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Abstract

Initiated by a recent question of Erdds, we give lower bounds
on the size of a largest k-partite subgraph of a graph. Also the
corresponding problem for uniform hypergraphs is considered.

1 Introduction

A graph G = (WU --UV,, E) with vertex set ViJ---0V, and edge set E
is called k-partite if every vertex set V; is an independent set.

Inspired by the recent question of Erdés [6], whether every graph with
(32") edges contains a 3-partite subgraph with 3n? edges, we are looking for
large k-partite subgraphs of graphs and hypergraphs. Indeed, the question
of Erdds can be answered in the affirmative, as has been independently
observed by Alon [1]. As a byproduct we obtain a simple proof of a theorem
of Edwards [3] on the size of the largest bipartite subgraph of a graph.
Recently, short proofs for this result have also been given by Alon [1],
Poljak and Tuza [11], and Erdds, Gyarfis and Kohayakawa [7].

Finally, we give lower bounds on the size of a largest k-partite subhyper-
graph of a given k-uniform hypergraph in terms of its strong chromatic
number.

2 Graphs

Let G = (V, E,w) be an edge weighted graph, ie., w:E — R. For a
partition V = ViU ---UV; of the vertex set, the cutsize cut(V,..., Vi) is
the sum of the weights of all crossing edges. We call an edge {v, w} crossing
if v e V; and w ¢ V; for some :. Thus,

cut(Va,..., V)= Y, wle).

e€F; e crossing

In the unweighted case, i.e., w(e) = 1 for all edges e, cut(Vi,..., Vi) is the
number of edges of the k-partite subgraph determined by Vi,..., V.
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The chromatic number x(G) is the minimum number of colors needed to
properly color the vertices of G, i.e., the least ¢ such that there exists a
coloring &: V' — {1,...,t} and ¢(v) # c(w) for every edge {v,w} € E.
The following has been observed independently by Alon [1].

Theorem 2.1 Let k,n be positive integers. Every graph G with (%) edges
contains o k-partite subgraph with ()n? edges.

For the proof of Theorem 2.1, we use the following lemma, which has been
observed by Locke [10], cf. also [2]. Since we need its simple proof in section
3, we include it here.

Lemma 2.2 Let k,n be positive integers. Let G = (V, E,w) be a weighted
graph. If x(G) < kn, then there exists a partition V = Viu---U Vi such
that

cut(vl,...,vk)z’“;1-(1+knl_l)-§w(e). (1)

Proof: We first prove the lemma for the case |V| < kn. By possibly adding
isolated dummy vertices we can assume that |V| = kn. For any partition
13

2
of V into k equally sized subsets Vj,..., Vi, a portion of %%2 = "k;l .
2

(1 + #_1) vertex pairs {7,j} is crossing. Thus, the expected cutsize of
such a randomly chosen partition is equal to the right hand side of (1) and
at least one partition with at least this cutsize exists.

Now let |V| be arbitrary, but x(G) < kn. Every color class ¢~1(3) is an
independent set. For every such class, we collapse its vertices to a super-
vertex and also collapse edges between super-vertices by adding up their
weights.

To the new graph on the super-vertices, we apply the above arguments

and obtain a partition V{,...,V{. We then replace every super-vertex v
in V; by the vertices of the corresponding color class to obtain the desired
partition V = Vu-.-.uV;. ]

Lemma 2.3 Every graph G contains at least ("(.f)) edges.

Proof: For every 4, j with 1 < i < j < x(G), there must be an edge between
the two sets of vertices with colors i and j. 0
Now Theorem 2.1 easily follows: As G contains (*) edges, we infer with
Lemma 2.3 that x(G) < kn. By Lemma 2.2, G contains a k-partite sub-
graph with at least 221 . (1+ ZL7) - (%) = (§) - n? edges. 0
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Using somewhat involved arguments, Edwards [3] proved a lower bound on
the largest size of a bipartite subgraph in any graph with m edges, cf. [4].
However, Lemma 2.2 and 2.3 yield a short proof of his theorem. Now, the
following is a straightforward generalization of Edwards’ result.

