STIFF GENUS OF GROUPS

MICHELE MULAZZANI

ABSTRACT.

A new concept of genus for finite groups, called stiff genus, is developed.
Cases of stiff embeddings in orientable or nonorientable surfaces are dealt
with. Computations of stiff genus of several classes of abelian and non-
abelian groups are presented. A comparative analysis between the stiff
genus and the Tucker symmetric genus is also undertaken.

0. INTRODUCTION

In [3] C. Gagliardi introduced a particular class of 2-cell embeddings,
called (strongly-) regular, for n-coloured graphs. By means of this type of
embeddings, he defined a new topological invariant for closed PL-manifolds
of arbitrary dimension [4] - the regular genus — which is a generalization of
the classical genus of 2-manifolds and of the Heegaard genus of 3-manifolds.
The concepts of regular embedding and regular genus was later extended
to n-coloured digraphs by Attilia Ceré [1].

Here the research is carried on, by applying regular embeddings to Cay-
ley colour graphs of groups, with the aim of transferring to finite groups the
notion of regular genus. The term “stiff” will be used instead of “regular”,
since the latter seems to be too widely used under other meanings.

As well known, an arc-coloured digraph C(G, X), called Cayley digraph
or Cayley colour graph, can be associated to each set X of generators of
a group G (see [5] or [9]). We shall consider the orientable (resp. nonori-
entable) stiff genus of Cayley digraphs, as defined in [1]. The notion of
orientable (resp. nonorientable) stiff genus of a group G will be given, in
a natural way, as the minimun orientable (resp. nonorientable) stiff genus
of a Cayley digraph of G. The stiff genus of several classes of abelian and

1991 Mathematics Subject Classification. Primary 05C10, 5C25; Secondary 20F32.

Key words and phrases. Stiff embeddings, regular embeddings, Cayley digraph,
genus, embedding scheme, generators and relations.

Work performed under the auspices of the GNSAGA-CNR, within the project "Ge-
ometria reale e complessa” of the MURST and under the supervision of Prof. Massimo
Ferri

ARS COMBINATORIA 50(1998), pp. 33-51



non-abelian groups (elementary abelian groups, dihedral groups, dicyclic
groups, non-abelian groups of order p®) will be computed in Section 5.
The reader will note that the techniques used in the proofs are directly
imported from the works on the “classical” group genus.

Moreover, a comparative analysis between stiff genus and symmetric
genus will be presented in the final section.

1. DEFINITIONS AND NOTATIONS

Throughout this paper we shall only consider finite groups and finite
digraphs. Moreover, digraphs will be always connected, except when ex-
plicitly stated. The cardinality of a set X will be indicated by #X.

Let T = (V, A, ,B) be a digraph, where V(I') = V and A(T') = A are
respectively the vertex set and the arc set of T', and a,8: A — V are the
incidence maps (i.e., a(a) is the tail and B(a) is the head of the arc a).
We shall request a(a) # B(a), for all @ € A (no loops). For each v € V,
let us define A} = {a € A | a(a) = v}, A7 = {a € A | B(a) = v} and
A, = AY U A7 . As usual, |T'| denotes the topological representation of T.

A coloured digraph is a digraph T' equipped with an arc colouration
v : A(T) = C such that

ofa) = a(b) or B(a) =B(b) = 7(a) #(b),

for all a,b € A(T'). Moreover, I is said to be n-coloured if #A} = #A4; =
#C = n, for all v € V(T). The sets C and C* = C x {+1, -1} are said
respectively the colour set and the signed colour set of I'. We shall write
¢t for (¢, +1) and ¢~ for (¢, —1).

A cyclic permutation ¢ of C¥ is called balanced if e"(c*) = ¢~ , for every
¢ € C. For instance, if C = {a,d,c}, then the cyclic permutation ¢ =
(a*t ¢~ b~ a~ c* b*) is balanced. The set of balanced cyclic permutations
of C* will be denoted by B(C*) and it has cardinality #B(C*) = (n —
1)i2n-t,

2. STIFF EMBEDDINGS AND STIFF GENUS OF DIGRAPHS

In what follows, the term “embedding” will always mean “2-cell embed-
ding” [5].

Two embeddings ¢, ¢’ : |[['| = F of a digraph I in a closed surface F are
said to be equivalent if there exists an homeomorphism © : F — F such
that: @ oc=¢/. If F is orientable and © preserves orientation, then ¢ and
¢ are called strongly equivalent.
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Let I’ be an n-coloured digraph with arc colouration v and colour set C.
For each v € V(T'), let v, : A, — C¥* be the bijection defined by

y(@)* if v=a(a)
)~ ifv=Fa)’

If , is a cyclic permutation of A,, then the map e, = 7, 0, 09, ! is
a cyclic permutation of C%. Therefore, an arc rotation system [8] & =
{pv | v € V(I')} of T can be given by a set of cyclic permutation of C*:
® = {e, | v € V(I')}. This allows us to compare rotations of different
vertices of T, for selecting a particular class of “stiff” embeddings. If ¢ is a
cyclic permutation of C%, let us denote by ®, the “constant” arc rotation
system having €, = ¢, for all v € V(I').

