An Inequality on Connected Domination Parameters¹

Hongquan Yu² Tianming Wang Institute of Mathematical Sciences Dalian University of Technology Dalian 116024, P.R. CHINA

Abstract. Let G=(V,E) be a connected graph. Let $\gamma_c(G), d_c(G)$ denote the connected domination number, connected domatic number of G, respectively. We prove that $\gamma_c(G) \leq 3d_c(G^c)$ if the complement of G is also connected. This confirms a conjecture of Hedetniemi and Laskar(1984), and Sun(1992). Examples are given to show that equality may occur.

1. Introduction

All graphs under consideration are finite, undirected and loopless without multiedges. Let G=(V,E) be a graph with vertex set V and edge set E. G^c denotes the complement of G, w(G) denotes the number of connected components of G. For $u \in V$, the (open) neighborhood of u in G, denoted by $N_G(u)$, is the set of all vertices adjacent to u. The closed neighborhood of u in G, denoted by $N_G[u]$, is defined to be $N_G(u) \cup \{u\}$. For a set $S \subseteq V$, the (open) neighborhood and closed neighborhood of S in G is defined respectively by $N_G(S) = \bigcup_{u \in S} N_G(u)$, $N_G[S] = \bigcup_{u \in S} N_G[u]$. Moreover, for a set $S \subseteq V$, G[S] denotes the subgraph of G induced by S.

A set $D \subseteq V$ is a dominating set of G if $V - D \subseteq N_G(D)$. A dominating set D is called a connected dominating set if G[D] is connected. The domination (connected domination) number of G, denoted by $\gamma(G)$ ($\gamma_c(G)$), is the minimum cardinality of a dominating (connected dominating) set of G. The connected domatic number $d_c(G)$ of G, is defined to be the maximum number of pairwisely disjoint connected dominating sets contained in V. A dominating (connected dominating) set of G is called minimal if none of its proper subsets is also a dominating (connected dominating) set of G.

Since the concepts of dominations are closely related to optimization problems on networks design, numerous research has been done on this topic, see [8] for a survey. Some inequalities involving the domination number, connected domination number, domination independence number, irredundance number and upper irredundance number have been established

²E-mail: jmreyu@gingko.dlut.edu.cn

Research supported by the National Natural Science Foundation of China.

by various authors, see [1,2,5,7,9]. For a recent and important reference, see [4].

In [9], Sun reproposed the conjecture of Hedetniemi and Laskar [7] that if G and G^c are both connected, then there holds the inequality $\gamma_c(G) \leq 3d_c(G^c)$. In this paper, we shall prove the conjecture and show that equality may also occur.

2. Main results

The main result of this paper is the following theorem.

Theorem 2.1 If both G and G^c are connected. Then $\gamma_c(G) \leq 3d_c(G^c)$.

The proof of the theorem is based on a series of lammas. The first one is trivial if one considers a spanning tree of G and two pendant vertices in the tree, see [3].

Lemma 2.2 Let G = (V, E) be a connected graph of order $n \geq 2$. Then there exist two non-cut vertices of G in V.

The following two lemmas are used to estimate the connected domination number of a graph.

Lemma 2.3 Let G be a connected graph. Let $G_1, G_2, \dots, G_s (s \geq 2)$ be connected subgraphs of G with connected dominating sets D_1, D_2, \dots, D_s , respectively, such that $\bigcup_{i=1}^s V(G_i) = V(G)$. Then there exists a connected dominating set D of G such that $D \supseteq \bigcup_{i=1}^s D_i$ and

$$|D| \le \sum_{i=1}^{s} |D_i| + 2s - 2.$$

In particular, if for some $i \neq j, 1 \leq i, j \leq s$, $N_G[D_i] \cap N_G[D_j] \neq \emptyset$, then D may satisfy that

$$|D| \leq \sum_{i=1}^{s} |D_i| + 2s - 3.$$

Proof We proceed by induction on s. Let s=2. If $N_G[D_1]\cap N_G[D_2]\neq\emptyset$, then take $u\in N_G[D_1]\cap N_G[D_2]$. It is obvious that $D_1\cup D_2\cup\{u\}$ is a connected dominating set satisfying the assertion of the lemma. Assume that $N_G[D_1]\cap N_G[D_2]=\emptyset$. For any $u\in D_1, v\in D_2$, there exists a path as $ux_1x_2\cdots x_rv$ in G by the connectedness of G, where $r\geq 2$, and $x_1\in N_G[D_1],\ x_r\in N_G[D_2]$. Let x_j be such that $x_j\in N_G[D_1]$, and $x_{j+1},\cdots,x_r\notin N_G[D_1]$. Then $1\leq j\leq r-1$. Let $1\leq j\leq r-1$. Let $1\leq j\leq r-1$. Let $1\leq j\leq r-1$. Then $1\leq j\leq r-1$ is a connected dominating set of $1\leq j\leq r-1$.