Corollary 2.4 Let k be a positive integer. Let G = (V, E) be a graph with
m edges and let the integer ¢ be defined by (3) <m < (*31).

Let j=tmod k, 0 < j < k—1. There ezists a partition V = V;u---UV;
with

_lg;_l_m_l_%.@ ift=0mod k
cut(Vi,..., Vi) 2 ¢ %, k=1 2m if t £ 0 mod k
T M e Ut #0mod k.

Proof: By Lemma 2.3, we infer x(G) < t. By choice of ¢, we have
t < 1/2-(V8m+1+1). If t = 0mod k, Lemma 2.2 proves the ex-

istence of a k-partite subgraph with at least "k;l -m+ L;—l . 3@ edges.
If t # 0mod k, we add (k — j) dummy vertices and apply Lemma 2.2 to

2m

obtain a k-partite subgraph with at least % “m+ kk;l RV v T ey
edges. a

Notice that for & = 2, Corollary 2.4 is Edwards’ result.

3 Hypergraphs

Let G = (V,£) be a hypergraph. G is called k-uniform if |E| = k for every
hyperedge E € £. For a partition V = ViU ..UV, a hyperedge E € € is
called crossing if |[ENV;| =1fori=1,...,k.

In [6], the question was raised, whether for every 3-uniform hypergraph
with (33") hyperedges, its vertex set can be partitioned into three sets so
that the number of crossing hyperedges is at least n3.

The strong chromatic number xs(G) of a hypergraph G = (V,£) is defined
as the least ¢ such that there exists a proper vertex coloring c:V —»
{1,...,t} such that no color occurs more than once in any hyperedge, that
is|ENnc(i)] <1fori=1,...,t and every E € £.

Proposition 3.1 Let k,n be positive integers. Let G = V,€,w) be a
weighted k-uniform hypergraph with xs(G) < kn, where w:€ — R. Then
there ezists e partition ¥V = V,U---UV, such that

k

> w®2 g > wE). (2)
E€E; E crossing ( k ) Eec&
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If the hypergraph G from Proposition 3.1 in addition fulfills w(E) = 1 for
each hyperedge E € £, then the existence of (%) hyperedges guarantees the
existence of a partition V = VjU- -0V such that the number of crossing
hyperedges E € £ is at least nt.

We remark that Erdos and Kleitman already showed in [8] by a counting
argument that the vertex set of every k-uniform hypergraph can be parti-
tioned into k sets such that the proportion of all crossing hyperedges is at
least r",',— However, in (2) we take care of lower order terms.

Proof: The proof is analogous to the proof of Theorem 2.1. ThlS time,
we have ( ) possibilities to choose k distinct vertices and n* of those
possibilitxes are crossing. D

Proposition 3.1 only partially answers the question of Erdés for 3-uniform
hypergraphs with ( ™) hyperedges, namely when the strong chromatic num-
ber is at most 3n. We remark however, that such 3-uniform hypergraphs
can have strong chromatic number as large as c- n3/2. This can be seen by
using Wilson’s results on designs, in particular:

Theorem 3.2 [12] [13] Let k be a fized positive integer. There exists a
positive integer No(k), such that for all positive integers N > No(k) with
(k=1)|(N —1) and k- (k—1)|N - (N —1) there ezists a k-uniform hypergraph
G on vertez set V with |[V| = N and m = (5)/(5) hyperedges, where each
two-element subset of V is contained in exactly one hyperedge of G.

Clearly, such a hypergraph G as guaranteed by Wilson’s result satisfies
xs(G) = N, ie., xs(G) = 1/2+/1/4+ k- (k — 1) - m. Moreover, we have
a matching upper bound:

Lemma 3.3 Let G be a k-uniform hypergraph with m hyperedges. Then

xs(G) <1/24+/1/4+k-(k-1)-m.