An arc rotation system ® = {¢, | v € V(TI')} of an n-coloured digraph T
is called stiff if there exists a cyclic permutation ¢ of the signed colour set
C#*, such that (see Figure 1):

(i) € is balanced;

(i) forallv € V(I'), e, =€ or g, =€~}

(iii) if v,w € V(T') are adjacent vertices, then ¢, = e!.

An embedding of I in an orientable surface is called stiff if it arises from
a stiff arc rotation system.

@ ={

FIGUREl. — e=(ad  bca~db~ ¢c") —
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The case n = 1 is trivial, since a 1-coloured digraph I is simply a circuit:
every orientable embedding of T is stiff and occurs in a sphere.

Let us suppose n > 2, then € # e~!. Thus, an n-coloured digraph
admitting an orientable stiff embedding is bipartite, since it can not have
odd cycles, by condition (iii). Moreover, each balanced cyclic permutation
€ € B(C?*) defines a stiff arc rotation system on a bipartite n-coloured
digraph T', by assigning e, = ¢ to a fixed vertex v € V(T'), and extending by
connectedness, in accordance with condition (iii), the system to all vertices.
Let us denote by ¢, the embedding arising from this rotation system. It
is easy to see that ¢,—1 is equivalent to ¢, by an orientation reversing
homeomorphism of the surface. Moreover, a different choice of the fixed
vertex v leads to an equivalent stiff embedding.

REMARK 2.1. The boundary of every region of the embedding is consti-
tuted by arcs having exactly two distinct colours. However, this property

does not characterize stiff embeddigs, uness » = 2. An example of such a
“two-coloured” embedding which is not stiff can already be found for the
Cayley digraph of Z3, associated to the canonical presentation.

To each n-coloured bipartite digraph I', with partition of vertices
{V’,V"”} and colour set C, we can associate a 2n-coloured graph (3] T,
having C* as colour set(r., )\-vl_it.h ed%e)cologration 3 : BT) = A(l') - Cc*

. v(a if a(a) € V'
defined by ¥(a) = { y(a)- ifa(a) €V
embedding ¢, : |T| — S corresponds to a regular embedding of T in the
same surface S, arising from the same permutation €. This will allow us to
utilize some results about regular embeddings of coloured graphs, included
in [2] and (3].

In order to investigate nonorientable stiff embeddings, we make use of the
standard tool of embedding schemes (7], which is a more general technique
involving both orientable and nonorientable cases. An embedding scheme
of a (di)graph I is a pair (®, A), where ® is an arc rotation system of I' and
) is a voltage-map from the set of arcs of T to the cyclic group Z, = {0, 1}.

Let I' = (V, A, a, B) be a digraph and let (®, A) be an embedding scheme
of T, where ) is a voltage map such that I' contains a cycle having an odd
number of arcs a with A(@) = 1. Let I* = (V x Zy, 4 x Z,,0*,8%)
be the derived digraph associated to A. Notice that the incidence maps
are given by a*(a,s) = (a(a), ) and B*(a,s) = (B(a),s + A(a)), for all
(a,8) € A x Zy. Each embedding of ' in a nonorientable surface S arises
from a embedding scheme of this type, through the embedding of I'* on the
orientable double covering S of S, induced by the lifted arc rotation system

Besides, the orientable stiff
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®*. The genus § = 2 — x(S) of S is related to the genus § = 1 — x(5)/2 of
S by the formula

since x(S) = 2x(S). If T is an n-coloured digraph, then I'* becomes an
n-coloured digraph, with the same colour set, through the lifted arc coloura-
tion ¥* : A x Zy — C defined by 7*(a, 8) = 7(a), for all (a,s) € 4 x Z,.
If & = {e(y,5) | (v,8) € V x Zy} is the lifting of ® = {¢, | v € V} to the
derived digraph, then €(, 0y = €, and €(,1) = €7}, forallv € V.

An embedding scheme (®,2) of T is called stiff if and only if the arc
rotation system ®* is stiff for ['*. The embedding of I' in a nonorientable
surface is said to be stiff if it arises from a stiff embedding scheme.

If n = 1, the result is again trivial. In fact, every nonorientable embed-
ding of a 1-coloured digraph is stiff and takes place in a projective plane,
since the derived digraph is a circuit and stiffly embeds only in a sphere.

If n > 2, we can check, analogously to the proof of Corollary 24 of
[3], that each nonorientable stiff embedding of a n-coloured digraph T is
equivalent to an embedding Z, arising from the embedding scheme (®, }),
where A = 1 and ® is the constant arc rotation system ®,, for a suitable
€ € B(C*). Therefore, an n-coloured digraph admits a nonorientable stiff
embeddigs if and only if it is non-bipartite.

