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Problems of determining the independence number and the matching num-
ber of a graph are also important because of applications of these invariants
in many areas, notably, () selection by PRAM, (#) VLSI layout, (iii) wire
coloring, and (iv) processor scheduling. While independence number prob-
lem is NP-hard [5], matching is solvable in polynomial time [17). Recently
it was shown that independence number is not even approximable within a
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factor of n¢ for any ¢ > 0 unless P=NP (2, 3]. For a product graph, solving
these problems via factor graphs is economical, since problem size is much
smaller in the factors than in the product. This natural view forms the
basis of several studies, for example, [7, 13, 19].

The present paper addresses the twin problems with respect to the
direct product. The direct product G x H of graphs G and H is a graph with
V(GxH)=V(G)xV(H)and E(GxH) = {{(u z), (v, )} | {u,v} € E(G)
and {z,y} € E(H)}. This product (which is also known as Kronecker
product, tensor product, calegorical product and graph conjunction) is the
most natural graph product. It is commutative and associative in a natural
way. However, dealing with this product is also most difficult in many
respects among standard products. For instance, a Cartesian product or a
strong product of two graphs is connected if and only if both factors are
connected, and this fact is easily provable. On the other hand, it is not
completely straightforward to see that G x H is connected if and only if
both G and H are connected and at least one of them is non-bipartite,
cf. [20). Furthermore, if both G and H are connected and bipartite, then
G x H consists of two connected components.

The direct product has several applications, for instance it may be used
as a model for concurrency in multiprocessor systems [15]. Some other
applications are listed in [12].

By a graph is meant a finite, simple, undirected graph. Unless indicated
otherwise, graphs are also connected and have at least two vertices. Let
|G| stand for |V(G)|. For X C V(G), (X) denotes the subgraph induced
by X. By x(G), a(G) and 7(G) we will denote the chromatic number,
the independence number and the matching number of G, respectively. A
graph has a perfect matching if 7(G) = |G|/2. If G is a bipartite graph
with V(G) = Vo + V; and |Vy] < |V4| then a complete matching from Vy o
Vi is a matching which includes every vertex of Vp.

The main open problem concerning the direct product is the Hedetnie-
mi’s conjecture. Let X(G x H) = min{x(G), x(H)}. It is easily seen that
x(G x H) < X(G x H) holds for any graphs G and H. In 1966, Hedetniemi
[9] conjectured that for all graphs G and H, x(G x H) = X(G x H). For
surveys on the conjecture we refer to {4, 14). The chromatic number of a
graph G and its independence number are closely related via the inequality
x(G) > |G|/a(G). 1t is easy to see (and well-known [13, 18]) that

(G x H) > max{a(G) - |H|, a(H) - |G|} =: (G x H).

The main topic of this paper is the study of relation between a(G x H)
and (G x H). For instance, is it the case (analogous to the Hedetniemi’s
conjecture) that a(G x H) = a(G x H) for any two graphs G and H? In
particular, does a(G x Cp) = a(G x Cy) hold for any graph G 7
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Independence numbers of direct products have also been studied earlier.
Greenwell and Lovisz [6] proved that the independence number of the direct
product of k copies of K, is equal to n*~!. For some other results we refer
to [13].

In the next section we prove that for any graph G with at least one edge
and for any 7 € IN there is a graph H such that a(G x H;) > a(G x H;) +1.
On the other hand we show that a(G'x H) = (G x H) when G is a bipartite
graph with a perfect matching and H is a Hamiltonian graph. In Section 3
we compute the independence numbers of the direct products of paths and
cycles. As a by-product we also give the matching numbers of these graphs.
We conclude the paper with some remarks concerning dense graphs with
high independence number related to the direct graph construction.

2 oG x H) versus oG x H)

As we will show later, for many graphs GG and H, o(G x H) indeed equals
a(G x H). However, we can answer both questions from the introduction
negatively with the next theorem.

Theorem 2.1 For any graph G with al least one edge and for any i € N,
there is a graph H; such thal

a(G x H;) > a(G x H;)+ 1.

Proof. Let G be an arbitrary graph with at least one edge. Let |G| = n
and o(G) = k. Clearly n > 2 and k< n—1.

Define a graph H(p, q) as follows. Let V(H(p,q)) = PUQ, where P
induces a complete graph on p > 2 vertices and @ induces an independent
set on ¢ > 1 vertices. In addition, every vertex of @ is adjacent to a fixed
vertex, say w, of P. Clearly, |H(p,q)| = p+ ¢ and a(H(p,q)) = ¢+ 1.
Hence

a(G x H(p, q)) = max{k(p+q), (¢ + L)n}.