In general, assume that the result is true for $s=2,\dots,k$. Suppose now that the connected graph G has k+1 connected subgraphs G_1,G_2,\dots,G_{k+1} and each with a connected dominating sets $D_i,1\leq i\leq k$ such that $\bigcup_{i=1}^{k+1}V(G_i)=V(G)$.

Regard each G_i as a VERTEX, and G_i and G_j $(i \neq j)$ is adjacent if $V(G_i) \cap V(G_j) \neq \emptyset$ or there exist $u \in V(G_i), v \in V(G_j)$ such that $uv \in E(G)$. We then get a connected graph G of order $k+1 \geq 3$. By Lemma 2.2, delete a non-cut VERTEX of G, say $V(G_{k+1})$ (the vertices in $\bigcup_{i=1}^k V(G_i) \cap V(G_{k+1})$ remain unchanged). We may obtain a new connected graph as $G[\bigcup_{i=1}^k V(G_i) - V(G_{k+1})]$.

By the induction hypothesis, there exists a connected dominating set D' of $G[\cup_{i=1}^k V(G_i) - V(G_{k+1})]$ such that $D' \supseteq \cup_{i=1}^k D_i$ and $|D'| \le \sum_{i=1}^k |D_i| + 2k - 2$. Moreover, if there is a pair $D_i, D_j, 1 \le i \ne j \le k$ with $N_G[D_i] \cap N_G[D_j] \ne \emptyset$, then $|D'| \le \sum_{i=1}^k |D_i| + 2k - 3$. By the same argument used in the case of s = 2, we know that there exists a connected dominating set D of G with $D \supseteq D' \cup D_{k+1} \supseteq \cup_{i=1}^{k+1} D_i$, and $|D| \le |D'| + |D_{k+1}| + 2 \le \sum_{i=1}^{k+1} |D_i| + 2(k+1) - 2$. In particular, if there is some $D_i, 1 \le i \le k$ such that $N_G[D_i] \cap N_G[D_{k+1}] \ne \emptyset$, then $N_G[D'] \cap N_G[D_{k+1}] \ne \emptyset$. Thus $|D| \le |D'| + |D_{k+1}| + 1 \le \sum_{i=1}^{k+1} |D_i| + 2(s+1) - 3$.

The following lemma is a natural extension of Lemma 2.3.

Lemma 2.4 Let G be a connected graph. Let G_1, G_2, \dots, G_s be connected subgraphs of G with connected dominating sets D_1, D_2, \dots, D_s , respectively. Let $V(G) - \bigcup_{i=1}^s V(G_i) = X$. Then there exists a connected dominating set D of G with

$$|D| \le \sum_{i=1}^{s} |D_i| + 2s - 2 + |X|.$$

Moreover, if there exists a pair D_i , D_j $(i \neq j)$ such that $N_G[D_i] \cap N_G[D_j] \neq \emptyset$, then D may be such that

$$|D| \le \sum_{i=1}^{s} |D_i| + 2s - 3 + |X|.$$

Proof Without loss of generality, assume that $X \cap [\bigcup_{i=1}^s V(G_i)] = \emptyset$ (otherwise we may consider instead $X' = X - X \cap [\bigcup_{i=1}^s V(G_i)]$). Let the connected components of G[X] be W_1, W_2, \dots, W_k , where $1 \leq k \leq |X|$. For each component $W_j, 1 \leq j \leq k$, there exists $u_j \in V(W_j)$ and $v_j \in \bigcup_{i=1}^s V(G_i)$ such that $u_j v_j \in E(G)$ since G is connected. Let $v_j \in V(G_{j_i})$ and call that W_j is ADJACENT to G_{j_i} . By connecting each W_j to one of its ADJACENT subgraphs out of G_1, G_2, \dots, G_s and then expanding the connected dominating sets in a natural way, we may get subgraphs of G as G'_1, G'_2, \dots, G'_s such that $V(G) = \bigcup_{i=1}^s V(G'_i)$. It follows from Lemma 2.3 that there exists a connected dominating set D of G with $D \supseteq \bigcup_{i=1}^s D_i$ and $|D| \leq \sum_{i=1}^s |D_i| + 2s - 2 + |X|$. The other part of the result also follows from Lemma 2.3.