Definition 2.1. The orientable (resp. nonorientable) stiff genus o(T)
(resp. &(T)) of an n-coloured digraph T is the smallest integer k such
that I' admits a stiff embedding in an orientable (resp. a nonorientable)
surface of genus k. If T’ does not admit any orientable (resp. nonorientable)
stiff embedding, then o(I') = +oo (resp. &(I') = +00 ).

The next lemma is a consequence of the previous considerations.

Lemma 2.2. Let I" be an n-coloured digraph.

(a) Ifn =1, then o(T') =0 and 5(T') = 1.

(b) If n > 2 and T is bipartite, then o(T') < +o00 and (T} = +oo.

(c) If n > 2 and T is non-bipartite, then o(I') = 400 and &(I') <
+o0o0. O

Lemma 2.3. Let n > 2. IfT is a non-bipartite n-coloured digrank and I'!
is the derived digraph obtained by the constant voltage m:= A = 1, ‘then
&(T) = 1 +o(T?).
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Proof. Every nonorientable stiff embedding z, of I is induced by an ori-
entable stiff embedding ¢, of I'!. Viceversa, let us consider an orientable
stiff embedding ¢, of I'!, which arises from a stiff arc rotation system
A= {ewu) | (v,u) € V() xZz}, where g(y,0) =€ = e&l_o), forallv € V(T).
Since A is the lifting of the constant arc rotation system ®, on I, ¢, induces
a nonorientable stiff embeddings &, of I'. Therefore, the statement follows
from (1). O

3. STIFF EMBEDDINGS OF CAYLEY DIGRAPIS

If G is a group, X C G and g € G, then o(g) denotes the order of g and
< X > denotes the subgroup of G generated by X.

Let X(G) = {X C G| < X > =G, e ¢ X} be the class of all generating
sets for G, not containing the identity element. The Cayley digraph of G,
associated to X € X(G), is the #X-coloured digraph C(G, X), which has
G as vertex set, G x X as edge set, the incidence maps e, :Gx X — G
and the arc colouration 74 : G x X — X respectively given by a(g,2) = g,
B(g,z) = gz and 7(g,z) = =, for all (9,2) € G x X.

Moreover, if X~! = {g € G | g7! € X}, we can take the set X* =
X U X~ (disjoint union) as signed colour set for C(G, X).

Now, we define the following subclasses of X(G):

O(G) = {X € X(G) | ¢(G, X) is bipartite},

N(G) = {X € X(G) | C(G, X) is non-bipartite}.

If #X > 2, then C(G, X) stiffly embeds in an orientable surface (resp.
in a nonorientable surface) if and only if X € O(G) (resp. if and only if
X eN(G)).

For each € € B(X*), we denote by ¢, the orientable stiff embedding of
a bipartite Cayley digraph C(G, X), induced by the choice €. = €.

In the following we need the next two lemmas.

Lemma 3.1. Let G be a group. Then, X € O(G) if and only if G has a
subgroup A of index two such that AN X = 0.

Proof. =—> Let C(G,X) be bipartite, with partition of vertices {4, B}
such that e € A. Each a € A (resp. a € B) is the product of an even (resp.
an odd) number of generators or their inverses. Thus, ANX = 0. Since
#A = #B and moreover z,y € A => zy € A, then A is a subgroup of index
two of G. <= If g and h are incident, then k = gz, for some z € X%,
and moreover g € A & h ¢ A. Therefore, C(G, X) is bipartite with vertex
set partition {4,G— A}. O
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Lemma 3.2. Let G be a group and X € N(G). IFX={(g,1)€GDZ |
g € X}, thenXGO(GGBZz) and

5(C(G, X)) =1+ 0(C(G ® Z,, X)).

Proof. Let T = C(G, X). We show that X € O(G ® Z,). Since T is non-
bipartite, there exists an odd number of elements hihoy....hr € X % such
that JT h; = e. Therefore, [[(hi,1) = (e,1) €< X >. For each g €@,
there exist kq, ko, ..., k, € X* such that Il ki = 9. Thus, for each u € Z,
we have either (g, u) = JI(ki, 1) or (g,4) = (e, 1) [[(ki, 1), and therefore
(9,u) €< X >. Theset A= {(9,0) | g € G} is a subgroup of index two of
G®Z; and ANX = 0. Since (e,0) ¢ X, wehave X € O(G®Z;) by Lemma
3.1. Now we are going to prove that the Cayley digraph Q = C(G ® Z,, X)
and the derived digraph I'!, obtained by the choice A = 1, are isomorphic
coloured digraphs. Let us consider the three functions ¢ : V(I'!) — V(Q),
¥ A(Fl) - A(Q): w: X — -X defined by ¢(g,u) (9,9), ¢((g: z))s)
((g,9),(z,1)) and w(z) = (z,1). These maps are bijections between the
sets of vertices, arcs and colours of the two coloured digraphs. Moreover,
the maps preserve the incidence structures and the arc colourations, i.e.
a'op=¢goa*, f oy =¢oB and ¥ o =wo~*. Therefore, I' = Q and
the statement follows from Lemma 2.3. O

We close this section with two propositions containing an explicit con-
nection between the genus of the surfaces where a Cayley digraph (G, X )
stiffly embeds and the order of certain elements of G. These results will be
often used in Section 5 for obtaining the genus of some important classes
of groups.