Let u be an arbitrary vertex of G and let X be the subset of V(G x H(p, q))
defined by

X = (V(G) x @)U ({u} x (P\ {w})).

Clearly, |X| = ng+ (p — 1). Furthermore, it is straightforward to see that
X is an independent set of (¢ x H(p, ¢). Thus (G x H(p,q)) > ng+(p—1).
For ¢ € IN we now define

H; = H(pi,¢;) = H(n + i+ 2, n(n +7)).

Then we have
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ngi +(pi — 1) ngs+n+i+1

(gi+1)n+i

\Y%

and also

ngi + (pi — 1) ngi—gi+n(n+i)+p—1—(2i+3)+(2{+3)
giln—1)+(n+i+2)(n—-1)+(2i+3)
(n—1)(pi +¢:) + (2 +3)

k(p: + ¢i) + (20 + 3)

k(pi + i) + 4.

VIivieun

It follows that
a(G x H;) > a(G x Hy)+1
and the theorem is proved. o

Theorem 2.1 can be reinterpreted by saying that there is no graph G
which is universal in the sense that a(G x H) = a(G x H) holds for any
graph H.

A graph is called traceable if it contains a Hamiltonian path. Clearly,
paths and cycles are traceable. We are going to show that « is equal to
a for the direct product of a bipartite graph with a perfect matching and
a traceable graph. But first we need several lemmas.

Lemma 2.2 (i) For any graphs G and H, 7(G x H) > 2-7(G) - 7(H).
(ii) a(K2 x Cn) = n.

Proof. (i) If M is a matching of G and M’ is a matching of H then M x M’
is a matching of G x H.

(i1) Cai x K, consists of two disjoint copies of Cz; while Cy41 x K3 is
isomorphic to Cai+2. 0

The bound from Lemma 2.2 (i) can be arbitrarily smaller than the
matching number of G x H. Consider, for instance, the graph Kj m x Kj 5.
It consists of two connected components Ky my and Kp n. Thus 7(Kq m X

K1) = 14+ min{m,n} whereas the bound from Lemma 2.2 (i) gives only
2.

Lemma 2.3 If G is a bipartite graph with a perfect matching and H is a
Hamiltonian graph, then

a(Gx H)y=a(Gx H)=|G|-|H|/2.

Proof. Let S be an independent set of G x H and let e be an edge of G.
Since H contains a Hamiltonian cycle, Lemma 2.2 (ii) implies

IS (e x H)| < |H]|.
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As G has a perfect matching it follows that o(G x H) < |G| - |H| /2.
Conversely, since (7 is bipartite and has a perfect matching, a(G) =
|G|/ 2. But then o(G x H) > |G| |H|/2. m]

In fact, Lemma 2.3 can be slightly generalized by assuming that G is a
graph with a perfect matching and with o(G) = |G| /2.

Lemma 2.4 If G is a bipartile graph with a perfecl maiching and H is a
traceable graph, then
. (1Al

a(G x H) < |G- [T]
Proof. Since G has a perfect matching, 7(G) = |G|/2 and as H is traceable,
7(H) = ||H|/2]. Thus by Lemma 2.2 (i),

Gl VL) . |

rexH) 22 =16
Because (G is bipartite, (G x H is bipartite as well. Since for bipartite graphs
7 + a equals the number of vertices (cf. [8]) we have

o(G x H) = |G| - |H| - 7(G x H).
By the above we obtain
«GxH) < |Gl 1H|-IG|- | 4]
= I61-(HI- | 4])
1 [4] .
(m]

Theorem 2.5 Let G be a bipariite graph with a perfect matching and let
H be a traceable graph. Then

a(GXH):Q(G'XH):IGl‘lHI/Z

Proof. If |H| is even, then the bound of Lemma 2.4 coincides with the a.

Let |H|=2i+ 1. If a(H) = i + 1, then |G| - a(H) equals the bound of
Lemma 2.4 and the proof is done also for this case.