Proof: For a given k-uniform hypergraph G we form a graph G = (V, E)
on the same vertex set as G and with edges obtained by replacmg every
hyperedge of G by a complete graph on k vertices. Then |E| < (%) -m. By
Lemma. 2.3 we infer x(G) < 1/2+1/k(k — 1)m + 1/4. By construction, we
have xs(9) = x(G)- 0

For fixed k, let G = (V,€) be a k-uniform hypergraph with m hyperedges.
Define N as the smallest integer which is not smaller than xs(G) and
divisible by k. By Lemma 3.3, N = O(1) + /k(k — 1)m.
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By (2) (replacing kn by N), there exists a partition V = V- --UV; such
that the number of crossing hyperedges E € € is at least

(&) & N*
S NN ST Nk F T 3)

oo B (0
Zk—k m 1—(;)/N+0(1/N2)2kk m-(l+%—0(m)) 4)

Since expression (3) is decreasing in N, we can insert the upper bound for
N into (4) to obtain the following lower bound on the number of crossing

hyperedges:
k! 1 k(k-1) 1
k—k'm'(”a' m ‘0(5))

We remark that earlier considerations of the authors focussing on algorith-
mic aspects of problems related to those considered in this paper can be
found in [9).

m -

Acknowledgment: The authors would like to thank the referee for point-
ing out Wilson’s theorem.

References
[1] N. ALON, Bipartite Subgraphs, preprint, (1995).

[2] L. ANDERSEN, D. GRANT AND N. LINIAL, Extremal k-colourable
Subgraphs, Ars Combinatoria 16, (1983), 259-270.

[3] C.S. EDWARDS, Some Extremal Properties of Bipartite Subgraphs,
Canadian Journal of Mathematics 3, (1973), 475-485.

[4] C.S.EbpWARDS, An Improved Lower Bound for the Number of Edges
in a Largest Bipartite Subgraph, 2nd Czechoslovak Symposium on
Graph Theory, Prague, (1975), 167-181.

(5] P. ErDOs, On Bipartite Subgraphs of Graphs, Math. Lapok 18,
(1967), 283-288.

(6] P. ERDOs, Some Recent Problems in Combinatorics and Graph The-
ory, preprint, (1995); and Lecture at the 26th Southeastern Interna-
tional Conference on Graph Theory, Combinatorics and Computing,
Boca Raton, 1995.

307



[7]

(8]

[9]

[10]

[11]

(12]

[13]

P. ErDOS, A. GYARFAS AND Y. KOHAYAKAWA, The Size of the
Largest Bipartite Subgraphs, preprint, (1995).

P. ErDOs AND D. J. KLEITMAN, On Coloring Graphs to Maximize
the Proportion of Multicolored k-Edges, Journal of Combinatorial
Theory 5, (1968), 164-169.

T. HOFMEISTER AND H. LEFMANN, A Combinatorial Design Ap-
proach to MAXCUT, Proceedings 13th Symposium on Theoretical As-
pects of Computer Science (STACS’96), LNCS 1046, eds. C. Puech
und R. Reischuk, Springer, (1996), 441-452.

S. C. LOCKE, Maximum k-colorable Subgraphs, Journal of Graph
Theory 6, (1982), 123-132.

S. PoLiAK AND Z. TuzA, Maximum Cuts and Largest Bipartite
Subgraphs, Combinatorial Optimization, (eds. W. Cook, L. Lovész,
P. Seymour), AMS, (1995), 181-244.

R. WILSON, An Existence Theory for Pairwise Balanced Designs I,
II, Journal of Combinatorial Theory Ser. A 13, (1972), 220-273.

R. WILSON, An Existence Theory for Pairwise Balanced Designs III,
Journal of Combinatorial Theory Ser. A 18, (1975), 71-79.

308