Proposition 3.3. Let G be a group, X € O(G) such that #X =n > 2,
and € € B(X%). Then, the stiff embedding ¢ of C(G,X) occurs in an
orientable surface of genus

ge=l+#(n—l—zll), (2)

zeX ¥

where I, = o(ze~1z~1).
In particular, ifn = 2 (X = {a,b} ), g is independent of ¢ and is equal
to the orientable stiff genus of C(G, X):

O'(C(G,X))zg, =1+.#2_G(1—Fib)-—o(7:‘1).)' (21)
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Proof. Let y = e™!(2™!) and let {4, B} be the partition of V(C(G, X)),
with e € A. Since € is balanced, e(y~!) = =z. Therefore, the
boundary of each region of i, subsequently meets the 2o(zy) vertices
9,92, g2y, 9TYZ, . . . , 9(zy)™ 'z, for suitable g € A and z € X*. Once
fixed z € X*, each vertex lies exactly in one of these circuits. Hence, the
number of this type of regions is R, = #G/(20(zy™!)). Since o(z~'y~!) =
o(yz) = o(zy), we get R.-1» = R, for every z € X. Therefore, the number
of regions of the embedding is R = } . s+ Rz =2} x Rz. The genus
ge follows from Euler formula. If n = 2, then B(X*) = {e, &'}, where
e=(aba"!b') and & = (a b~! a~! b). Since o(ba~!) = o(ab~!) and
o(ba) = o(ab), we get g. = g+ = 1 + #G(1 — 1/o(ab) ~ 1/o(ab~?))/2 =
o(c(@,Xx)). O

Proposition 3.4. Let G be a group, X € N(G) such that #X = n >

2, and € € B(X*). Ifl, is defined as in Proposition 3.3, then the stiff
embedding i, of C(G,X) occurs in a nonorientable surface of genus:

g,=2+#G(n-1—le). (3)

zeX %

In particular, ifn = 2 (X = {a, b} ), §. is independent of ¢ and is equal to
the nonorientable stiff genus of C(G, X):

5(C(G, X)) =g =2+ #G(1 - Wl;bi - O(a;—_l)). (3"
Proof. Let us consider the Cayley digraph C(G®Z,, X ), where X is defined
as in Lemma 3.2, and identify ¢ with = woeow™! € B(X*), being w the
map defined in the proof of Lemma 3.2. Since o((z,1)*(y,1)?) = o(z"y"),
for all u,v € {+1, -1}, we can apply (2) and (2'), using the elements of X
in the computation of the orders, and the results follow from (1). O

4. STIFF GENUS OF GROUPS

Let us start to give the notion of stiff genus of groups.

Definition 4.1. The orientable stiff genus p(G) (resp. nonorientable stiff
genus p(G) ) of a group G is the minimum of the set {o(C(G,X)) | X €
X(G)} (resp. of the set {5(C(G,X)) | X € X(G)}).

For cyclic groups, the computation is immediate.
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Proposition 4.2. Let Z,, be the cyclic group of order m > 1, then:
o(Zm) =0,  A(Zm)=1

Proof. Apply Lemma 2.2.a to C(Z,{1}). O

In order to compute the orientable (resp. the nonorientable) stiff genus
of a non-cyclic group, the attention can be restricted to bipartite (resp.
non-bipartite) Cayley digraphs.

Proposition 4.3. (a) Let G be a non-trivial group, then 5(G) < +oo.
(b) Let G be a non-cyclic group, then p(G) < +oo if and only if G has
a subgroup of index two.
(c) Let G be a non-cyclic group, then p(G) > 1+ p(G & Z3).

Proof. (a) If G is cyclic, the result follows from Proposition 4.2. Otherwise,
let us choose X = G - {e}. Evidently, X € X(G) and there is no subgroup
of index two disjoint from X. By Lemma 3.1, C(G, X) is non-bipartite and
stiffly embeds in a nonorientable surface.

(b) = If p(G) < +o00, there exists a Cayley digraph C(G, X) stiffly
embeddable in an orientable surface. Therefore, C(G, X) is bipartite and,
by Lemma 3.1, there exists a subgroup of G of index two. <= Let us define
X = G — A, where A is a subgroup of index two of G. Since e ¢ X and
X U{e} C <X >, then #G/2 < # < X > and therefore < X >=G. By
Lemma 3.1, C(G, X) is bipartite and admits an orientable stiff embedding.

(c) Follows from Lemma 3.2. O

From point (b) of Proposition 4.3, the following results can be easily
obtained.

