢ E(G), otherwise,
let uz,_, € E(G). Then replacing on C the edge z;_,zx—1 by the path
zy_,uzk—1 and the path u~uut by the edge utu~ we obtain a cycle C’ of
same length as C, and such that if we denote u’ = zjx_, then v’ is a neighbor
of u on C’ and in N»(u) exists a path from zg to u’ shorter than P. This
is a contradiction with the choice of C and P. Similarly, uz}_, ¢ E(G).
Since Glz}_;,zp_y, 4, Tk—1] # K13, Ti_,%r_; € E(G). Replacing on C
the path z}_,zx_1z_, by the edge z}_,z;_, and the edge uu™ by the
path uzy_;ut we again obtain a contradiction. So (1) is proved.

(2). Let z; (1 < j < k —2) be nonadjacent to u. Then j < k — 3, since
otherwise the edge xx_2zx—1 can not be in Na(u). By Lemma 1 (1), we
have Glz;_1,Zk—2,Zk,u] = K1 3, a contradiction. So (2) is proved.

(3). Since zout,zou~ ¢ E(G), k > 2. If k > 4, then, by Lemma 1(1)
and from (2), we have that G[zo, z2,u*, u] = K 3, a contradiction. So (3)
is proved.

(4). By (2), we have ux; € E(G). If z; € V(C) and z2 ¢ V(C), then
z7z{ € E(G), which implies that G contains a cycle C’ of length m + 1
containing u. Namely, C' = Clut,z]]C[z],u]z1zout, a contradiction.
If z € V(C) and z; ¢ V(C), then replacing the edge uut by the path
uz;zout and the path z; zozd on C by the z;zJ, we obtain a cycle of
length m + 1 containing u, a contradiction. So (4) is proved.

(5). Assume that z; € V(C), then z7z} € E(G). Replacing the path
z7z1z] on C by the edge z7z] and the edge uwu™ by the path uzoziut,
we obtain a cycle of length m + 1 containing u, a contradiction. Hence (5)
is proved.
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(6). Clearly, uz ¢ E(G) since otherwise G has a cycle C’ of length
m + 1 containing u, namely, ¢’ = Clz, z;]x3C [u~, z|zouz] (where
C~[u™,z1] denotes a traversal of the C[z;1,4~] in the opposite sense ac-
cording to the orientation of C), a contradiction. Similarly, z,z;, 4™z,
zozy , zo(z7)t, 2§ 27, zfut, zjut ¢ E(G). Since Glut,z1,5,z2] # K .3,
utzy € E(G). Similarly, z7 z},z] 22, 2325 € E(G) . Hence (6) is proved
and thereby the proof of the lemma is completed.

In the proof of our main theorems, we use the following lemma.

Lemma 3. [9]. Let C be a cycle in a connected graph G and [V(C)| = t.
If P is apath in G- C and s = |V(P)| > 1 such that v has consecutive
neighbors on C for any vertex v of P, then G has a cycle of length r for
eachr (wheret <r <s+t).

3 Main Results
In this section, we will prove our main results.

Theorem 1. Let G be a connected, SNa-locally connected claw-free graph
without vertices of degree 1, which does not contain an induced subgraph
H isomorphic to either G or Gz (Figure 1) such that N;(z,G) of every
vertex z of degree 4 in H is disconnected. Then G is Hamiltonian.

G’lf Gz:

Figure 1

Proof: The proof of Theorem 1 is a straightforward extension of the main
result of [10] using analogous approach and ideas to those of [10] and [11].
The details are therefore left to the reader. In fact, its proof is also similar
to the following one of Theorem 2.

