On Matchings in Graphs

Dawn M. Jones¹, Western Michigan University Denny James Roehm, Western Michigan University Michelle Schultz^{1,2}, Western Michigan University

ABSTRACT

A matching in a graph G is a set of independent edges and a maximal matching is a matching that is not properly contained in any other matching in G. A maximum matching is a matching of maximum cardinality. The number of edges in a maximum matching is denoted by $\beta_1(G)$; while the number of edges in a maximal matching of minimum cardinality is denoted by $\beta_1^-(G)$. Several results concerning these parameters are established including a Nordhaus-Gaddum result for $\beta_1^-(G)$. Finally, in order to compare the maximum matchings in a graph G, a metric on the set of maximum matchings of G is defined and studied. Using this metric, we define a new graph M(G), called the matching graph of G. Several graphs are shown to be matching graphs; however, it is shown that not all graphs are matching graphs.

1. Maximum and Maximal Matchings

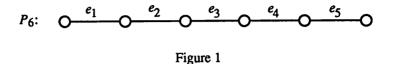
A matching in a graph G is a set of independent (pairwise nonadjacent) edges of G. The edge independence number $\beta_1 = \beta_1(G)$ of G is the maximum size of a matching in G, that is, β_1 is the maximum positive integer h such that hK_2 is a subgraph of G. A matching of size β_1 is thus referred to as a maximum matching. Obviously, for every graph G of order n, $\beta_1 \leq \lfloor n/2 \rfloor$. A maximal matching in G is a matching that is not properly contained in any other matching in G. Let $\beta_1 = \beta_1(G)$ denote the minimum size among the maximal matchings of G. (Of course, the maximum size among the maximal matchings of G is β_1 .)

For the path P_6 shown in Figure 1, $\beta_1 = 3$, where $\{e_1, e_3, e_5\}$ is the unique maximum matching. On the other hand, $\beta_1 = 2$, where $\{e_1, e_4\}$,

¹Research supported in part by Office of Naval Research Grant N00014–91–J–1060.

²Current affliation: University of Nevada, Las Vegas.

 $\{e_2, e_4\}$, and $\{e_2, e_5\}$ are the three maximal matchings of minimum size, i. e., the minimum maximal matchings.



The following result of Lesk [5] establishes bounds for the edge independence number β_1 of a graph G in terms of β_1^- . The bounds are analogous to those for the diameter of a graph in terms of its radius.

Theorem A For every nonempty graph, $\beta_1^- \le \beta_1 \le 2\beta_1^-$.

It is not difficult to observe that β_1 and β_1^- can attain any positive integer values subject to the restrictions given in Theorem A. In particular, let a and b be integers with $a \le b \le 2a$, and define $G = (b-a)P_4 \cup (2a-b)K_2$. Then G is a graph of order 2b with $\beta_1 = b$ and $\beta_1^- = a$. Since the order of every graph having a matching of size b is at least 2b, the graph G has minimum order with the prescribed properties. However, G is disconnected, in fact, has a components. As we shall see next, the minimum order of a connected graph G having $\beta_1 = b$ and $\beta_1^- = a$, where $a \le b \le 2a$, is also 2b.

Theorem 1 For positive integers a and b with $a \le b \le 2a$, the minimum order of a connected graph with $\beta_1 = b$ and $\beta_1 = a$ is 2b.

Proof The proof is constructive. We consider two cases.

Case 1 Suppose that $a \ge \lceil 2b/3 \rceil$. Let G be the graph obtained by identifying one vertex of the complete graph $K_{6a-4b+2}$ with one end-vertex of the path $P_{6(b-a)-1}$, the path on 6(b-a)-1 vertices. Then $\beta_1 = (3a-2b+1)+3(b-a)-1=b$, where 3a-2b+1 counts the number of edges in a maximum matching of the complete subgraph of G and 3(b-a)-1 counts every other edge of $P_{6(b-a)-1}$; and $\beta_1^- = (3a-2b+1)+[2(b-a)-1]=a$, where 3a-2b+1 again counts the number of edges in a maximum matching of the complete subgraph of G and G are also as G and G a