The last case to consider is when |H| = 2i + 1 and a(H) < i. Let
V1V2 ...V2i4+1 be a Hamiltonian path of H. Then, at least two vertices with
odd indices must be adjacent, for otherwise these vertices would form an
independent set of size i+1. Let vj41 and var4g be adjacent vertices, j < k.
Consider now the subgraphs Hy, H, and H3 of H which are induced by
the vertices vy, ..., va5; vaj41,. .., Vok41 and vogs2,. .., V2i41, respectively.
Note that H; and Hj contain paths on 25 and 2¢ — 2k vertices, respectively,
and that H; contains a (Hamiltonian) cycle on 2k —25+ 1 vertices. Clearly,
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a(G x H) < a(G x Hy) + (G x H2) + a(G x Ha),
which is in turn by Lemmas 2.3 and 2.4 at most
|G- i +|G|-(2k-2j+1)/2+|G|-(i—k) = |G|-(i+1/2) = |G|-|H|/2
and the theorem is proved. a

We will apply Theorem 2.5 in the next section for the case of paths and
cycles. But before we close this section let us give the following connection
of our study with the Hedetniemi’s conjecture.

Proposition 2.6 Let (i and H be graphs such that x(G)a(G) = |G|,
x(H)a(H) = |H| and (G x H) = a(G x H). Then x(Gx H) =X(G x H).

Proof. It suffices to show that x(G x H) > X(G x H). We may without
loss of generality assume

_ 4] |H| _
x(G) = oG > o) - x(H).
Then we have
. |G x H| _ |G||H]
X(Gx H) 2 a(él < H) ~ [Cla(H)
= m = x(H)

= min{x(G), x(H)} =%(G x H).

We now give an example which illustrates Proposition 2.6. For m > 1
let G, denote the direct product of n copies of the complete graph K,.
Let k,s > 1. Then by the result of Greenwell and Lovész from [6] we have
o(Gr) = n*~1. Since x(Gi) = n we have x(Gr)a(Gi) = n* = |Gi|. The
same holds for GG, as well. Furthermore, using the result of Greenwell and
Lovasz again we obtain

a(Gr x Gy) = n* 271 = o(G)|Gs| = a(Gr x Gs).
Proposition 2.6 now implies that x(Gr4s) = x(Gr xG;) = X(Ge X G,) = n.

3 Products of paths and cycles

In this section we will obtain the independence numbers for the direct
product of paths and cycles. As a byproduct we will also list the matching
numbers of these graphs.

For the path P, and the cycle Cy, let V(P) = V(Ci) = {0,---,k—1}.
As we already mentioned, the graph P, x P, consists of two connected
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components. In addition, vertices (p,¢) and (r,s) of Pn x P, belong to
the same component if and only if p + ¢ and r + s are of the same parity.
A component of P, x P, will be called an even component (resp. odd
component) if vertices (p, q) of that component are such that p + ¢ is even
(resp. odd). Note that the even component has {mn/2] vertices while
the odd component has |[mn/2] vertices. Further, each component has
(m—1)-(n— 1) edges. The graph Py x Ps appears in Fig. 1.

\51/ 53/ 5 / \52/ \ 4
7N N\ NN

NSNS SN\,
NN NN

Even component Odd component

Figure 1: Graph Py x Pj

First we present two results which might be of independent interest.

Proposition 3.1 Each component of Pziy1 % Pajyy has a complete match-
ing from the smaller partite sel to the bigger one.

Proof. Let ¢ > j > 1. Let E; be a (maximum) matching of Pp;41 with 7
edges and let E3 be a (maximum) matching of P41 with j edges. Then it
is easy to see that the matching Ey x Eq (which is of size 2ij) of the graph
Py x P4 is evenly divided between the two components. Thus the
matching number of each component of Py;11 X Paj4 is at least ¢j, which
coincides with the size of the smaller partite set of the even component,
and hence the result follows for this component.

For the odd component, the partite sets are {0,2,...,2i} x{1,3,...,2j—
1} and {1,3,...,2i—1} x {0,2,...,2;}, which are of cardinalities (:+1) - j
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and i-(j + 1), respectively. Partition the vertex set of this component into
the following subsets: Vi, Vi, ..., Va(iyj)-1, where Vor_1 = {(p,q) | p+q =
2k—-1},1 < k < i+j. Clearly, this is a well-defined partition. Further, the
reader may verify that for 1 < 2k — 1 < 25 — 1, (Vag—1) and (Vagiyj-k)+1)
are both isomorphic to P and that for 25 + 1 <2k — 1< 2i— 1, (V1)
is isomorphic to Pyj4;. It follows that this component contains a matching
of size 2 (1+2+--+j)+(i=d)-j=(G+1)-j+(i—5)-j = (i+1)-J,
which coincides with the size of the smaller partite set of this component.
Hence the result. o

Proposition 3.2 Ifm and n be both odd and m > n, then C,, x C,, admils
of a vertex decomposition inlo n m-cycles.

