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ABSTRACT

A matching in a graph G is a set of independent edges and a maximal
matching is a matching that is not properly contained in any other matching in
G. A maximum matching is a matching of maximum cardinality. The number
of edges in a maximum matching is denoted by [3,(G); while the number of
edges in a maximal matching of minimum cardinality is denoted by B;(G).
Several results concemning these parameters are established including a Nordhaus-
Gaddum result for BI(G). Finally, in order to compare the maximum
matchings in a graph G, a metric on the set of maximum matchings of G is
defined and studied. Using this metric, we define a new graph M(G), called the
matching graph of G. Several graphs are shown to be matching graphs;
however, it is shown that not all graphs are matching graphs.

1. Maximum and Maximal Matchings

A matching in a graph G is a set of independent (pairwise
nonadjacent) edges of G. The edge independence number B, =B,(G) of G
is the maximum size of a matching in G, thatis, B, is the maximum positive
integer h such that K, is a subgraph of G. A matching of size B, isthus
referred to as a maximum matching. Obviously, for every graph G of order n,
B, < Ln/2). A maximal matching in G is a matching that is not properly
contained in any other matching in G. Let B] = B[(G) denote the minimum
size among the maximal matchings of G. (Of course, the maximum size
among the maximal matchings of G is B,.)

For the path P shown in Figure 1, B, = 3, where {e). €3, €5} is
the unique maximum matching. On the other hand, [ = 2, where ?el, ey},
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{ey. €4}, and (ey, e5} are the three maximal matchings of minimum size,
i. e., the minimum maximal matchings.
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The following result of Lesk [5] establishes bounds for the edge
independence number [, ofa graph G in terms of B]. The bounds are
analogous to those for the diameter of a graph in terms of its radius.

Theorem A  For every nonempty graph, §; < B, < 2B].

It is not difficult to observe that B, and B| can auain any positive
integer values subject to the restrictions given in Theorem A. In particular, let
a and b be integers with a <b < 2a, and define G =(b-a)P, v
(2a - b)K,. Then G isa graph of order 2b with By =05 and B =a. Since
the order of every graph having a matching of size b is atleast 2b, the graph
G has minimum order with the prescribed properties. However, G is
disconnected, in fact, has @ components. As we shall see next, the minimum
order of a connected graph G having B, =b and B =a, where a<b <2a,
is also 2b.

Theorem 1 For positive integers a and b with a <b < 2a, the minimum
order of a connected graph with B, =b and ;=a is 2b.

Proof The proof is constructive. We consider two cases.

Case 1 Suppose that a 2[2b/3]1. Let G be the graph obtained
by identifying one vertex of the complete graph K¢ .., With one
end-vertex of the path P6(b—a)—l’ the path on 6(b —a) — 1 vertices. Then
By=Ba-2b+1)+3(b-a)-"1=b, where 3a—2b+1 counts the number
of edges in a maximum matching of the complete subgraph of G and
3(b - a) - 1 counts every other edge of Pé(b —a)-1° and Bi=(3a-2b+1)+
[2(b - a) - 1] = a, where 3a - 2b + 1 again counts the number of edges in a
maximum matching of the complete subgraph of G and 2(b-a)-1 counts
every third edge of Pﬁ(b-a)-l'



Case 2 Suppose that a<[2b/3]. Then it follows that a < (2b — 1)/3. Let
P denote. the path P6a—2b+2: Vs Vs e s Vga_apaas and let G. be the
graph obtained from P by adding one pendant edge at each of the vertices vy,
Vas eoe s Vap_ga—2- (Since a < (2b - 1)/3, we have 4b—6a-220.)
Then B; = 4b-6a-2)+(6a-3b+2) =b and ] = (2b-3a-1)+
(4a-2b+1)=a. Q

A cut-vertex of a connected graph is a vertex whose removal results in a
disconnected graph. A graph is 2-connected if it has no cut-vertices. Perhaps
surprisingly, there also exists a 2-connected graph of order 2b having B, = b
and B; =a for every pair a,b of integers with @21, 522, and a<b <
2a..

Theorem 2 Forintegers a2 1 and b 22 with a <b < 2a, the minimum
order of a 2-connected graph with B, =b and B, =a is 2b.

Proof The proof is constructive. We consider six cases. The first four cases
deal with the four possible specific values of b (intermsof a): (1) b=a, (2)
b=2a, 3) b=3af2, (4) b=(3a+ 1)/2, where a23.