Case 2 Suppose that $a < \lceil 2b/3 \rceil$. Then it follows that $a \le (2b-1)/3$. Let P denote the path $P_{6a-2b+2}$: $v_1, v_2, \ldots, v_{6a-2b+2}$, and let G be the graph obtained from P by adding one pendant edge at each of the vertices $v_1, v_2, \ldots, v_{4b-6a-2}$. (Since $a \le (2b-1)/3$, we have $4b-6a-2 \ge 0$.) Then $\beta_1 = (4b-6a-2) + (6a-3b+2) = b$ and $\beta_1^- = (2b-3a-1) + (4a-2b+1) = a$. \square

A cut-vertex of a connected graph is a vertex whose removal results in a disconnected graph. A graph is 2-connected if it has no cut-vertices. Perhaps surprisingly, there also exists a 2-connected graph of order 2b having $\beta_1 = b$ and $\beta_1 = a$ for every pair a, b of integers with $a \ge 1$, $b \ge 2$, and $a \le b \le 2a$.

Theorem 2 For integers $a \ge 1$ and $b \ge 2$ with $a \le b \le 2a$, the minimum order of a 2-connected graph with $\beta_1 = b$ and $\beta_1 = a$ is 2b.

Proof The proof is constructive. We consider six cases. The first four cases deal with the four possible specific values of b (in terms of a): (1) b = a, (2) b = 2a, (3) b = 3a/2, (4) b = (3a + 1)/2, where $a \ge 3$.

Case 1 Suppose that b = a. Then the complete graph K_{2b} is a 2-connected graph with $\beta_1 = \beta_1^- = b$.

Case 2 Suppose that b=2a. First, if a=1, then K_4-e has the desired properties. So assume that $a\geq 2$. Consider the graph G obtained from the cycle C_b : u_1,u_2,\ldots,u_b,u_1 by adding b new vertices v_1,v_2,\ldots,v_b and the edges v_iu_i and v_iu_{i+1} for $i=1,2,\ldots,b$, where i+1 is expressed modulo b. Then G has $\beta_1=b$ and $\beta_1^-=a$.

Case 3 Suppose that b = 3a/2. Then the cycle C_{2b} has $\beta_1 = b$ and $\beta_1^- = a$.

Case 4 Suppose that b=(3a+1)/2, where $a\geq 3$. Let G be the graph obtained from the cycle $C_{2b-2}\colon u_1,u_2,\ldots,u_{2b-2},u_1$ by adding two new vertices x and y and the edges xu_1,xu_2,yu_3,yu_4 . Then G has $\beta_1=b$ and $\beta_1=a$.

We are now left with the two cases (5) $a+1 \le b \le (3a-1)/2$ and (6) $(3a+2)/2 \le b \le 2a-1$.

Case 5 Suppose that $a+1 \le b \le (3a-1)/2$. Let G be the graph obtained from the complete graph K_{6a-4b} and the path $P_{6b-6a+2}$ by identifying the end-vertices of the path to two distinct vertices of the complete graph. Since $a \ge (2b+1)/3$, we have $6a-4b \ge 2$ and since $a \le b-1$, it follows that $6b-6a+2 \ge 8$. Then G is a 2-connected graph of order 2b with $\beta_1(G)=(3a-2b)+(3b-3a)=b$ and $\beta_1^-(G)=(3a-2b)+(2b-2a)=a$.

Case 6 Suppose that $(3a+2)/2 \le b \le 2a-1$. We begin with the cycle C_{4b-6a} : $u_1, u_2, \ldots, u_{4b-6a}, u_1$. Since $b \ge (3a+2)/2$, it follows that $4b-6a \ge 4$. Now let G' be the graph obtained from C_{4b-6a} by adding 4b-6a new vertices $v_1, v_2, \ldots, v_{4b-6a}$ and the edges $v_i u_i$ and $v_i u_{i+1}$ for $i=1,2,\ldots,4b-6a$, where i+1 is expressed modulo 4b-6a. Finally, G is obtained by identifying one end-vertex of the path $P_{12a-6b+2}$ to u_1 and the other to u_2 . Since $b \le 2a-1$, we have $12a-6b+2 \ge 9$. Then G is a 2-connected graph of order 2b with $\beta_1(G)=(4b-6a)+(6a-3b)=b$ and $\beta_1(G)=(2b-3a)+(4a-2b)=a$. \square

Before leaving this section, we present an intermediate value theorem for maximal matchings, sometimes called an interpolation theorem as in Harary and Plantholt [4]. First, the following notation and terminology will be useful. Let M be a matching of a graph G. A weak vertex of G is not incident with any edge of M. An alternating path of G has alternate edges in M and not in M. The following result is due to Berge [1].