Corollary 4.4. Let G be a non-cyclic group.
(a) If #G is odd, then p(G) = +o0.
(b) If G is abelian, then #G is odd if and only if p(G) = +oo.
(c) If G is simple, then p(G) = +o0.

Proof. (a) Trivial.
(b) Every abelian group of even order has a subgroup of index two.
(c) A simple group has no subgroups of index two. O

REMARK 4.1. Proposition 4.3.c can not be extended to cyclic groups. In
fact p(Z2) = 1 and, as we shall see in Section 5, p(Z; ® Z3) = 1. The
converse of Corollary 4.4.a is false for non-abelian groups. For example,
the alternating group A4 has order 12, but it has no subgroups of index
two and therefore p(A44) = +o00.
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A generating set X for a group G is called irredundant if every proper
subgroup of X does not generate G. Otherwise, X is called redundant.
Irredundant generating sets for a group play an important role in the com-
putation of the stiff genus.

Lemma 4.5. Let X,Y € X(G) such that X CY.
(a) ¢(C(G, X)) < 0(C(G,Y)).
(b) If X € N(G), then 5(C(G, X)) < 5(C(G,Y)).

Proof. Obviously, if C(G, X) is non-bipartite then so is C(G,Y). The state-
ments follow from Lemma 2.2.a, if #X = 1, and from Lemma 4.1 of [2], if
#X>2 O

Corollary 4.6. Let G be a group, then there exists X € X(G) irredundant
such that o(C(G, X)) = p(G).

Proof. p(G) = a(C(G,Y)), for some Y € X(G). If X is any irredundant
generating set such that X C Y, then ¢(C(G,X)) = p(G), by Lemma
45.a. 0O

As a consequence of Corollary 4.6, in order to compute the orientable
stiff genus of a group, we are allowed to just consider irredundant generating
sets. In particular, the following condition can be assumed:

z,z7leX = z7l =2 (4)

Corollary 4.6 is false for the nonorientable case. In fact, if G = Z, @ Z,,
then M(G) contains only the redundant generator set X = G — {(0,0)}.
However, by Lemma 4.5.b we may consider, in the computation of the
nonorientable stiff genus of a non-cyclic group, only generating sets that
are minimal with regard to inclusion in N(G). Since if X € N(G) and
z~! # z € X, then X — {z~'} € N(G), condition (4) can be assumed also
in nonorientable cases.

Proposition 4.7. Let X € X(G) such that: (i) #X > 2, (ii)) z,z"! €
X=>zl=z

(a) If X € O(G), then o(C(G, X)) > 1+ #G(#X — 2)/4.

(b) If X € N(G), then 5(C(G, X)) > 2 + #G(#X — 2)/2.

Proof. (a) By condition (ii), we can apply (2) with I, > 2, for all z € X.

(b) If X is the set defined in Lemma 3.2, then it verifies (i) and (ii). By
point (a) and Lemma 3.2 we have 6(C(G, X)) = 1+ o(C(G® Zg,f)) >
2+ #GH#X -2)/2. O
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Corollary 4.8. If G is a non-cyclic group, then:

p(G)>1, p@E>2 O

5. EXAMPLES OF COMPUTATION

Proposition 4.2 states that p(Z,;) = 0 and p(Zn,) = 1, for every cyclic
group of order m > 1. Now, we are going to compute the stiff genus
of several classical families of non-cyclic groups. As explained before, we
can consider only generator sets X € X(G) verifying condition (4). So,
applying (2), (2'), (3) and (3'), we shall always assume o(ab*') > 2 and
Il >2,forall z € X.

Elementary abelian groups.

Let us consider the elementary abelian p-group Z3*, with m > 2. We can
regard Z7* as a vector space of dimension m over Zy. Since < X > = L(X),
for every X C Z7, the set X is an irredundant subset of generators for the
group Z3* if and only if X is a basis for the vector space Zj'. Note that

o(g) = p, when g # e.

Proposition 5.1. Let p be a prime number and m > 2, then:

Zm _{ 1+ (m-2)2""2% ifp=2
- 2+ (m-1)2m1! ifp=2
P(zp)= -1 . .

24+p"(mp—m—p) ifp>3

Proof. (a) - orientable case — Let us suppose p = 2. Each generator set of
Z2 has at least m elements. Therefore, p(Z3*) > 1+4(m—2)2™"2 by Propo-
sition 4.7.a. Now, let us take the canonical basis B as a generator set of
Z7. From Lemma 3.1, applied with the subgroup 4 = {(a;,a2,...,am) €
Z? | a1 + a2+ -+« + any, is even}, follows that C(ZF, B) is bipartite. Using
(2) with I, = 2, for all z € X, we obtain g.= 1+ (m — 2)2™~2, for every
€ € B(X*). Finally,ifp > 3, #Zy* is odd and the result is a straightforward
consequence of Corollary 4.4.a.

