Several new lower bounds for football pool systems
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ABSTRACT. We derive several new lower bounds on the size of
ternary covering codes of lengths 6, 7 and 8 and with covering
radii 2 or 3.

1 Imtroduction

Ternary covering code C of length n and radius R is a collection of ternary
vectors of length n possessing the property that every ternary vector of
length n differs from at least one codeword in at most R coordinates. We
wish to minimize the size of C. The search for ternary covering codes
attracted a big deal of attention due to its equivalence to constructing
systems for football pools. A survey of what is known on the problem can
be found in [8, 7, 11]. Along with constructing such codes, lower bounds
on their size are extensively studied [2, 4, 5, 6, 9, 12, 13]. The known lower
bounds give reasonably good results in cases when R is relatively small in
comparison with n. In the paper we present an approach giving several
better lower bounds in some situations when R is relatively big.

Let Ks(n,R) be the minimal size of a ternary code of length n and
covering radius R. We prove the following bounds:

K3(6r 2) 214, K3(7: 3) 29, K3(87 2) 2 54, K3(8a 3) > 14,

thus improving the best previously known bounds of 12, 7, 52 and 13.

We denote the space of ternary vectors of length n by F3'. Let a(-,-)
stand for the Hamming distance. Let C(n, M)3R be a ternary covering
code C of length n, covering radius R and size M. Let Bs(z,r) be the
ternary Hamming ball of radius r with the center at z, Vs(n,r) stand for
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the size of Hamming ball of radius r in F¥,

Va(n,r) = Z (’:)2

=0

We say that a vector v provides the distance vector (dj,...,dp) on the
code C = {cy,... ,em}, ifd(v,g) > d;, i=1,... , M.

We say that C = {cy1,...,cm} is a generulized covering code for the
vector (dy,...,dpy) if

UV (e, di) = F3.

In other words, the generalized covering code is a collection of M Hamming
balls, maybe having different radii, centered at the codewords, and covering
the space. Such codes were considered in [1, 3, 14]. Clearly, if all d;’s are
equal we get the standard definition of covering code. Our approach is
based on an analysis of bounds for such generalized covering codes.

2 New bounds

Let N(dy,dz,...,dy) = N be the minimal length such that for every
ternary code {zi,z2,...,zap} of length N there can be found a vector
h € FY such that d(h,z;) > d;. It is clear, that if we have d=..=
dv = R+ 1 then there does not exist a code of length N with covering
radius R and of size M. In what follows we will demonstrate how to use
properties of the function N to derive lower bounds on the size of covering
codes.
First, we give some properties of the function N.

Property 1 Let o(dy,... ,dx) be a permutation of (dy,... ,da). Then
N(dy,...,dy) = N(o(dy,... ,dum)).
Property 2 If
M
Y Va(N,di—1) <3V,

i=1
then
N(dy,...,dy) <N.

Now we proceed with particular cases. We will give a detailed proof only
for the case of n = 7 and R = 3. For the other situations the proofs are
similar, and we omit details giving only sketches of the proofs.

Theorem 1
K3(7o 3) 2 9.
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Proof. To prove nonexistence of (7, 8)33 code, it is enough to show N(4%) <
7. We proceed in several successive steps.

Assume there exists a (7, 8)33 code. Let (ay, ... ,as) be the first column
of the code. In most of the cases we will prove that there exists a vector
(@, k) providing a sought distance vector.

a) N(327) < 4. Wlog. we may assume that the first row of the code
consists of identical symbols a;. Consider the thirty two ternary vectors
containing symbol a; exactly once. It is easy to check that at most four
such vectors can be within a Hamming ball of radius 1. So, there are at
least four such vectors that are not covered by seven spheres of radius one.
Each of them can be chosen as the vector providing the sought distance
vector.

b) N(352%) < 5. In one of the five first rows of the code one of the three
symbols of the first column, say a;, appears at most once. By a) and
Property 1 for the code C constituted by the four last columns we may
always find a vector h being at distance at least 2 from all the vectors, and
at distance 3 from the row of C corresponding to a; in the first column of
the code. The vector (a;, k) then guarantees the result.