Theorem B A matching M in a graph G is maximum if and only if there exists no alternating path between two distinct weak vertices of G.

This aids in establishing an interpolation theorem for maximal matchings.

Theorem 3 If G is a graph and k is an integer with $\beta_1 \le k \le \beta_1$, then G has a maximal matching of size k.

Proof It suffices to show that if there is a maximal matching of size m in G, where $\beta_1^- \le m < \beta_1$, then there is a maximal matching of size m+1 in G. Let M be a maximal matching of size m, where $\beta_1^- \le m < \beta_1$. By Theorem A, since M is not a maximum matching, there exists an alternating path P in G between two distinct weak vertices of G. Let $S \subset E(G)$ be the symmetric difference of M and E(P) which then consists of the edges of M that are not in P and the edges of P that are not in M, that is,

$$S = [M - E(P)] \cup [E(P) - M].$$

Observe that S is a matching with |S| = m + 1. Also since M is a maximal matching, $V(G) - V(\langle S \rangle)$ is an independent set of vertices. Hence S is a maximal matching. \square

2. A Nordhaus-Gaddum Result for β_1^-

Ever since Nordhaus and Gaddum [6] presented bounds for the sum of the chromatic number of a graph G and the chromatic number of the complement of G, many others have investigated analogous results for various parameters. In particular, for edge independence numbers, it was shown in [2] that for any graph G of order $n \ge 3$,

$$\left\lfloor \frac{n}{2} \right\rfloor \leq \beta_1(G) + \beta_1(\overline{G}) \leq 2 \left\lfloor \frac{n}{2} \right\rfloor,$$

and further, that for any integers a and b with $0 \le a$, $b \le \lfloor n/2 \rfloor$ and $a + b \ge \lfloor n/2 \rfloor$, there exists a graph G having order n, $\beta_1(G) = a$, and $\beta_1(G) = b$. The second portion of this clearly shows that the presented bounds are sharp. We show that in general the same bounds hold for β_1^- ; however, we shall see that the upper bound can be improved when we restrict ourselves to graphs of order n, where $n = 2 \pmod{4}$.

Theorem 4 For every graph G of order $n \ge 3$,

$$\left\lfloor \frac{n}{2} \right\rfloor \leq \beta_1^-(G) + \beta_1^-(G) \leq 2 \left\lfloor \frac{n}{2} \right\rfloor.$$

Proof Suppose that G has order n and that $\beta_1^-(G) = a$. Then G must be a subgraph of $K_{2a} + \overline{K}_{n-2a}$. Hence, it follows that \overline{G} contains $\overline{K}_{2a} + \overline{K}_{n-2a}$ as a subgraph. But

$$\overline{K_{2a} + \overline{K}_{n-2a}} = \overline{K}_{2a} \cup K_{n-2a},$$

so that $\overline{K}_{2a} \cup K_{n-2a}$ is a subgraph of \overline{G} . This implies that

$$\beta_1^-(\bar{G}) \ge \lfloor \frac{n-2a}{2} \rfloor$$

and so

$$\beta_1^-(G) + \beta_1^-(\overline{G}) \ge a + \lfloor \frac{n-2a}{2} \rfloor = \lfloor \frac{n}{2} \rfloor.$$

Next, observe that, by the result in [2],

$$\beta_1^-(G)+\beta_1^-(\bar{G}) \leq \beta_1(G)+\beta_1(\bar{G}) \leq 2\lfloor\frac{n}{2}\rfloor. \quad \Box$$

The lower bound presented in Theorem 4 is sharp since $G = K_n$ has $\beta_1^-(G) = \lfloor n/2 \rfloor$ and $\beta_1^-(G) = 0$. The upper bound is sharp also except when $n \equiv 2 \pmod{4}$. We consider two cases. First, suppose that $n \equiv 0 \pmod{4}$ and write n = 4k, where $k \ge 1$. Then the graph $G \cong K_{2k,2k}$ has $\beta_1^-(G) = \beta_1^-(G) = 2k = n/2$, showing that the upper bound is sharp in this case. Next, let n be odd, say that n = 2k + 1, where $k \ge 1$. Then the graph $G \cong K_{k,k+1}$ has $\beta_1^-(G) + \beta_1^-(G) = 2k = 2\lfloor n/2 \rfloor$, and, again, the bound is sharp. In the remaining case, when $n \equiv 2 \pmod{4}$, we shall see that the upper bound can be lowered by one and that this new bound is sharp. We begin with a useful lemma.