Theorem 2. Let G be a graph of order n satisfying the conditions of
Theorem 1 with §(G) > 3. Then every Nz-locally connected vertex of G is
contained in a cycle of all possible lengths.
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Proof: Assume that the Theorem does not hold. Since G is claw-free and
6(G) > 3, every vertex of G is contained in a cycle of length 3. Suppose
that an Na-locally connected vertex v in G is contained in a cycle C of
length m but is not contained in any cycle of length m + 1. Then we have
3 <m < n-—2. Since G is SNa-locally connected, we can find a vertex u
on C such that u is Na-locally connected and an edge uzo such that zg is
not on C, which implies that we can find a shortest path P in Np(u) from
zo to one of ut or u~. Without loss of generality assume that P is a path
from zp to ut and that u~ ¢ V(P). Let the cycle C and zou be chosen
so that P = zoz;...xk(= u') is shortest possible in Na(u). From Lemma
2(3), we know that k = 2 or k = 3. So we next consider two cases.

Case 1. k=2.

From Lemma 2(5), we have z; ¢ V(C). Replacing the edge uut on C by
the path uzoz ut (= z2), we obtain a cycle C’' = Clut(= z2), v~ Juzoziu't
of length m + 2 containing v. Let the orientation of C’ be the same as
that of C. Recall uzp,u™z2,ur] are edges in E(G). Let R=G — C and
R' = G - C'. In order to prove this case, we first verify the following eight
claims.

Claim 1. For any vertex z(# v) on C', we have z*z~ ¢ E(G).

Proof: Otherwise, G has a cycle of length m + 1 containing v, a contra-
diction.

Claim 2. For any vertex z(# v,u,u* (= z2)) on C, we have dp:(z) = 0.
Proof: Otherwise, let yo € R’ and yz € E(G). By Claim 1, we know
yoz~ € E(G) or yozt € E(G). Without loss of generality assume that
yozt € E(G). Then replacing the edge zz* on C by the path zyoz™*, we
obtain a cycle of length m <+ 1 containing v, a contradiction.

Claim 3. There is no chord on C whose one end-vertex is v.

Proof: Otherwise, let yv € E(G) such that zo,z; ¢ C'(y,v) and vz ¢
E(G) for any vertex z(# v~) on C’'(y,v). Then we have the following fact:

The cycle C” = C’[y, v]y is chord-free.

Indeed, let ab € E(G) such that e,b € C[y,v) and the cycle Co = C’[a, b]a
is chord-free. By Claims 1 and 2 and §(G) = 3, we know that for any vertex
w € C'(a, b)(w # z2), there is a vertex w’ € C’(b, a) such that ww’ € E(G).
Again by Claim 1, we obtain that w has consecutive neighbors on C’(b, a)
since G is claw-free.

If zo € C'(a,b), then zo = a* and zou,z2u~ € E(G), that is, z2 has
consecutive neighbors on C’(b,a). From Lemma 3, we know that G has a
cycle of length m + 1 containing v, a contradiction. Hence C" = C’[y, v]y
is chord-free.
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To prove Claim 3, we obtain a contradiction using a similar argument to
C” (instead of Cp).

Claim 4. There is no segment (say C’(a,b)) on C’ such that ab € E(G),v,
zo,z1 ¢ C'(a,b),|C’(a,b)] > 1 and C” = aC’[a", b]a is chord-free.

Proof: Otherwise, by Claim 3, we know that zv ¢ E(G) for any z €
C’(a,b). By Claims 1 and 2, we obtain that for any vertex z € C’(a, b)(z #
z2) there is a vertex y on C’(b, a) such that zy € E(G). Again from Claim
1, we must have zy~ € E(G) or zy* € E(G). Hence z has consecutive
neighbors on C’(b,a), and so has z, if z; € C’(a,b). By Lemma 3, we get
that G has a cycle of length m 4 1 containing v. Thus the Claim holds.
Claim 5. There is no segment (say C'(a, b)) on C’ such that |C'(a,b)| > 2,
awb is a path (where w € V(R')), v,z0,71 ¢ C’'(a,b) and C’[a,blwa is a
chord-free cycle.

Proof: Otherwise, by a similar argument as in the proof of Claim 3, we get
that each z on C’(a, b) has consecutive neighbors on C’(b,a). By Lemma 3
and |C’(a, b)| > 2, we obtain that G has a cycle of length m + 1 containing
v, a contradiction.