c) N(4322%) < 5. If in a column the first three coordinates are not pairwise
different, the result follows from a). So, by permutation of the symbols we
may assume that the first row of the code consists only of a;’s, the second
row of ap’s, and the third row of ag’s. Consider all 30 vectors having one
ay, two az’s and two a3’s. Every such vector is at distance 4 from the first
row and is at distance 3 from the second and the third rows of the code.
Notice, that at most three such vectors may occur in a Hamming sphere
of radius one. So, at most 15 such vectors can be at distance at most one
from one of the five last rows of the code.

d) N(423%) < 6. Assume a; # az. If either a; or a; appear in the last six
coordinates of the first column at most once, then the claim follows from
¢). Otherwise, a3 appears in the last six coordinates at most twice, and the
claim follows from b). If a; = a, then there exists a symbol (other than
a;) that appears at most three times in the last six coordinates. Then the
claim follows from b).

e) N(48) < 7. At least one of the three symbols appears at most twice in
the first column. The result now follows from d).

The last claim is equivalent to the statement of the theorem. o

Theorem 2
K3(6,2) > 14.

Sketch of proof.
a) N(2815) < 4. Follows from Property 2.
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b) N(32%131-4%) < 4 for k = 0,...,7. Exactly like in case a) of Theorem
1

c) N(3%21%) < 5. We proceed in cases. If a; = ap = a3 then we choose as
a the symbol different from @ that appears less in the last ten rows, and
the claim follows from a). If a; = a3 # a3 we have two possibilities. If a3
appears at least five times in the last ten rows, we choose a # a;, a # ag,
and the result follows from a). Otherwise, we choose a = a3, and the result
follows from b) for k < 6. If ay,a2 and a3 are pairwise different then we
choose as a the symbol which appears less in the first column, and the result
follows from b) for k < 5.

d) N(3'%) < 6. If there exists a column where one of the symbols appears
at most three times then the result follows from c). Now assume that a5 is
the symbol that appears exactly five times in every column. We can assume
that not all the rows that contain a3 are identical. Then we have a row that
contains a2 and another symbol different from a3, say ag. Without loss of
generality, the first row begins (as, ay, . ..). There are altogether four rows
containing ao in the second column. In these four rows, one of the symbols
different from a; appears at most once in the first column. If it does not
appear at all, the result follows from a); if it appears once, the result follows
from b) (for k = 6). D

Theorem 3

Sketch of proof. Assume there exists a (8, 53)32 code. If in some column
one of the three symbols appears less than 17 times, then the result follows
from N(3'€2%7) < 7, that we get from Property 2. So, we may assume
that in all the columns every symbol appears at least 17 times. Define
Nl(dy,... ,dss) to be the corresponding value of N if in all the columns
every symbol appears at least 17 times. Now,

a) N1(35-k226+2k122-k) < 6 for k =0, ... ,5. Follows from Property 2.

b) N1(3!72%) < 7. Choose as a in (g, k) the symbol appearing less than
the others in the first 17 coordinates of the first column. Then the result
follows from a).

¢) N(3%) < 8. Either there exists a column where some symbol appears
less than 17 times, or one of the symbols necessarily appears exactly 17
times, and the result follows from b). o

Theorem 4
K3(8,3) > 14.
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Sketch of proof. We prove N(4!3) < 8.
a) N(32%15) < 5. If among a;, a2, ag and a4 there are at most two different
symbols then the result follows from a) of Theorem 2. Otherwise, we pick
the two symbols that appear less than twice among a;,...,a4, and as a
use the one of them that appears less in all the column. Now the statement
follows from b) of Theorem 2.

Define N(dy,...,dis) to be the corresponding value of N if in all the
columns every symbol appears at least four times.
b) N1(43525) < 6. If there is a symbol different from a; which appears
less than three times among ay, ... ,a7, We use it as a, and the statement
follows from ¢) of Theorem 2. Otherwise, each of the two symbols different
from a, appears exactly three times among as, ... ,a;. We choose the one
that appears less in all the column. The statement now follows from a).
¢) N1(443%) < 7. If there is at most two different symbols among a, .. . , a4
then the statement follows from Theorem 2. Otherwise, it follows from b) if
we take as a one of the symbols that appears exactly once among a1, ... ,24
and exactly four times in all the column. (]
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