Proof. Consider the following vertex subset of Cy, x Cp:

{(0,b0), (1,b1), ..., (m = 1,bm-1)},

where b; = ifor0<i<n-—1l,andd;=(i+1)mod2forn <i<m-1.
It is clear that these m vertices induce a cycle of length m, say 9. For
i € {1,...,n— 1}, consider the vertex subsets

£(0,b0 + i), (1,01 +14), ..., (m=1,bm_y +19)},

where the sum b; + i is taken modulo n. It is easy to check that these
sets of vertices induce cycles of length m, say oy, in Cp, x Cy,. Finally, the
cycles 0q,0,...,0,-1 thus constructed form a partition of the vertex set
of Crp x Cy. (m}

Theorem 3.3 If G is a path or a cycle and H is a path or a cycle, then
a(G x H)=a(G x H).

Proof. By Theorem 2.5, the result is true for all the cases except when
both G and H have odd number of vertices.

Consider first the case P2y X Pajy1 and assume without loss of gen-
erality that 7 > j. By Proposition 3.1, the independence number of a
component of Pa;4 X Paj41 equals to the size of a larger partite set. Hence
a(Paig1 X Pojp1) = (i+1)-(G+ 1) +i-(G+1) = (i +1)-(j + 1) which is
in turn equal to a(Paiy1 X Pajq1).

For the case Czi41 X Ppj41 we recall from [10] that this graph admits a
decomposition into two cycles of length 2. (2i+ 1) - j. Thus, Cait1 X Paj1
contains a matching of size (2i+1)-j. (We note, however, that considering
subproducts of the type (5;4+3 X K2, we can also see that directly.) It follows
that o(Caisr X Poja1) < (2i+1)- (24 +1) = 2i+1)-5 = (25 +1)- (G +1).
This is equal to a(Caiy1 X Pajt1).

The last case Cai41 X C2j41 follows immediately from Proposition 3.2.
a



Note that all the products from Theorem 3.3 are bipartite with the
exception of Cai41 X Caj41. Thus, since for bipartite graphs 7+ a equals
the number of vertices, Theorem 3.3 also gives all matching numbers but
one for these graphs. The remaining matching number 7(C2i41 X Caj41) is
equal to ((2¢4+1)(2j + 1) — 1)/2. This follows from the fact that this graph

is Hamiltonian, see [11]. Results of this section are collected in Table 1.

| m | n G H (G x H) (G x H)
odd | odd Cm Co,m2n|[(m=1)-n/2 | (mn—-1)/2
odd | even Cm Cyn or Py mn/2 mn/2
odd | odd m P, m-(n+1)/2 | m-(n—1)/2
even [even | Cpoor P, | Chpor P, mn/2 mnf2
even | odd | Cp, or Py, P, m-(n+1)/2 | m-(n—-1)/2
odd | odd P, Pom2n||m-(n+1)/2 | m-(n—1)/2

Table 1: « and 7 in products of paths and cycles

Note that each of Cy; x Cj, C3 x Ps; and Pa; X Py has the same
independence number. Analogous statement holds for Czi41 X C3; and
Cz,'..,.l X ng (resp. Cg,' X P2j+1 and Pzg X P2j+1).

4 Concluding remarks

Albertson, Chan and Haas [1] established a relationship between the inde-
pendence number and the odd girth of a graph. Their main result states
that if the odd girth of a graph G is at least 7 and the smallest degree
of G is greater than |G|/4 then «(G)/|G] is at least 3/7. The result is
interesting because a dense graph is suspected to have a low independence
number. Results of this paper indicate that the direct product construction
can be used to obtain examples of graphs in this direction. To make this
more precise we give the following example. Let G = K241 X C2i+1, and let
n = |V(G)|. It is easy to see that |E(G)| = n-(v/n—1), a(G) > (n—+/n)/2,
7(G) = (n — 1)/2 (since this graph is Hamiltonian), the odd girth of G is
v/7, and the even girth of GG is 4. Thus we have a graph with (i) density of
order \/n, (if) independence number of order n/2, (iii) high odd girth, and
(iv) low even girth. Importance of graphs having high density and high
girth appears in [16].

Finally, we want to add that Proposition 3.1 is true not only in the case
of two odd paths but also (with natural changes of the statement) for the
graphs Cp, x Cyj, Cy x P, and P, x P,. This can be seen from Table 1.
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