Case 1 Suppose that b= a. Then the complete graph K,, isa 2-connected
graph with B, = =b.

Case 2 Suppose that b=2a. First,if a=1,then K, —e has the desired
properties. So assume that a > 2. Consider the graph G obtained from the
cycle Cp: uy,uy, ..., Uy, u; by adding b new vertices V] Vg, ..., V), and
the edges vu; and vu; , for i=1,2,..,b, where i +1 is expressed
modulo b. Then G has B, =b and B, =a.

Case 3 Suppose that b =3a/2. Then the cycle C,, has B, =b and
B =a.

Case 4 Suppose that b = (3a + 1)/2, where a23. Let G be the graph
obtained from the cycle C,, o: Uy, Uy, ... s Uyp o, #; by adding two new
vertices x and y and the edges xu,,xu,, yus, yuy. Then G has B;=>b and
B;=a.

We are now left with the two cases (5) a+1<b<(Ba-1)/2 and (6)
Ba+2)2<b<s2a-1.
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Case 5 Suppose that a+1<b<(3a-1)/2. Let G be the graph obtained
from the complete graph K, 4, and the path Pg, (. .- by identifying the
end-vertices of the path to two distinct vertices of the complete graph. Since
a2 (2b + 1)/3, we have 6a —4b =22 and since a <b - 1, it follows that
6b-6a+228. Then G isa 2-connected graph of order 2b with B,(G) =
(3a-2b) + (3b-3a)=b and B(G) = (3a - 2b) + (2b - 2a) =a.

Case 6 Suppose that (3a + 2)/2< b <2a - 1. We begin with the cycle
Cab_ga: 41> Ugs «oo + Ugp_gq Uq- Since b2 (3a + 2)/2, it follows that
4b-6a 24. Now let G” be the graph obtained from C,, o, by adding
4b - 6a new vertices vy, V,, ... , V45_g, and the edges vu; and vu; , for
i=1,2,...,4b—- 6a, where i+ 1 isexpressed modulo 4b - 6a. Finally, G
is obtained by identifying one end-vertex of the path Py, ¢, .o t0 #; and the
otherto u,. Since b<2a -1, wehave 12a-6b+229. Then G isa
2-connected graph of order 2b with B,(G) = (4b - 6a) + (6a -3b) = b and
B1(G)=(2b-3a)+(4a-2b)=a. Q

Before leaving this section, we present an intermediate value theorem
for maximal matchings, sometimes called an interpolation theorem as in Harary
and Plantholt [4]. First, the following notation and terminology will be useful.
Let M be a matching of a graph G. A weak vertex of G is not incident
with any edge of M. An alternating path of G has alternate edges in M and
notin M. The following result is due to Berge [1].

Theorem B A matching M in a graph G is maximum if and only if there
exists no alternating path between two distinct weak vertices of G.

This aids in establishing an interpolation theorem for maximal
matchings.

Theorem 3 If G is a graph and % is an integer with ]3; <k<P,, then
G has a maximal matching of size k.

Proof It suffices to show that if there is a maximal matching of size m in
G, where [} <m <[, then there is a maximal matching of size m + 1 in
G. Let M be a maximal matching of size m, where B <m <B,. By
Theorem A, since M is not a maximum matching, there exists an alternating
path P in G between two distinct weak vertices of G. Let § c E(G) be the
symmetric difference of M and E(P) which then consists of the edges of M
that are not in P and the edges of P that are not in M, that is,
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S=[M-EP) v [EP)-M].

Observe that § is a matching with |S| =m + 1. Also since M isa
maximal matching, V(G) - V({5)) is an independent set of vertices. Hence §
is a maximal matching. Q

2. A Nordhaus-Gaddum Result for B

Ever since Nordhaus and Gaddum [6] presented bounds for the sum of the
chromatic number of a graph G and the chromatic number of the complement
of G, many others have investigated analogous results for various parameters.
In particular, for edge independence numbers, it was shown in [2] that for any
graph G of order n 23,

15] < By(@®) +B,G) s 23],

and further, that for any integers a and b with 0<a,b<|n/2] and a+b2
Lnf2J, there exists a graph G having order n, B,(G)=a,and B,(G) =b. The
second portion of this clearly shows that the presented bounds are sharp. We
show that in general the same bounds hold for B;; however, we shall see that
the upper bound can be improved when we restrict ourselves to graphs of order
n, where n =2 (mod 4).