Lemma 5 If G is a graph of even order $n \ge 4$ with $\beta_1^-(G) = n/2$, then the end-vertices of every path of length 3 are adjacent.

Proof Let M be a maximal matching with $|M| = \beta_1^-(G) = n/2$, and consider a path $P \cong P_4$, say that $P: v_1, v_2, v_3, v_4$. We show that $v_1v_4 \in E(G)$. We will consider three cases, but first, for i = 1, 2, 3, let $e_i = v_iv_{i+1}$. Note that at most two of the edges e_1, e_2, e_3 belong to M and if, in fact, two of these edges belong to M, they must be e_1 and e_3 .

Case 1 Suppose that $e_1, e_3 \in M$ and $e_2 \notin M$. If $v_1v_4 \notin E(G)$, then

$$M' = M - \{e_1, e_3\} \cup (e_2\}$$

is a maximal matching with |M'| = n/2 - 1, contradicting the definition of M. So $v_1v_4 \in E(G)$ in this case.

Case 2 Suppose that exactly one of e_1 , e_2 , and e_3 is in M. We consider two subcases.

Subcase 2.1 Suppose that $e_2 \in M$ and $e_1, e_3 \notin M$. Each of the edges $e_1 = v_1v_2$ and $e_3 = v_3v_4$ is adjacent to an edge of M other than e_2 , say that e_1 is adjacent to $v_1x \in M$ and that e_3 is adjacent to $v_4y \in M$. See Figure 2, and note that the vertical edges in Figure 2 are the edges that belong to M. By Case 1, the edges v_3x and v_2y must be in G. Now if $v_1v_4 \notin E(G)$, then

$$M' = M - \{e_2, v_1 x, v_4 y\} \cup \{v_3 x, v_2 y\}$$

is a maximal matching with |M'| = n/2 - 1, producing a contradiction.

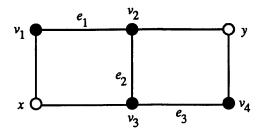


Figure 2

Subcase 2.2 Suppose that either e_1 or e_3 is in M, but not both. Without loss of generality, assume that $e_1 \in M$ and $e_2, e_3 \notin M$. As before, each of the vertices v_3 and v_4 are incident to edges of M, say that $v_3x, v_4y \in M$. Figure 3 illustrates this, where again, the vertical edges are the edges belonging to M. Again, by Case 1, $xy \in E(G)$. Now if $v_1v_4 \notin E(G)$, then

$$M' = M - \{e_1, v_3 x, v_4 y\} \cup \{e_2, xy\}$$

is a maximal matching with |M'| = n/2 - 1, again contradicting $\beta_1(G) = n/2$.

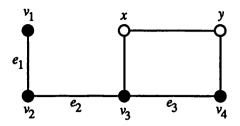


Figure 3

Case 3 Assume that $e_1, e_2, e_3 \notin M$. Then for each i with $1 \le i \le 4$, there exists a vertex $u_i \in V(G)$ such that $u_i v_i \in M$. Now, by Case 1, the edges $u_1 u_2, u_3 u_4 \in E(G)$. See Figure 4. If $v_1 v_4 \notin E(G)$, then