Claim 6. dcl(Zo) = dcl(.’l,'l) =2

Proof: Let do/(z;) > 3. Then we can choose a vertex w on C’ such that
wzx) € E(G), C'(w, zy’) does not contain the vertex v and w'z; ¢ E(G) for
any vertex w’ on C’(w, z7 ). By §(G) > 3 and Claims 1, 2 and 4, we get that
for any vertex g (# u) on C’(w, zo) there is a vertex ¢’ on C'(z;, w) such that
qq GE(G) Again from Claims 1 and 3 we have ¢’ # v and ¢ ~q € E(G)
or ¢ +q € E(G). Hence g has consecutive neighbors on C’ (z1,w). Clearly,
u has consecutive neighbors on C’(z1,w). Let P = C’(w,zo). Then by
Lemma 3, we can easily get a contradiction. Thus d¢/(z;) = 2. Similarly,
dc(zo) = 2. Hence the claim is proved.

Claim 7. We have u # v.

Proof: If u = v, then m > 5, otherwise, we have m = 3, or m = 4. If
m = 3, then C” = uxgzr;ut is a cycle of length 4 containing v. Hence

= 4. Since §(G) > 3, by Claim 6, there is a vertex w in R’ such
that wzo € E(G). Since G[zo,w,u,z1] # K 3, we have uw € E(G) or
z1w € E(G). It follows that there is a cycle of length 5 containing v.

Since m > 5, there is at least one vertex z on C’ such that z ¢ {u™, u, zo,
z1,Z2,z3 }. By Claims 1, 2 and 6 and §(G) > 3, there exists a vertex q on
C’ such that C’(z, q) (or C’(q,z)) contains no vertices of {zo,z;,u} and
zq € E(G). Choose q as close to = as possible. Then, by Claim 1, we have
|C'(z,q)| 21 (or |C'(q,z)| = 1). By a similar argument to Claim 4 and by
Lemma 3,we know that the cycle C” = C’[z, g]z (or C'[q, z]q) is chord-free,
which contradicts Claim 4. So Claim 7 is proved.

Claim 8. v ¢ {u,u™,z2,z] } and vtv~ € E(G).
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Proof: Since uzs, u™x3, uzi € E(G), v is not one of the u,u™,z2,23 on
C’. By Claim 3 and Claim 6, d¢/(v) = 0. Since §(G) > 3, there is v’ such
that »'v € E(G) and v’ € V(R'). From G[v',v,v~,v%] # Ki 3, we have
vtv~ € E(G).

We next complete the proof of this case.

By Claims 3 and 6, there is a vertex yo € V(R’) such that yove E(G).
Since v is Na-locally connected, we can find a shortest path @ in Np(v)
from yo to one of v* or v~. We may assume that without loss of generality
that Q is a path from y9 to v* and that v~ ¢ V(Q). Let Q = yoy1y2...yn.
From the minimality of Q it follows that no ;,y; can be adjacent for
|i = j| > 1. Clearly, by Claim 6, v+,v~ ¢ {zo,z1} and h > 2. By a similar
argument to Lemma 2(3), we have h < 3. Clearly, (v*)* ¢ {zo,z1}.
Furthermore, we have yn—; € V(C’) (otherwise, since v(v*)t ¢ E(G)
and G[v+syh—1’v7 ‘U+)+] # K1,3, VYh—-1 € E(G) or (v+)+yh—l € E(G)y it
follows that G has a cycle of length m + 1 containing v since the vv* on C
is replaced by the path wy,— vt or the edge v+ (v*)* on C is replaced by
the path vty,_1(v1)™).

(1). ya-1 € C'(z1,v).