Theorem 4 For every graph G of order n 23,

7] < B1G) +B1@) < 23]

Proof Suppose that G has order n and that B(G) =a. Then G must
be a subgraph of K, + K Hence, it follows that G  contains

K2a+K

n-2a’

n-2q asasubgraph. But

K2a + Kn—Za =K2a U K

n-2a’

so that X 2a Y K5, is a subgraph of G. This implies that

a
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n-2a

16 2|5,
and so

n-2a

BIG) +B1©) = a+| 5] = 13}

Next, observe that, by the result in [2],

B1(G) +B1(G) < B;(G)+By(G) < 25| O

The lower bound presented in Theorem 4 is sharp since G =K, has
,(G) = Ln/2] and B1(G) = 0. The upper bound is sharp also except when
n=2 (mod 4). We consider two cases. First, suppose that n = 0 (mod 4)
and write n =4k, where k> 1. Then the graph G =K, 5, has B1(G) =
B1(G) = 2k = nf2, showing that the upper bound is sharp in this case. Next, let
n be odd, say that n =2k + 1, where k2 1. Then the graph G =K 1 has
B1(G) + B7(G) = 2k = 2Ln/2], and, again, the bound is sharp. In the rémaining
case, when n =2 (mod 4), we shall see that the upper bound can be lowered by
one and that this new bound is sharp. We begin with a useful lemma.

Lemma 5 If G is a graph of even order n 24 with B[(G) = n/2, then the
end-vertices of every path of length 3 are adjacent.

Proof Let M be a maximal matching with |M | = BJ(G) = n/2, and
consider a path P = P,, say that P:v,,v,,v3,v,. We show that v;v, €
E(G). We will consider three cases, but first, for i=1,2,3, let e=vy, ;.
Note that at most two of the edges e;,e,,e; belongto M and if, in fact,
two of these edges belong to M, they mustbe e; and e;.

Case 1 Suppose that e|,e;€ M and ey ¢ M. If v;v, & E(G), then
M=M- (ej. e} L (ep)

is a maximal matching with M| =np2 -1, contradicting the definition of
M. So v,v, € E(G) in this case.

70



Case 2 Suppose that exactly one of ey, ey, and ey isin M. We consider
two subcases.

Subcase 2.1 Suppose that ey € M and e),e3 € M. Each of the edges
e, =v,v, and e3 =v3v, is adjacent to an edge of M other than e,, say
that e; is adjacentto v,xe€ M and that ey isadjacentto vyy € M. See
Figure 2, and note that the vertical edges in Figure 2 are the edges that belong
to M. By Case 1, the edges v4x and v,y mustbein G. Now if vyv, &
E(G), then

M’ =M - {e,, vix,v4Y) U {v3x, vpy}

is a maximal matching with | M| =n/2 - 1, producing a contradiction.

V.
e1 2
Vl y
)
x V4
e.
V3 3
Figure 2

Subcase 2.2 Suppose that either e, or ey isin M, but not both. Without
loss of generality, assume that e, € M and e,,e; € M. As before, each of
the vertices v; and v, are incident to edges of M, say that v3x, v,y € M.
Figure 3 illustrates this, where again, the vertical edges are the edges belonging
to M. Again, by Case 1, xy € E(G). Now if v,v, ¢ E(G), then

M =M - {e,,v3x, v4y} U (ey, xy)

is a maximal matching with |M’| = nf2 - 1, again contradicting B1(G) =n/2.
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Case 3 Assume that €y, €,, €3 € M. Then for each i with 1<i <4, there
exists a vertex u; € V(G) such that u;v; € M. Now, by Case 1, the edges
U Uy, uzky € E(G). SeeFigure 4. If v v, & E(G), then

M=M- {uivil 1<i<4} U ey, ujuy, uzu,}
is a maximal matching with |M’| <B7(G), a contradiction. O

| ] ) Uy

[
V2 2 V3 63 V4

Figure 4

Let G be a graph of even order n having B{(G) = n/2, and let
M = (e; | 1<i< n/2} be a maximal matching. Using Lemma §, it is
possible to partition the edges of E(G)~M into pairs of edges as follows. Let
e€ E(G)-M. Thensince M is a maximal matching, e is adjacent to two
edges ¢; and e; (i=j) of M. Now ({e,¢;, ej]) =P, and hence, by Lemma
5, the end-vertices of this path must be adjacent, that is, the edge ¢’ such that
{le.€’,e; e})=C, mustbein G. So e and e’ are paired together, and we
can do the same for any edge e € E(Gf -M. Thus |E@G)-M]| = |E@G)] -
nf2 is even and so the parity of |E(G) is the same as the parity of n/2.

