Properly Coloured Hamiltonian Paths in Edge-coloured Complete Graphs without Monochromatic Triangles

Olof Barr

Department of Mathematics
UmeåUniversity
S-901 87 Umeå
Sweden
barr@abel.math.umu.se

ABSTRACT. We show that every complete graph K_n with an edge-colouring without monochromatic triangles has a properly coloured hamiltonian path.

1 Introduction

In this note we consider simple complete graphs whose edges are coloured. Solving a problem by P. Erdős, M. Bankfalvi and Zs. Bankfalvi [3] obtained a necessary and sufficient condition for the existence of a properly coloured Hamiltonian cycle in a 2-edge-coloured complete graph. (A cycle or a path Q is properly coloured if adjacent edges of Q have distinct colours.) Another, essentially equivalent, condition for properly coloured Hamiltonian cycles was proved by R. Saad in [7]. A characterization of 2-edge-coloured complete graphs having properly coloured Hamiltonian paths is obtained in [2].

So far we are not aware of any characterization of m-edge-coloured complete graphs having properly coloured Hamiltonian cycles or paths respectively when $m \geq 3$. Moreover, the time complexity of the problems is unknown as J. Bang-Jensen and G. Gutin points out in [2]. Thus, sufficient conditions are of interest. The following was conjectured in [4]. Here and later K_n denotes an edge-coloured complete graph while Δ_c is the maximum number of edges of the same colour incident to a vertex.

Conjecture 1.1: Every K_n with $\Delta_c \leq \lfloor \frac{n}{2} \rfloor - 1$ has a properly coloured Hamiltonian cycle.

Some partial results on the conjecture were obtained in [1], [4], [5], [6] and [8].

In this note we give a simple sufficient condition for the properly coloured Hamiltonian path problem. Our condition is somewhat analogous to the well-known Redei theorem on Hamiltonian paths in tournaments which has a considerably number of applications in the study of directed and properly coloured paths or cycles.

2 Main result

Theorem 2.1. Every complete graph K_n with an edge-colouring without monochromatic triangles has a properly coloured hamiltonian path.

Proof: By induction on n. If n=1 the result is trivial. Assume the theorem to be true for n=k-1. Consider a K_k without monochromatic triangles. Let $\{v_1, v_2, \ldots, v_k\}$ be the vertices of K_k . By the induction hypothesis the subgraph of K_k induced by $\{v_1, v_2, \ldots, v_{k-1}\}$ has a properly coloured Hamiltonian path, $v_1v_2 \ldots v_{k-1}$ say.

Assume that K_k has no properly coloured Hamiltonian path. Then are the edges v_kv_1 and v_1v_2 of the same colour since otherwise K_k would contain the properly coloured Hamiltonian path $v_kv_1v_2\ldots v_{k-1}$. Since there are no monochromatic triangles in K_k , the edge v_kv_2 must have a different colour from v_kv_1 . But the colour of v_kv_2 must be the same as of v_2v_3 , otherwise $v_1v_kv_2\ldots v_{k-1}$ would be a properly coloured Hamiltonian path in K_k . By the same argument we get that every pair of edges v_kv_i and v_iv_{i+1} has the same colour when $i\in\{1,2,\ldots,k-2\}$.

In particular we get that $v_k v_{k-2}$ and $v_{k-2} v_{k-1}$ have the same colour, so $v_{k-1} v_k$ has a different colour from that. But then we obtain that $v_1 v_2 \dots v_{k-1} v_k$ is a properly coloured Hamiltonian path, contradicting the assumption that no such path existed.

References

- [1] N. Alon and G. Gutin, Properly colored Hamilton cycles in edge colored complete graphs. Submitted.
- [2] J. Bang-Jensen and G. Gutin, Alternating cycles and paths in edgecoloured multigraphs: a survey, (to appear in *Discrete Math.*).
- [3] M. Bankfalvi and Zs. Bankfalvi: Alternating Hamiltonian Circuits in Two-coloured Complete Graphs, in: "Theory of Graphs" (Proc. Colloq., Tihany, 1966), Academic Press, New York, 1968, 11-18.
- [4] B. Bollobás and P. Erdős, Alternating Hamiltonian Cycles, Israel J. Math. 23 (1976), 126-131.

- [5] C.C. Chen and D.E. Daykin, Graphs with Hamilton cycles having adjacent lines in different colors, J. Combin. Th. Ser. B 21 (1976), 135-139.
- [6] D.E. Daykin, Graphs with cycles having adjacent lines in different colors, J. Comb. Ser. B 20 (1976), 149-152.
- [7] R. Saad, Sur quelques problèmes de complexité dans les graphs, Ph.D thesis, U. de Paris-Sud, Orsay (1992).
- [8] J. Shearer, A property of the colored complete graph, *Discrete Math.* **25** (1979), 175–178.