Otherwise, let y,_; € C'(vt, zp). Suppose first that y,_; = (v+)*. Then,
if h =2, then y_,y;_, € E(G) because Glyn—1,y;_,, ¥h_,» %) # K1,3 and
Yi_1%0,¥5_1%0 ¢ E(G). Replacing on C’ the path Yi_1yn—1Y5_, by the
edge yi_,y,5_,, we obtain a cycle of length m +1 containing v, a contradic-
tion. If A = 3, by Claim 3, we have yn_1v ¢ E(G). Since y132 € E(Na(v)),
y1v € E(G). It follows that y; ¢ V(C’) by Claims 3 and 6. Replacing on
C the path vvTy, by the path vygy,y2, we obtain a cycle of length m + 1
containing v, a contradiction. Hence we get yp—1 # (v*)*.

Since yp_1v* (= yn) € E(G) and §(G) > 3, by Lemma 3 and a similar
argument to Claim 4, we can get that the cycle C” = C'[vt,yn—1Jvt is
chord-free, which contradicts Claim 4.

(2). If h = 3, then yv ¢ E(G) by Claim 3, which implies y;v € E(G)
since otherwise we have that y1y2 ¢ Na(v).

(3). If h =3, then y; ¢ V(C’) by (2) and Claim 3.

(4). If A = 3, then y2 = x3, otherwise, since y; 33 ¢ E(G) and
Gly2, 11,93 ,v2] # K13, ¥731 € E(G) or yfy1 € E(G), say y; 1 € E(G).
Then replacing the edge y; y2 on C by the path y5 y132, we get a cycle of
length m + 1 containing v, a contradiction. Note that y2 # u by (1), and
Y2 # Zo, ;1 by Claim 6.

(5). By a similar argument to (4), we obtain that if h = 2, then y; = z,.

From (1)-(5), we know that there is a path Q' = vv'zs such that v’ €
V(R’) (where v’ = y; or y).
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Clearly, 2o, z1, v ¢ C'(z2,v). If there is an edge ab ¢ E(C) in E(G) such
that a,b € C’[z,,v], then, by Lemma 3 and a similar argument to Claim
4, we know that the cycle C” = C’[a,bla (or C’[b, a]b) is chord-free, which
contradicts Claim 4. Hence for any two distinct vertices a and b (# o™, a™®)
we have ab ¢ E(G) on C'[z2,v). If |C’(z2,v)| = 1, then v~ = z}. Replacing
the path zav~vvt on C by the path zv'vv~vt, we obtain a cycle of length
m + 1 containing v. Hence |C'(z2,v)| 2 2. Since §(G) > 3, by Lemma 3
and a similar argument to Claim 4, we get that the cycle C” = C’[z3, v]v'zo
is chord-free, which contradicts Claim 5. So the Case is proved.

Case 2. k=3.

From Lemma 2(4), we know that either z,,z2 € V(C) or z1,z2 ¢ V(C).
If 23,21 ¢ V(C), clearly zou ¢ E(G) (since otherwise replacing the edge
uxz on C by the path uzox3, we obtain a cycle of length m + 1 containing
v). Since z1z5 € Na(u), z1u € E(G). So G has a cycle of length m + 2
containing v. By a similar proof to Case 1, we can get a contradiction.
Hence let z2,z; € V(C).

Then we can assume without loss of generality that ziz2 € E(C).

Suppose, on the contrary, that z;z, ¢ E(C). We only consider this case:
Tp € C('u, z;) (and the case: z2 € C(z1,u) is similar). Clearly, z3 # z,
and z7z7 € E(G’) Ifz;23 € E(G), then replacing on C the path =] z;z7
by the edge z7 =], the path z; z2z7 by the edge z;z7 and the edge uut
by the path uzozzut, a cycle of length m 4+ 1 containing v should arise;
So z3z§ ¢ E(G). Since G[zy,z2,25,25] # K3, 1 is adjacent either to
z$ or to z;, say z1z; € E(G). Then replacing the edge z3 z2 on C by the
path z; 2172 and the path z7z;z] on C by the edge z7 z], we obtain a
cycle C’ of same length as C containing v and such that z,z, € E(C').

Obviously z; = z] since otherwise deleting from C the edges =iz} and
uzg and adding the edge zsz] and the path uzox;, we obtain a cycle of
length m + 1 containing v.