With this, we are ready to show that the upper bound of Theorem 4 can
be improved for many graphs of even order.
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Theorem 6 If G isa graph of order n, where n=2 (mod 4),and B1(G) =
nf2, then B(G) < n/2.

Proof Let G be a graph of order n =2 (mod 4) having B(G) = n/2.
Further, assume, to the contrary, that B(G) = n/f2. Then since n/2 is odd,
both |E@G)| and |EG)| are odd. However, we also know that

lEG)| + |EG)| = (),
which is odd, producing the desired contradiction. O

Hence we obtain an immediate consequence.

Corollary 7 If G is a graph of order n= 2 (mod 4), then
5 < BIG) +B1(G) < n-1.

In order to see that the upper bound in Corollary 7 is sharp, observe that

3. (Maximum) Matching Graphs

Usually a graph has several maximum matchings, which can share some
common edges or be disjoint. In this section, we discuss one possible way of
studying the maximum matchings of a graph and the relationships between
them. Of course, if two maximum matchings consist of the same edges, then
they are identical. Otherwise, they differ by at least one edge. Let M and M’
be two maximum matchings in a graph G, and suppose further that M and
M’ differ by exactly one edge, say that M - M’ = {e} and M' - M = [¢’}.
Note that e and ¢’ must be adjacent, for otherwise M "M’ U (e, e’} isa
matching larger than the maximum, producing a contradiction. Hence, when
two maximum matchings differ by exactly one edge, we say that they are
adjacent matchings. With this definition in mind, it makes sense to say that
two maximum matchings M and M’ in a graph G are connected if there
exists a sequence

M=M0,M1,M2, ese ,Mk =M',
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where each M; (0<i<k) is a maximum matching and such that every two
consecutive matchings M, M, ; (0<i<k-1) are adjacent. The minimum
such k is then defined to be the distance d(M,M’) between M and M’. If
G is a graph in which every two maximum matchings are connected, then this
distance is a metric on the set of all maximum matchings of G.

In this context, the maximum matchings of a graph can themselves be
represented by a graph, namely, the (maximum) matching graph M(G) of a
graph G is that graph whose vertices are the maximum matchings of G and
such that two vertices M and M’ are adjacent in M(G) if and only if M
and M’ are adjacent matchings in G. Certainly, then, the distance between two
maximum matchings of a graph G is simply the ordinary distance between the
corresponding vertices of M(G). Since each maximum matching of K 1.
consists of one edge and every pair is adjacent, M(K; ,) =K " As a second
example, consider the 5-cycle G with edges labeled as shown in Figure 5. The
maxnmum matchings of G are M, = (1,3}, M, ={1,4}, M5 = (2,4},

= {2, 5}, and M5 {3, 5). Funhermore, M(G) = C5 with the appropriate
adjacencnes shown in Figure 5.

Figure 5

In fact, the matching graph of any odd cycle Copnsp» Where n22,isa
(2n + 1)-cycle.

Theorem 8 Let n be a positive integer. Then M(C,, 1) =C,, ;-

Proof Let M be a maximum matching of C,, . ,. So M contains n
edges. There are exactly two adjacent edges of C,,, , thatare notin M.
Hence each maximum matching M is adjacent to exactly two matchings
implying that M(C,, ;) is 2-regular. In fact, it is now easy to see that
M(Cypi1) = Copnir-

74



As another straightforward example, one can check that M(P,, . ) =
P, for n21. Clearly M(C,,)=2K, for n22 and M(P,,) =K, for
n > 1. The matching graph of a disconnected graph has a nice relationship with
the cartesian product. The cartesian product of two graphs G, and G, is
that graph with vertex set V(G;) X V(G,) and such that two vertices (u;, u;)
and (v}, v,) are adjacent if and only if either (1) u; =v; and uyv, € E(G,)
or (2) uy=v, and uyv € E(G,). Prior to presenting the result, we illustrate
it with the following example. Consider G =Cs U P4 with edges labeled as
in Figure 6. Then a maximum matching of G consists of a maximum
matching of Cs together with a maximum matching of P5. When we fix a
maximum matching M of C5 and consider all maximum matchings of Pg
containing M, we see that a copy of M(Ps) = P4 is obtained as a subgraph of
M(G). Similarly, when a maximum matching of Ps is fixed, a copy of
M(C5)=Cs is produced. Figure 6 shows M(G) where each vertex is labeled
with the edges belonging to the corresponding maximum matching of G. Note
that M(G) = M(Cs5) X M(Ps).