$$M' = M - \{u_i v_i \mid 1 \le i \le 4\} \cup \{e_2, u_1 u_2, u_3 u_4\}$$

is a maximal matching with $|M'| < \beta_1^-(G)$, a contradiction. \square

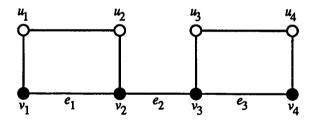


Figure 4

Let G be a graph of even order n having $\beta_1^-(G) = n/2$, and let $M = \{e_i \mid 1 \le i \le n/2\}$ be a maximal matching. Using Lemma 5, it is possible to partition the edges of E(G) - M into pairs of edges as follows. Let $e \in E(G) - M$. Then since M is a maximal matching, e is adjacent to two edges e_i and e_j ($i \ne j$) of M. Now $(\{e, e_i, e_j\}) \cong P_4$ and hence, by Lemma 5, the end-vertices of this path must be adjacent, that is, the edge e' such that $(\{e, e', e_i, e_j\}) \cong C_4$ must be in G. So e and e' are paired together, and we can do the same for any edge $e \in E(G) - M$. Thus |E(G) - M| = |E(G)| - n/2 is even and so the parity of |E(G)| is the same as the parity of n/2.

With this, we are ready to show that the upper bound of Theorem 4 can be improved for many graphs of even order.

Theorem 6 If G is a graph of order n, where $n \equiv 2 \pmod{4}$, and $\beta_1(G) = n/2$, then $\beta_1(G) < n/2$.

Proof Let G be a graph of order $n \equiv 2 \pmod{4}$ having $\beta_1^-(G) = n/2$. Further, assume, to the contrary, that $\beta_1^-(G) = n/2$. Then since n/2 is odd, both |E(G)| and |E(G)| are odd. However, we also know that

$$|E(G)| + |E(\overline{G})| = \binom{n}{2},$$

which is odd, producing the desired contradiction. \Box

Hence we obtain an immediate consequence.

Corollary 7 If G is a graph of order $n \equiv 2 \pmod{4}$, then

$$\frac{n}{2} \le \beta_1^-(G) + \beta_1^-(\bar{G}) \le n - 1.$$

In order to see that the upper bound in Corollary 7 is sharp, observe that the graph $G \cong K_{2k+1,2k+1}$ has $\beta_1^-(G) = 2k+1$ and $\beta_1^-(\overline{G}) = 2k$.

3. (Maximum) Matching Graphs

Usually a graph has several maximum matchings, which can share some common edges or be disjoint. In this section, we discuss one possible way of studying the maximum matchings of a graph and the relationships between them. Of course, if two maximum matchings consist of the same edges, then they are identical. Otherwise, they differ by at least one edge. Let M and M' be two maximum matchings in a graph G, and suppose further that M and M' differ by exactly one edge, say that $M - M' = \{e\}$ and $M' - M = \{e'\}$. Note that e and e' must be adjacent, for otherwise $M \cap M' \cup \{e, e'\}$ is a matching larger than the maximum, producing a contradiction. Hence, when two maximum matchings differ by exactly one edge, we say that they are adjacent matchings. With this definition in mind, it makes sense to say that two maximum matchings M and M' in a graph G are connected if there exists a sequence

$$M = M_0, M_1, M_2, \dots, M_k = M',$$

where each M_i $(0 \le i \le k)$ is a maximum matching and such that every two consecutive matchings M_i , M_{i+1} $(0 \le i \le k-1)$ are adjacent. The minimum such k is then defined to be the *distance* d(M, M') between M and M'. If G is a graph in which every two maximum matchings are connected, then this distance is a metric on the set of all maximum matchings of G.

In this context, the maximum matchings of a graph can themselves be represented by a graph, namely, the (maximum) matching graph M(G) of a graph G is that graph whose vertices are the maximum matchings of G and such that two vertices M and M' are adjacent in M(G) if and only if M and M' are adjacent matchings in G. Certainly, then, the distance between two maximum matchings of a graph G is simply the ordinary distance between the corresponding vertices of M(G). Since each maximum matching of $K_{1,n}$ consists of one edge and every pair is adjacent, $M(K_{1,n}) = K_n$. As a second example, consider the 5-cycle G with edges labeled as shown in Figure 5. The maximum matchings of G are $M_1 = \{1, 3\}$, $M_2 = \{1, 4\}$, $M_3 = \{2, 4\}$, $M_4 = \{2, 5\}$, and $M_5 = \{3, 5\}$. Furthermore, $M(G) = C_5$ with the appropriate adjacencies shown in Figure 5.

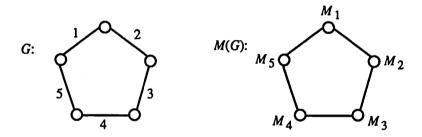


Figure 5

In fact, the matching graph of any odd cycle C_{2n+1} , where $n \ge 2$, is a (2n+1)-cycle.