Let G and G^c be connected with $d_c(G^c) = k$. Then $V(G^c) = V(G)$ may be partitioned into k pairwisely disjoint connected dominating sets as $V(G^c) = \bigcup_{i=1}^k D_i \cup V_i$, where one may assume further that D_i 's, $1 \le i \le k$, are all minimal connected dominating sets of G^c . We shall consider separately two cases according as $V_1 = \emptyset$ or not.

Lemma 2.5 If $V_1 = \emptyset$, then $\gamma_c(G) \leq 3k - 2$.

Proof It is easily seen that $|D_i| \geq 2$ for $1 \leq i \leq k$, since otherwise G would contain an isolated vertex. Since $G^c[D_i]$ is connected, then by Lemma 2.2 there exists a non-cut vertex $x_i \in D_i$ of $G^c[D_i]$. Since D_i is minimal, $N_{G^c}(x_i) \not\subseteq N_{G^c}[D_i - \{x_i\}]$. Let $y_i \in N_{G^c}(x_i) - N_{G^c}[D_i - \{x_i\}]$. Then $y_i \in \bigcup_{j \neq i} D_j$, and $y_i x \in E(G)$ for each $x \in D_i - \{x_i\}$. Set $S_i = (D_i - \{x_i\}) \cup \{y_i\}$. Then $G[S_i]$ is a connected subgraph of G with a connected dominating set $\{y_i\}$. Call y_i the CENTER of S_i . It is clear that $x_i \neq x_j$ for $i \neq j$ since $x_i \in D_i$ and D_i 's are pairwisely disjoint.

Let $Y^* = \{y_1^*, y_2^*, \cdots, y_s^*\}$ be the set of distinct y_i 's, where $1 \le s \le k$. Let the connected components of $G[Y^*]$ be H_1, H_2, \cdots, H_t , and combine the sets S_i 's if their CENTERs coincide or are in the same component of $G[Y^*]$. We may finally obtain t sets as $S_1^*, S_2^*, \cdots, S_t^*$, where $S_i^*, 1 \le i \le t_1$ has a unique CENTER, and $S_i^*, t_1 + 1 \le i \le t_1 + t_2 = t$ has at least two CENTERs. Moreover, $t_1 + 2t_2 \le s$.

For each set S_j^* , $1 \leq j \leq t_1$, that has a unique CENTER, say y_j^* , we have $y_j^* \in D_{i_0}$ for some i_0 . Thus $y_j^* = x_{i_0}$ since otherwise we would have $y_i^*y_{i_0} \in E(G)$, a contradiction. Therefore at least t_1 elements out of $X = \{x_1, x_2, \cdots, x_k\}$ coincide with $y_1^*, \cdots, y_{t_1}^*$. Let $X' = X - X \cap Y^*$. Then $|X'| \leq k - t_1$. Since $\bigcup_{j=1}^t S_j^* \cup X' = V(G)$, it follows from Lemma 2.4 that there exists a connected dominating set D of G such that

$$|D| \le |\{y_j^*|y_j^* \in Y^*\}| + 2t - 2 + |X'| \le 2s + k - 2 \le 3k - 2.$$

In the case when $V_1 \neq \emptyset$, the discussion are divided into two subcases according as V_1 is a dominating set of G^c or not.

Lemma 2.6 If $V_1 \neq \emptyset$ and V_1 is not a dominating set of G^c . Then $\gamma_c(G) \leq 3k$.

Proof First, rephrase the first two paragraphs in the proof of Lemma 2.5. Since V_1 is not a dominating set of G^c , there exists $u \in V(G) - V_1$ such that $ux \notin E(G^c)$ for any $x \in V_1$. Thus $ux \in E(G)$. Assume that $u \in D_{i_0}$.