(b) - nonorientable case — Let us suppose p = 2. From Proposition
4.3.c we get p(ZT) > 1+ p(Z3+!) = 2+ (m — 1)2™~1. Now, let us take
X = BuU{e}, where B = {e; | 1 < i < m} is the canonical basis of Z3* and
e = e; + ez. Clearly, X is redundant and I' = C(Z7', X) is non-bipartite
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because e +e; +e2 = 0. We can apply (3) with I; = 2, for all z € X. Since
Ge =2+ (m—1)2™"1, for every € € B(X?), the statement follows. Now,
suppose p > 3. Since X(Z7') = N(Zg'), we can consider only irredundant
subsets of generators (i.e. bases). Let X be any of them, we can use (3)
with I, = p, for all z € X. Since §e = 2+p™ ! ((p—1)(m —1) - 1), for
every € € B(X?), the proof is completed. O

In Figure 2 is presented a stiff embedding on the torus of the “canonical”
Cayley digraph of Zy @ Z».

l — T
l I
A Y

- T(uo) (1,1)? —
l l

{ A Y {
l l
l I
- ﬁ.O) (0.1)|
f Y
e

FIGURE 2. C(Z2 ® Z2, {e1,e2}) on the torus

Dihedral groups.

Let Dy, (m > 3) be the group of all symmetries of a regular polygon
with m sides, called dihedral group, which admits the presentation

Do =<zy|2’ =y’ =(zp)" =e>



and has cardinality #Dy, = 2m. From these relations we obtain y =
y~! = (2y)™'z. Therefore, each g € Dy can be written in a unique
way in the form g = (zy)*z”?, where 0 < k<m-1and0< h < 1. If
m is odd, the set 4; = {(zy)* | 0 < k < m — 1} is the only subgroup
of index two of Ds,,. Instead, if m is even, then there exist other two
subgroups of index two: 4; = {(zy)*z* |0 < i< m/2~1,0< h<1}and
As = {(zy)*z" | k + h is even}. Note that g2 = e for all g ¢ A;.

Proposition 5.2. Let D3, be the dihedral group of order 2m (m > 3).

Then .
1 if m is even

P(D2m) = {

m-1 ifmisodd '

2 if m is odd
24+m ifmisevenand4)m’

#(Dam) = {

Moreover, if m is even, then p(Dapy) > 2+ m.

Proof. (a) - orientable case — Let us suppose m even. Choose X = {zy,z}
as a generator set of Dy,,. Then X € O(Dsp) because X N 43 = 0. If
a = zy and b = z, then ab*' ¢ A, and therefore o(ab*!) = 2. From (2')
we obtain o(C(G, X)) = 1.

Now, let us suppose m odd. Since A4, is the only subgroup of index two
of Dy, necessarily Ay N X = @, for all X € O(Dyp). If #X = 2, then
X = {a, b}, whit a = (zy)*z and b = (zy)"z such that ged(|k — h|,m) = 1.
If k > h, then ab*! = (zy)*~* and therefore o(ab*') = m. From (2),
we obtain o(C(Dzm, X)) = m — 1. Let us consider the case #X > 3. If
z,y € X, with z # y, then g = zy*! € 4;. Since 4, is a cyclic group
of order m, necessarily o(g) | m and therefore o(g) > 3. Using (2) with
Iz > 3, for all z € X, we obtain g, > 1+ m, for every ¢ € B(X*). Thus,
p(ng) =m-1

(b) - nonorientable case — Let us suppose m odd. In this case X =
{zy, 2} € N(D;2m), since o(zy) = m. Applying (3') we get &(C(D2m, X)) =
2 and the result follows from Corollary 4.8. Conversely, suppose n even.
It is easy to check that if X € N(D2m), then #X > 3. By Proposition
4.7.b, we get 5(C(Dym, X)) > 2+ m(#X —2) > 2 + m and therefore
P(D2m) > 2+ m. If 4 ['m, let us select X = {zy, z, 2} where z = (zy)™ 2z.
Since zz(zy)™/2 = e, there exists an odd cycle in C(Dym, X ) and therefore
X € N(Dam). We get o(zyzt!) = o(zyz*!) = o(zz%!) = 2. Hence,
applying (3) with Iy = I; = I, = 2, we obtain §. = 2+ m, for every
€ € B(X%*), and the statement is proved. O
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Two embeddings of Cayley digraphs of Dg in the Klein bottle and in an
orientable surface T, of genus two are respectively shown in Figure 3 and
Figure 4.

|
A
|
|
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AN

FIGURE 3. C(Dg,{z,zy}) on the Klein bottle

FIGURE 4. C(Dg,{z,zyz}) on T»
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Dicyclic groups.
Let @ (m > 2) be the dicyclic group of order 4m. The group admits
the presentation

Qm=<z,y|z*™ =z"y =y}

zyr = e >

and, in particular, @ is the quaternion group. From these relations we
get yz¥ = z~*y and y~! = z™y. Thus, each g € Q,, can be written in a
unique way in the form g = z*y?, where 0 < k< 2m—1and 0 < h< 1.
Let Aj, Az, A3 C Qu be the subsets: 4; = {zF | 0 < k < 2m — 1},
Az ={z*y* | h+k iseven} and 43 = {z%y* |0<i<m—-1,0<h < 1}.
If m is even, they are the only subgroups of index two of Q,,,. Conversely,
if m is odd, A, is the only subgroup of index two, whereas A; and A3 are
not subgroups. Finally, note that g* = e, for all g ¢ 4,.