Theorem 8 Let n be a positive integer. Then $M(C_{2n+1}) = C_{2n+1}$.

Proof Let M be a maximum matching of C_{2n+1} . So M contains n edges. There are exactly two adjacent edges of C_{2n+1} that are not in M. Hence each maximum matching M is adjacent to exactly two matchings implying that $M(C_{2n+1})$ is 2-regular. In fact, it is now easy to see that $M(C_{2n+1}) = C_{2n+1}$. \square

As another straightforward example, one can check that $M(P_{2n+1}) = P_{n+1}$ for $n \ge 1$. Clearly $M(C_{2n}) = 2K_1$ for $n \ge 2$ and $M(P_{2n}) = K_1$ for $n \ge 1$. The matching graph of a disconnected graph has a nice relationship with the cartesian product. The cartesian product of two graphs G_1 and G_2 is that graph with vertex set $V(G_1) \times V(G_2)$ and such that two vertices (u_1, u_2) and (v_1, v_2) are adjacent if and only if either (1) $u_1 = v_1$ and $u_2v_2 \in E(G_2)$ or (2) $u_2 = v_2$ and $u_1v_1 \in E(G_1)$. Prior to presenting the result, we illustrate it with the following example. Consider $G = C_5 \cup P_5$ with edges labeled as in Figure 6. Then a maximum matching of G consists of a maximum matching of G together with a maximum matching of G together with a maximum matching of G containing G0, we see that a copy of G1 is obtained as a subgraph of G2. Similarly, when a maximum matching of G3 is fixed, a copy of G3. Similarly, when a maximum matching of G4 is fixed, a copy of G5 is produced. Figure 6 shows G6 where each vertex is labeled with the edges belonging to the corresponding maximum matching of G2. Note that G3 is G4.

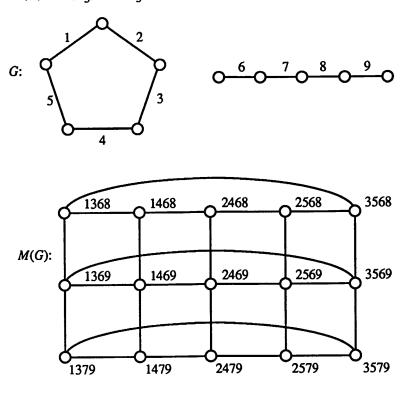


Figure 6

In general, we have the next result.

Theorem 9 If a graph G consists of two nonempty components G_1 and G_2 , then

$$M(G) = M(G_1) \times M(G_2).$$

Proof Since a maximum matching of G consists of a maximum matching of G_1 together with a maximum matching of G_2 , we have

$$V(M(G)) = V(M(G_1) \times M(G_2)).$$

Next, we show that $E(M(G)) = E(M(G_1) \times M(G_2))$. First, let $(M_1, M_2)(N_1, N_2)$ be an edge of $M(G_1) \times M(G_2)$. This means that M_1 and N_1 are maximum matchings of G_1 , while M_2 and N_2 are maximum matchings of G_2 , and thus, that $M_1 \cup M_2$ and $N_1 \cup N_2$ are maximum matchings of G. We show that, in fact, $M_1 \cup M_2$ and $N_1 \cup N_2$ are adjacent in G. Since $(M_1, M_2)(N_1, N_2) \in E(M(G_1) \times M(G_2))$, we may assume, without loss of generality, that $M_1 = N_1$ and M_2 and N_2 are adjacent in $M(G_2)$. Hence $M_1 \cup M_2$ and $N_1 \cup N_2$ are adjacent maximum matchings in G. Thus $E(M(G_1) \times M(G_2)) \subseteq E(M(G))$. Now let MN be an edge of M(G). Then $M = M_1 \cup M_2$ and $N = N_1 \cup N_2$, where M_i, N_i are maximum matchings of G_i for each i = 1, 2. Since M and N are adjacent, they differ by exactly one edge, say that $M - N = \{e\}$ and $N - M = \{f\}$. so $e \in M_1 \cup M_2$ but $e \notin N_1 \cup N_2$. Now e is either an edge of G_1 or of G_2 . Assume, without loss of generality, that $e \in E(G_1)$. Then $e \in M_1$ and $e \notin N_1$. Now since M_1 and N_1 are maximum matchings of G_1 , they contain the same number of edges. Hence there exists an edge $g \neq e$ with $g \in N_1$ and $g \notin M_1$. Now if $g \neq f$, then N - M contains both f and g, which is a contraction. So g = f, $M_1 - N_1 = \{e\}$, and $N_1 - M_1 = \{f\}$. Thus M_1 and N_1 are adjacent in $M(G_1)$. Moreover, $M_2 = N_2$. This implies that MN corresponds to an edge, namely $(M_1, M_2)(N_1, N_2)$, of $E(M(G_1) \times M(G_2))$. Thus $E(M(G)) \subseteq E(M(G_1) \times M(G_2))$, and so $M(G) = M(G_1) \times M(G_2)$.