Case 1. $Y^* \cap V_1 = \emptyset$. If $u \neq x_{i_0}$, then $uy_{i_0} \in E(G)$. For each set S_j^* , $1 \leq j \leq t_1$, that has a unique CENTER, say y_j^* , we have by the preceeding discussion that $y_j^* \in X = \{x_1, x_2, \dots, x_k\}$. Let $X' = X - \{y_1^*, \dots, y_{t_1}^*\}$. Then $|X'| \leq k - t_1$. Combine V_1 with the set S_j^* having y_{i_0} as a CENTER. The subgraph of G induced by this new set has a connected dominating set $\{u\} \cup \{y^* | y^* \in S_j^*\}$. Then by Lemma 2.4, there exists a connected

dominating set D of G such that

$$|D| \le s + 1 + 2(t_1 + t_2) - 2 + k - t_1 \le 3k - 1.$$

If $u = x_{i_0}$ and $x_{i_0} \notin X'$. Then $u = x_{i_0} = y'_{j_0}$ for some j_0 . Combine X with the set having a unique CENTER y'_{j_0} . Then by Lemma 2.4, there exists a connected dominating set D of G such that

$$|D| \le s + 2(t_1 + t_2) - 2 + k - t_1 \le 3k - 2.$$

If $u=x_{i_0}$ and $x_{i_0}\in X'$. Let $X''=X'-\{x_{i_0}\}$, and $V_1\cup\{x_{i_0}\}=\overline{V_1}$. It is clear that $|X''|=|X'|-1\leq k-t_1-1$ and $G[\overline{V_1}]$ has a connected dominating set as $\{x_{i_0}\}$. Thus by Lemma 2.4, there exists a connected dominating set D of G such that

$$|D| \le s + 1 + 2(t_1 + t_2 + 1) - 2 + k - t_1 - 1 \le 3k.$$

Case 2. $Y^* \cap V_1 \neq \emptyset$. Forming a new set by combining the sets S_j^* 's with V_1 if the CENTERs of S_j^* 's are contained in V_1 . The subgraph of G induced by this new set has a connected dominating set as $\{u\} \cup \{y^* \mid y^* \in V_1\}$. Let now the remaining sets with a unique CENTER be I: $S_1^*, S_2^*, \dots, S_{\overline{t_1}}^*$, $\overline{t_1} \leq t_1$, and the sets with at least two CENTERs be II: $S_{\overline{t_1}+1}^*, \dots, S_{\overline{t_1}+\overline{t_2}}^*$, $\overline{t_1} + \overline{t_2} = \overline{t} \leq t$. For each CENTER y_j' of the set in class I, $1 \leq j \leq \overline{t_1}$, if $y_j' \notin V_1$, then $y_j' \in D_{k_0}$ for some k_0 and thus $y_j' = x_{k_0}$ since otherwise $y_j' y_{k_0} \in E(G)$, a contradiction. Thus each CENTER of sets of class I is contained in V_1 or in $X = \{x_1, x_2, \dots, x_k\}$. Assume that t_1' of the $\overline{t_1}$ CENTERs are contained in V_1 and the remaining t_1'' of them are contained in X. Then $t_1' + t_1'' = \overline{t_1}$. On the other hand, assume that t_2' of the CENTERs of sets of class II are contained in V_1 , and the remaining $t_2'' = \overline{t_2} - t_2'$ are contained in X. Let $X' = X - X \cap Y^*$. Then $|X'| \leq k - t_1'' - t_2'' \leq k - t_1''$. Thus by Lemma 2.4, there exists a connected dominating set D of G such that

$$|D| \le s + 1 + 2(1 + t_1'' + t_2'') - 2 + k - t_1'' \le s + 1 + t_1'' + 2t_2'' + k.$$

Since $Y^* \cap V_1 \neq \emptyset$, then t_1' and t_2' can not be all zero, so the equalities in $t_1'' \leq t_1$ and $t_2'' \leq t_2$ can not occur simultaneously. Thus $|D| \leq s + t_1 + 2t_2 + k \leq 2s + k \leq 3k$.

Lemma 2.7 If V_1 is a dominating set of G^c . Then $\gamma_c(G) \leq 3k$.

Proof It is obvious from the assumption that $G^c[V_1]$ is not connected. Let the connected components of $G^c[V_1]$ be $W_1, W_2, \dots, W_s, s \geq 2$.