Proposition 5.3. Let Qn be the dicyclic group of order 4m (m > 2),

then: .
m+1 ifmiseven

2m—2 ifmisodd '

2m+2 ifmis odd
5m+2 ifmiseven and 4[m’

p(Qm) = {

p(@m = {
Moreover, if m is even, then p(@Qm) > 5m + 2.

Proof. (a) - orientable case — Let us suppose m even. Define the family of
generating sets § = {X € O(Qm) | #X = 2}. If X € S, then necessarily
#X N A, < 1. Furthermore, let $; = {X € § | #X N A; = 1} and
So = & — S1. Then 8,5 # 8, since {y,zy} € Sy and {z,y} € S; (note
that {z,y} N A2 = 0). For each X = {a,b} € S; we have ab*! ¢ A,
and therefore o(ab*!) = 4. From (2') we obtain o(C(Qm, X)) = 1 +m.
Conversely, if X € Sp, then X = {a,b}, with a = zfy and b = ziy
such that ged(|k — j],m) = 1. Since o(ab*!) = 2m, from (2') we obtain
o(C(@m,X)) =2m—1 > 1+ m. Finally, if X € O(Qm) — S, from
Proposition 4.7.a follows 0 (C(Qm, X)) > 1+ #Qm(#X —2)/4 > 1 +m.
Therefore, p(Qm) = m + 1.

Conversely, suppose m odd. Since A; is the only subgroup of index
two of @m, we have §; = 0. Let X = {a,b} € S, then o(ab*) = m if
and only if o(ab™%) = 2m, for every u € {+1,—1}. From (2’), we obtain
o(C(Qm, X)) = 2m — 2. Now, let us take X € O(Qm) — S. For every
a,b € X (a # b*!) we have ab*! € 4;, and moreover o(ab*!) # 2. Using
(2), with I; > 3 for all z, we get g, > 1+ #Qm(#X — 1 - #X/3)/2 =
14 2m(2#X/3 - 1) > 1+ 2m > 2m — 2, for every € € B(X*).
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(b) — nonorientable case — Suppose m odd. If X € N(Qn) and #X = 2,
then X = {a, b} with a € 4; and b ¢ A;. We have ab*! ¢ A, and therefore
o(ab*!) = 4. Using (3') we obtain &(C(Qm, X)) = 2m + 2. Otherwise, if
#X > 3 we obtain, by Proposition 4.7.b, 5(C(Qm, X)) > 2+2m(#X-2) >
2m + 2.

Conversely, suppose m even. If X € N(Qn,), then #X > 3 and moreover
there exist a,b € X such that a € A; and b ¢ A;. Since ab*! ¢ A,, at least
four of the different types of circuits of every stiff embedding of C(Qm ®
Z,, X ) must have length 8. First let us suppose #X = 3. Then, necessarily
the remaining two types of circuits have at least length 8 (otherwise X ¢
N(Qm)). Hence, using (3) with I, > 4 for all z € X, we obtain §. >
2 + 5m, for every € € B(X*). On the other hand, if #X > 4, we can
apply again (3) with I; = 4 two times, and with I; > 2 the remaining
#X — 2 times. We obtain g, > 2+ 4m(#X —1-1/2— (#X - 2)/2) =
2+4+2m(#X —1) > 2+6m > 2+5m, for every € € B(X*). If 4 [m, then take
X = {z,y,z}, where z = 2™/2-1, Since z223™/2+1 = ¢, there exists an odd
cycle in C(@m, X) and therefore X € N(Qn). Choosing the permutation
e=(yz~! z2y~! z z7!), we can apply (3) with I, = I, = I, = 4, in order
to obtain §. = 5m + 2. This complete the proof. O
Non-abelian groups of order p°.

Given a prime odd number p, then there exist two non-isomorphic non-
abelian groups of order p3, one with exponent p and presentation

Gp=<=z,y|2’ =y =¢ 27 [z,4)2 = [2,4] =y~ [z, 4]y >,
the other with exponent p? and presentation
G,=<z,y| (PP =y =¢,y 'zy=2'">

(see [6], p. 141).

Proposition 5.4. Let p be a prime number (p > 3). If G, and G, are the
non-abelian groups of order p® and exponent respectively p and p then:

P(Gp) = +o00, p(G;,) = +00,
A(Gp)=2+79*p-2), p(G,)=2+p(*-p-1).