By Lemma 2(6), we know that the induced subgraph of G on the set
{zo, z1, z2,z}, 25, u*, u,u"} is isomorphic to either G; or to G5 in Figure
1 (see Figure 4). It remains to prove that the first type neighborhoods of
the vertices u,z;,z2 and u* are disconnected.

(a). Ni(u)is disconnected since if it were connected then we could obtain
a contradiction in the same way as in the proof of the main Theorem of [2].

(b). The disconnectedness of N;(z;) can be verified in the same way as
in (a) considering z; instead of u.

Let P, = C[z},u”] and P, = Clut,z5]. Then

(c). If y € V(P,) is adjacent t;o both ut* and z;, then y*y~ € E(G). If
y € V(P,) is adjacent to both z] and z;, then y* and y~ are adjacent.

Indeed, if y~2; € E(G), then deletmg from C the edges z; z2, 127,
¥y, uu’*’ adding the edges y~z;,z2z7,yut and the path uxozx; we could
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obtain a cycle of length m + 1 containing v, a contradiction. So y~z3 ¢
E(G). Similarly, ytz; ¢ E(G). Since Gly,y*,y™,z3] # K13, yty~ €
E(G). Similarly, we can prove the remainder.

(d). We show that N;(z2) is disconnected.

Suppose that, on the contrary, that Ny(z;) is connected. Since zla:*'
andutz; € N;(zg), there is a path in N;(z2) that joins one of zl,zl with
one of z;,u*. Let Q be a shortest path in Ni(z2) from z; or z§ to z5
or ut and denote by %o, 1, ..., ¥p its vertices (i.e., yo = z1 or yo = z{ and
yp = T3 Or yp = u'). From the minimality of Q it follows that no y;,y; are
adjacent for |¢ — j| > 1 and hence p < 3 (otherwise {yo,¥2, ¥p, T2} should
induce K;3). On the other hand, p > 2, since by Lemma 2(6), none of
z1,z7 can be adjacent to any of z;,ut. So either p = 2 or p = 3. Next,
consider two cases.

Case dl . p= 2.
Obviously, y1 € V(C) since otherwise we get a cycle of length m + 1 con-
taining v and y;.

Suppose first that y; yl € E(G). Then, if Q= zlylzz and y; € V(Py),
then C’ = C[z{,y7ICly{, Yzoz1y1C [x5 ,u+]$2$1 is a cycle of length
m + 1 containing v, a contradiction, where C~[z3,u"] is a traversal of the
C[ut,z3] in the opposite sense according to the orientation. Similarly, we
can get a contradiction in the remaining cases (ie. Q = ziyut, Q =
z¥y1z7 and Q = z{yut and also for y1 € V(P2)). Hence iy ¢ E(G).

Obviously, either y21, 1127 € E(G) or y1ut,1z; € E(G) since other-
wise (say 121, y1ut ¢ E(G’)) Glyy, z1,ut, z2] = K1 3. Hence 1fy1u+,y1:z:2 €
E(G), then by (c) and y{y; ¢ E(G) we have y; € V(R,). If y1z1, 127 €
E(G), then by (c) we have y; € V(P;). Namely, we obtain the following
two possibilities:

(?) v1 is on P; and is adjacent to both z; and z*.

(#) y; is on P; and is adjacent to both z7 and ut.

(3). Sincey; € V(Pl), it divides P, into two subpaths P; (containing u™)
and Py (conta.mmg z}), each of them having ev1dently at least two edges.
Since {m »91, 1, %2} cannot induce Ky 3 and 3731 ¢ E(G), yy =2 € E(G)
or y{ 2 € E(G). Simultaneously, y1z; € E(G) or y1u* € E(G). Hence we
have four cases. Now we can only consider the case: y; z2,z5y1 € E(G)
(and the other three cases are similar and left to the reader). Deleting from
C the edges y; y1,uu't, 25 T2, zo7; and adding the edges yy z2, v125 , utz2
and the path uzoz; , we could obtain a cycle of length m + 1 containing v.
Hence (1) is proved.