We assume first that $\gamma_c(G^c) \geq 3$. It follows from Lemma 2.2 that for each D_i , $1 \leq k$, there exist two non-cut vertices $x_i, y_i \in D_i$. Since D_i is a minimal connected dominating set of G^c , there exist $\overline{x_i}, \overline{y_i} \in V(G^c) - D_i$, such that $\overline{x_i}x_i \in E(G^c)$, and $\overline{x_i}u \in E(G)$ for any $u \in D_i - \{x_i\}$; $\overline{y_i}y_i \in E(G^c)$

 $E(G^c)$, and $\overline{y_i}v \in E(G)$ for any $v \in D_i - \{y_i\}$. Let $S = \{x_i, y_i, 1 \le i \le k\}$, and $\overline{S} = \{\overline{x_i}, \overline{y_i}, 1 \le k\}$.

Then |S| = 2k, $|\overline{S}| \le 2k$. For any $u \in D_1 \cup \cdots \cup D_k$, $u \in D_i$, it is easy to see that u is adjacent to at least one vertex of \overline{S} in G.

We consider two cases as follows.

Case 1. $V_1 \cap \overline{S} \neq \emptyset$. Without loss of generality, let $u \in V(W_1) \cap D_i$. Then for any $v \in V(W_2)$, the subgraph $G[\overline{S} \cup \{v\}]$ has no isolated vertices. In fact, the vertices of $G[\overline{S} \cup \{v\}]$ contained in V_1 are adjacent to u or v in G. And for any $x \in \overline{S} - \{v\} - V_1 \subseteq \bigcup_{i=1}^k D_i - V_1$, there exists j_0 such that $x \in D_{j_0}$, so that $x\overline{x_{j_0}} \in E(G)$ or $x\overline{y_{j_0}} \in E(G)$. Thus $q = w(G[\overline{S} \cup \{v\}]) \leq k$. For any $v_i \in C_i$, where C_1, C_2, \cdots, C_q are connected components of $G[\overline{S} \cup \{v\}]$, since $\gamma_c(G^c) \geq 3$ and $v_jv_{j+1} \in E(G^c)$, $1 \leq j \leq q-1$, there exists w_j such that $w_jv_j \notin E(G^c)$ and $w_jv_{j+1} \notin E(G^c)$, $1 \leq j \leq q-1$. Thus $w_jv_j \in E(G)$, $w_jv_{j+1} \in E(G)$. It is clear that $\overline{S} \cup \{v\} \cup \{w_1, w_2, \cdots, w_{q-1}\}$ is a connected dominating set of G. So that $\gamma_c(G) \leq |\overline{S}| + q \leq 2k + q \leq 3k$.

Case 2. $V_1 \cap \overline{S} = \emptyset$. Then $\overline{S} \subseteq \bigcup_{i=1}^k D_i$. For any $x \in \overline{S}$, assume that $x \in D_{i_0}$. Then $x\overline{x_{i_0}} \in E(G)$ or $x\overline{y_{i_0}} \in E(G)$. So that $G[\overline{S}]$ has no isolated vertices and $G[\overline{S}]$ has $q \leq k$ connected components. Since G is connected, there exists $u \in \bigcup_{i=1}^k D_i$ and $v \in V_1$ such that $xy \in E(G)$. Without loss of generality, assume that $u \in V(W_1)$. Let $w \in V(W_2)$.

Subcase 2.1. If some D_i contains three elements of B, say $\overline{x}, \overline{y}, \overline{z} \in D_i \cap \overline{S}$. Let $T = \{x_i^*, y_i^*, x^*, y^*, z^*\}$. It is clear that G[T] is connected, thus $q = w(G[\overline{S}]) \le k-2$. By choosing q-1 vertices, say w_1, w_2, \dots, w_{q-1} , connecting these components as done in Case 1, we that $\overline{S} \cup \{w_1, w_2, \dots, w_{k-1}\} \cup \{u, v, w\}$ is a connected dominating set of G. Therefore $\gamma_c(G) \le |\overline{S}| + q - 1 + 3 \le 3k$.

Subcase 2.2. Each D_i has at most two vertices of \overline{S} . If $w(G[\overline{S}]) \leq k-2$, the result follows in a like way from the discussion in Subcase 2.1.