The next result follows immediately.

Corollary 10 If G_1, G_2, \ldots, G_k are the components of G, then

$$M(G) = M(G_1) \times M(G_2) \times ... \times M(G_k).$$

A perfect matching of a graph of order n is a matching containing n/2edges. If G is a graph of order n containing a perfect matching, then M(G)is empty, that is, $E(M(G)) = \emptyset$, and the order of M(G) is the number of

perfect matchings in G. For example, $M(P_{2n}) = K_1$ and $M(C_{2n}) = \overline{K_2}$ for $n \ge 2$. Consequently, M(G) is empty for every hamiltonian graph of even order. A graph H is a matching graph if there exists a graph G such that M(G) = H. A natural question now is which graphs are matching graphs? We have already observed that every complete graph, every path, and every odd cycle of order $n \ge 3$ is a matching graph. With regard to even cycles, it is straightforward to check that $M(2P_3) = C_4$ and $M(K_{2,3}) = C_6$. That C_{2n} , where $n \ge 4$, is a matching graph is shown in [3], where matching graphs are explored in greater detail.

It can further be shown that every star $K_{1,n}$ is a matching graph. The graph G of Figure 7 has $M(G) = K_{1,n}$, where $\{e'_1, e'_2, \ldots, e'_n\}$ is the maximum matching corresponding to the central vertex of M(G).

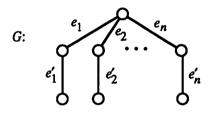


Figure 7

Since $M(K_{1,2}) = K_2$ and the *n*-cube Q_n $(n \ge 1)$ is the repeated cartesian product of K_2 , it follows by Corollary 10 that Q_n is a matching graph. In fact, Q_n is the matching graph of the union of *n* copies of $K_{1,2}$. With this, one might expect that every graph is a matching graph;

however, this is not the case.

Theorem 11 No graph containing $K_4 - e$ as an induced subgraph is a matching graph.

Suppose that the theorem is false. Then there exists a matching graph H containing $K_4 - e$ as an induced subgraph. Therefore, there exists a graph G such that H = M(G). Consequently, G contains maximum matchings M_1, M_2, M_3, M_4 such that $H' = (\{M_1, M_2, M_3, M_4\}) = K_4 - e$, where we may assume that H' is labeled as shown in Figure 8.

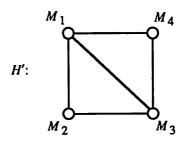


Figure 8

Since M_1 is adjacent to M_2 in G, each of $M_1 - M_2$ and $M_2 - M_1$ consists of exactly one edge of G, say $M_1 - M_2 = \{e_1\}$ and $M_2 - M_1 = \{e_2\}$. Hence $M_i = (M_1 \cap M_2) \cup \{e_i\}$ for i = 1, 2. Now since M_1 and M_2 are adjacent, e_1 and e_2 are adjacent. Next, we consider the matching M_3 . Since e_1 and e_2 are adjacent in G, at most one of these edges belongs to M_3 . We consider two cases.