Proof. (a) - orientable case — Follows from Corollary 4.4.a, since the two
groups have odd order.
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(b) ~ nonorientable case — G, has exponent p, therefore o(g) = p, for all
g € Gp—{e}. Forevery X € X(G,) = N(G,), we can apply (3) with I, = p,
for all z € X. For every € € B(X*), we get §. = 2+ (#X(p — 1) — p)p?
and when #X = 2 this value achieves the minimum 5(G,) = 2+ (p - 2)p?.

The elements of G can be uniquely write in the form y"z*, where
0<h<p-1and0<k<p?—1. Theset H={y"z'? |0< h,1<p-1}is
a subgroup of index p of G, and o(g) = p, for all g € H—{e}. Furthermore,
o(g) = p? for all g € G} — H, and Frat(G}) = {='7 | 0 < 1 < p—1}. Since
(G} : Frat(G})] = p?, every set of generators of G}, always contains a subset
of generators with two elements, by the Burnside Basis Theorem (see [6],
5.3.2). Thus, we can only consider the case #X = 2 (X = {a,b}). If
#X N H = 1, then ab*! ¢ H and therefore o(ab*!) = p?. Using (3'), we
obtain (C(Gj, X)) = 2+ p(p? — 2). Suppose now X N H = 0. In this case,
if ab*! € H, then ab¥! ¢ H. Therefore, either o(ab) = p? or o(ab) = p°.
Using again (3') we get 5(C(Gp, X)) > 2 + p(p*> — p—1). Finally, if we
choose X = {a,b}, with @ = z and b = yz, we have o(ab~!) = p and
o(ab) = p®. By (3') we obtain 5(C(G}, X)) = 2 + p(p? — p — 1). This
completes the proof. O

6. STIFF GENUS COMPARED WITH SYMMETRIC GENUS

An automorphism of a coloured digraph I' is a pair (¢,%), where ¢ is a
bijection on A(T') and ¥ is a bijection on V(T) such that: co¢ = g oa,
Bo¢=YoBandyod=1.

Let G be a group and C(G, X) be a Cayley digraph of G. The group G
acts on (G, X) (and on |C(G, X)|), through the family of automorhisms
{(¢5,%,) | g € G} defined by ¢,(a) = ga and ¥,(a,z) = (ga,2), for all
a € G and for all (a,z) € G x X. The action is free and vertex transitive
and it is called the natural action of G on C(G,X). As well known (see,
e.g. [9]), G is isomorphic to Aut(C(G, X)), for every choice of X.

Now we shall recall some definitions from [5] about the symmetric genus.

An embedding ¢ : |[I'| —+ S of the Cayley digraph ' = (G, X) in an
orientable surface S is said to be symmetric and only if the natural action
of G on I extends to S. That is to say, if there exists an action 4 of Gon §
such that (|I'|) is invariant for it and moreover the restriction of A to ¢(|T|)
corresponds to the natural action of G on I'. Furthermore, if every g € G
preserves the orientation (resp. there exists a ¢ € G which reverses the
orientation) of S, then the embedding is called strongly symmetric (resp.
is called weakly symmetric).
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So, the property of an embedding to be symmetric is topological and it
is equivalent to some combinatorial conditions on the arc rotation system
defining the embedding:

Lemma 6.1. (a) ([5], p. 266) An embedding of a Cayley digraph is
strongly symmetric if and only if the rotation €, at each vertex v is the
same.

(b) (5], p- 282) An embedding of a Cayley digraph C(G, X) is weakly
symmetric if and only if there exists a cyclic permutation € of X t and a
subgroup A of index two in G such that e, = ¢3! = ¢, for allv € A and
forallweG-A. O

Comparing Lemma 6.1.b with the definition of orientable stiff embedding
given in Section 2 and with Lemma 3.1, we note that, when #X > 2, the
conditions imposed to orientable embeddings to be stiff are stronger than
the conditions of Lemma 6.1.b. Therefore, every stiff embedding is weakly
symmetric.

Instead, if #X = 1, the two notions are coincident: an embedding is
stiff if and only if is symmetric (weakly or strongly). More precisely, if
#G is even, then every stiff embedding is both strongly symmetric and
weakly symmetric. Conversely, if #G is odd then the stiff embedding is
just strongly symmetric.

The symmetric genus v(G) (resp. strongly symmetric genus vo(G)) of a
group G is the minimum genus of an orientable surface where some Cayley
digraph of G can be embedded in a symmetric way (resp. in a strongly
symmetric way). Of course, if ¥(G) denotes the “classical” genus of G, we
have 7(G@) < ¥(G) £ v (G).

From the above considerations follows immediately that v(G) < p(G),
for every group G. Moreover, there are groups for which the two genera
are different: for instance, ¥(D2m) = 0 (see [5], p. 287) and p(Dzm) > 1.
Clearly, for cyclic groups the two genera coincide: ¥(Zm) = p(Zm) = 0.
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