(#). This implies a contradiction in the same way as the preceding one
(details are left to the reader). So Case d; is proved.

Case dp. p=3.
Let Q = yoy13213(yo = 71 or z{ ;33 = u* or z7). Theny1z1, y1=7, 1277, yout
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are edges in E(G) since if, e.g., y121 ¢ E(G), then G[z1,y1,u", z2] = K1 3.
Hence without loss of generality assume that yo = z7 and y3 = z; . Obvi-
ously, y; € V(C) and y; € V(C).

Clearly, yTy; ¢ E(G) since otherwise we could replace on C the path
yr v1y7 by the edge y; ¥ and edge z7 z; by the path z7y1z1, and would
have obtained the (impossible) case p = 2.

Similarly, ;95 ¢ E(G). By (c), we have that 3; € V(P;) and 3. €
V(P).

Next we end the proof of Case d5.

Denote again by Pj, P{’ the subpaths of P; determined by y;, and by
y7 and y{ on them. Analogously, define the subpaths P§ and P§ of P,
and the vertices y; ,%3 on them. Excluding the case y; = z{, y7 = z3,
and y; = u* and observing the induced K13 on {y1, %7, 2, %7 }, we obtain
y{ z2 € E(G) or y7 z2 € E(G).

If y}zo € E(G), then the cycle C' = Clz1,1|Cly2,25]C [y5 , z3)z2
Clyf,u}zoz, shows y;z; ¢ E(G) and the cycle C” = Clz;,11]C " [y7, 3]
C~ x5, ¥2)z2Clys, u]zoz1 shows yzy1 ¢ E(G). Note that yys(= z3) ¢
E(G), and z3z; € E(G) by Lemma 2(6). Hence Gly2,y5,%1,25 ] = K13
This contradiction shows y] z2 ¢ E(G), and so y7 z2 € E(G).

The cycle C’ = Clz,y1 |22C[z3, y3 |C~ [z3 (= ¥3), ¥2]Cly1, u]zoz: shows
that 3, z; ¢ E(G). The cycle C” = Clz1,y; |z2Clye, 73 (= 33))Clzs, v2 ]
Cly1, u]zozy shows y;y1 ¢ E(G). Hence Gly1,¥5,¥2,7; (= y3)] = Ki3.
This contradiction shows Case dj is proved. Hence Nj(z2) is disconnected.

Analogously, using ut instead of z; and the edges zz; and uu™ instead
of z1z} and utz;, we can prove the following.

(e). Nj(ut) is disconnected.

Therefore Case 2 is proved. So the proof of the Theorem is completed.

Theorem 8. Let G be a graph satisfying the conditions of Theorem 1 and
§(G) > 3. Then G is pancyclic.

Proof: Since G contains some Na-locally connected vertex, by Theorem 2,
G is pancyclic.

Theorem 4. Let G be a connected, Na-locally connected claw-free graph
with 6(G) > 3, which does not contain an induced subgraph H isomorphic
to either Gy or Gy such that Ny(z, G) of every vertex = of degree 4 in H
is disconnected. Then G is vertex pancyclic.

Proof: Since every vertex of G is Ny-locally connected, by Theorem 2, G
is vertex pancyclic.
We make the following conjecture.

Conjecture 5. Every 3-connected, SN2-locally connected claw-free graph
is vertex pancyclic.
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Remark 1. The condition: "6(G) > 3” of Theorem 2 is necessary. For
example, the graph in Figure 2 is not vertex pancyclic. Also the graph of
Figure 3 is not pancyclic.

Figure 4

Remark 2. The graph in Figure 5 is an example of a claw-free graph which
is SNa-locally connected but is not Na-locally connected. (The vertices v,
and v are not Np-locally connected.)

Figure 5
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Remark 3. The assumptions of Theorem 4 do not imply that G is full
cycle extendable. For example, a graph G obtained by joining two vertex
disjoint cliques Kj, K3 of the same size with a perfect matching satisfies
the assumptions of Theorem 4 but e.g. any cycle C with V(C) = V(K}3) is
nonextendable in G.
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