Case 1 Exactly one of e_1 and e_2 belongs to M_3 . Without loss of generality, assume that $e_1 \in M_3$ and $e_2 \notin M_3$. Since M_2 and M_3 are adjacent matchings, each of $M_2 - M_3$ and $M_3 - M_2$ consists of exactly one edge. Moreover, since $e_2 \in M_2$ but $e_2 \notin M_3$, it follows that $M_2 - M_3 = \{e_2\}$. By hypothesis, $e_1 \in M_3$. However, $e_1 \notin M_2$; so $M_3 - M_2 = \{e_1\}$. This implies that $M_3 = (M_2 \cap M_3) \cup \{e_1\}$ and $M_2 = (M_2 \cap M_3) \cup \{e_2\}$. But $M_2 = (M_1 \cap M_2) \cup \{e_2\}$; thus $M_2 \cap M_3 = M_1 \cap M_2$. So $M_1 = (M_2 \cap M_3) \cup \{e_1\} = M_3$, which is a contradiction.

Case 2 Neither e_1 nor e_2 belongs to M_3 . Since M_1 and M_3 are adjacent matchings, there exists an edge e_3 in G such that $M_3 - M_1 = \{e_3\}$. On the other hand, $e_1 \in M_1$ but $e_1 \notin M_3$; so $M_1 - M_3 = \{e_1\}$. Consequently, e_1 and e_3 are adjacent edges in G. Also, M_2 and M_3 are adjacent matchings. Since $e_2 \in M_2$ and $e_2 \notin M_3$, it follows that $M_2 - M_3 = \{e_2\}$. If $e_3 \in M_2$, then necessarily $e_3 \in M_1$, which contradicts the fact that $e_1 \in M_1$ and e_1 and e_3 are adjacent. Consequently, $e_3 \notin M_2$. Therefore, $M_3 - M_2 = \{e_3\}$. Thus $M_3 = M_2 \cap M_3 \cup \{e_3\}$. Since $M_2 = M_1 \cap M_2 \cup \{e_2\}$ and M_2 and M_3 have all but one edge in common, $M_2 \cap M_3 = M_1 \cap M_2$ so that $M_3 = M_1 \cap M_2 \cup \{e_3\}$.

Hence we have shown that if a matching graph contains three mutually adjacent matchings M_1, M_2, M_3 , then these matchings are precisely $M_i = M_1 \cap M_2 \cup \{e_i\}$, where e_1, e_2, e_3 are distinct edges with $e_i \notin M_1 \cap M_2$ for i = 1, 2, 3. Thus since M_1, M_3 , and M_4 are mutually adjacent

matchings, it now follows that $M_4 = M_1 \cap M_2 \cup \{e_4\}$, where $e_4 \in M_4 - M_1$. But since M_2 and M_4 are matchings that differ by exactly one edge, they are adjacent, producing the desired contradiction. \square

There are many problems yet to be studied regarding matching graphs. Clearly, it would be of interest to characterize those graphs that are matching graphs. Assuming that this is a difficult task, one may wish to determine those graphs whose matching graph has a specified property. For example, which graphs have a connected or a hamiltonian matching graph? It has been previously noted that if G is a graph with j (\geq 1) perfect matchings, then $M(G) = jK_1$. Also, let $G = H_1 \cup H_2$, where H_1 has j (\geq 1) perfect matchings. By Theorem 9, $M(G) = jM(H_2)$, and thus if $M(H_2)$ is connected, then the matching graph of G consists of f copies of some connected graph. It is not known whether every disconnected matching graph consists only of isomorphic components.

Acknowledgements: The authors are grateful to the referee whose comments resulted in an improved paper.

REFERENCES

- [1] C. Berge, Two theorems on graph theory. *Proc. Nat. Acad. Sci. U.S.A.* 43 (1957) 842-844.
- [2] G. Chartrand and S. Schuster, On the independence numbers of complementary graphs. Trans. New York Acad. Sci. Ser. II 36 (1974) 247-251.
- [3] L. Eroh, L. Ng, and M. Schultz, Matching graphs. In progress.
- [4] F. Harary and M. Plantholt, Minimum and maximum, minimal and maximal: Connectivity. Bull. Bombay Math. Colloq. 4 (1986) 1-5.
- [5] M. Lesk, Propriétés cardinales des couplages maximaux; graphes extrémaux, Centre National de la Recherche Scientifique, Univ. Pierre et Marie Curie Rapport No. 9, Juin 1981.
- [6] E. A. Nordhaus and J. W. Gaddum, On complementary graphs. *Amer. Math. Monthly* 63 (1956) 175-177.