If $w(G[\overline{S}]) = k$. Then each component is isomorphic to K_2 , and each D_i contains exactly two vertices of \overline{S} . Let $\overline{x}, \overline{y} \in \overline{S} \cap D_i$. Then we have $\{\overline{x}, \overline{y} = \{x_i, y_i\}, \text{ i.e., } S = \overline{S}, \text{ and } x_i, y_i \notin E(G), \overline{x}\overline{y} \notin E(G), \text{ since otherwise } G[\overline{S}] \text{ would contain a connected subgraph of order } \geq 4$. Moreover, the k components of $G[\overline{S}]$ are $x_i\overline{y_i} \in E(G), y_i\overline{x_i} \in E(G), 1 \leq i \leq k$. Let $D = (\overline{S} - \{\overline{x_1}, x_1\}) \cup \{w_1, w_2, \cdots, w_{k-1}\} \cup \{u, v, w\}, \text{ where } w_1, w_2, \cdots, w_{k-1} \text{ are taken as above.}$ Then D is a connected dominating set of G, and $\gamma_c(G) \leq |D| \leq 2k - 2 + k - 1 + 3 = 3k$.

Assume now that $w(G[\overline{S}]) = k - 1$. If $S = \overline{S}$, then each D_i contains exactly two vertices of \overline{S} as $\{x_i, y_i\}$. $G[\overline{S}]$ has k - 2 components as K_2 and one component as $G[\{x_i, y_i, \overline{x_i}, \overline{y_i}\}]$ for some $i, 1 \le i \le k$. Take a non-cut vertex of $G[\{x_i, y_i, \overline{x_i}, \overline{y_i}\}]$, say x_i , and then take k - 2 vertices $w_1, w_2, \cdots, w_{k-2}$ connecting the k - 2 components and $G[\{y_i, \overline{x_i}, \overline{y_i}\}]$. It is clear that $D = (\overline{S} - \{x_i\}) \cup \{w_1, w_2, \cdots, w_{k-2}\} \cup \{u, v, w\}$ is a connected dominating set of G, and $\gamma_c(G) \le |D| \le 2k - 1 + k - 2 + 3 = 3k$. If $S \ne \overline{S}$,

then $S \not\subseteq \overline{S}$. Thus $|\overline{S}| \leq 2k-1 = |S|-1$. Taking k-2 vertices connecting the k-1 components of $G[\overline{S}]$ as done above, we get that $\gamma_c(G) \leq |D| \leq 2k-1+k-2+3=3k$.

Finally, if $\gamma_c(G^c)=2$. Then $\gamma(G)=2$. Thus $|V_1|=2$ and $G[V_1]$ has exactly two isolated vertices. The case for k=1 is trivial. If $k\geq 2$, let $D=\overline{S}\cup V_1$. It is clear that D is a connected dominating set of G and thus $\gamma_c(G)\leq |D|\leq 2k+2\leq 3k$.

The proof of Theorem 2.1 follows from Lemmas 2.5-2.7.

As a final remark, we note that for the graph $G = G^c = C_5$, one has $D_c(G^c) = 1$ and $\gamma_c(G) = 3$.

REFERENCES

- 1. R.B. Allan, R. Laskar, On domination and some related topics in graph theory, Proc. 9th S.E. Conf. on Combinatorics, Graph Theory and Computing, *Utilitas Math.*, 1978, 43-48.
- B. Bollobás, E.J. Cockayne, Graph-theoretic parameters, concerning domination, independence and irredundance, J. Graph Theory, 3(1979), 241-249.
- 3. J.A. BONDY, U.S.R. MURTY, Graph Theory with Applications, Macmillan, London and Elsevier, New York, 1976.
- 4. E.J. COCKAYNE, J.H. HATTINGH, S.M. HEDETNIEMI, S.T. HEDETNIEMI, A.A. MCRAE, Using maximality and minimality conditions to construct inequality chains, *Discrete Math.*, 176(1997), 43-61.
- E.J. COCKAYNE, S.T. HEDETNIEMI, Independence graphs, in: Proc. 5th S.E. Conf. on Combinatorics, Graph Theory and Computing, Utilitas Math., 1974, 471-491.
- S.T. HEDETNIEMI, R. LASKAR, Connected domination in graphs, in: B. Bollobás ed., Graph Theory and Combinatorics, Academic Press, London, 1984, 209-218.
- P. DUCHET, H. MEYNIEL, On Hadwiger's number and stability number, Ann. Discrete Math., 13(1982), 71-74. Press, London, 1984, 209-218.
- 8. S.T. HEDETNIEMI, R.C. LASKAR, Bibliography on domination in graphs and some basic definitions of domination parameters, *Discrete Math.*, 86(1990), 257-277.
- 9. Sun Liang, Some results on connected domination in graphs, Mathematica Applicata, 5(1992), 29-34.