1368 - 1468 . 2468 \.}3568
o’ A\ "4

2568
Ny
- *I\
1369 1469 ) 2469 2569 3569
O )
K
| |

CI N7 7 A
1379 1479 2479 2579 3579

e
w

Figure 6
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In general, we have the next result.

Theorem 9 If a graph G consists of two nonempty components G, and
G, then

M(G) = M(G,) x M(G,).

Proof Since a maximum matching of G consists of a maximum matching
of G, together with a maximum matching of G,, we have

V(M(G)) = V(M(G,) X M(G,)).

Next, we show that E(M(G)) = E(M(G,) x M(G,)). First, let M,,
M2)(N1,N2) be an edge of M(G,) x M(G,). Thns means that M, and N
are maximum matchings of G, whnle M and N, are maximum matchmgs
of G,, and thus, that M 1Y M, and Ny UN, are maximum matchings of
G. We show that, in fact, MiUM, and N, uN are adjacent in G. Since
My, M2)(N1,N2) € E(M(Gl) X M(Gz)) we may assume, without loss of
generality, that M, N and M, and Nzare adjacent in M(Gz) Hence
M, UM, and N are adjacent maximum matchings in G. Thus
E(M(G)) xM(GZS c E M(G)). Now let MN be an edge of M(G). Then
M=M, UM, and N=N, UN,, where M, N; are maximum matchings
of G; for each i=1,2. Since M and N are adjacent, they differ by exactly
one edge, say that M —N = {e} and N-M = {f}. so ee M, UM, bu
e Ny UN,. Now e is either an edge of G, orof G,. Assume, wnhout
loss of generality, that e € E(G,). Then ee M, and e € N,. Now since
M, and N, are maximum matchmgs of G, they comam the same number of
edges Hence there exists an edge g #e with ge N, and ge M,. Now if
g#f,then N-M contains both f and g, which is acontracuon So g=1,
M;-N,=(e}), and N, - = (f}. Thus M, and N, are adjacent in
M(G ). Moreover, My=N,. 'I‘lus implies that MN corresponds to an edge,
namely My, My)(N{,Ny), of E(M(G )xM(Gz)) Thus E(M(G)) c
EM(G )xM(Gz)) and so M(G) = M(G 1)XMG,). 0

The next result follows immediately.

Corollary 10 If G,,G,, ..., G, are the components of G, then

M(G) = M(Gl) X M(Gz) X ... X M(Gk).
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A perfect matching of a graph of order n is a matching containing 7/2
edges. If G isa graph of order n containing a perfect matching, then M(G)
is empty, that is, E(M(G)) = @, and the order of M(G) is the number of

perfect matchings in G. For example, M(P,,) =K, and M(C,,) = 1?2 for

n 2 2. Consequently, M(G) is empty for every hamiltonian graph of even
order. A graph H isamatching graph if there exists a graph G such that
M(G) = H. A natural question now is which graphs are matching graphs? We
have already observed that every complete graph, every path, and every odd cycle
of order n = 3 is a matching graph. With regard to even cycles, it is
straightforward to check that M(2P3)=C, and M(K2.3) =Cg. That C,,,

where n 2 4, is a matching graph is shown in [3], where matching graphs are
explored in greater detail.

It can further be shown that every star K, Ln isa matching graph. The
graph G of Figure 7 has M(G) =K, ,, where (e], €3, ... , €,} s the
maximum matching comresponding to the central vertex of M(G).

Figure 7

Since M(K; ;)= K2 and the n-cube Q, (n 2 1) is the repeated
cartesian product of K,, it follows by Corollary 10 that Q, is a matching
graph. Infact, @ is Lhe matching graph of the union of n copies of X ,

With this, ‘one might expect that every graph is a matching graph
however, this is not the case.

Theorem 11  No graph containing K, —e as an induced subgraph is a
matching graph.

Proof Suppose that the theorem is false. Then there exists a matching graph
H containing K, — e as an induced subgraph. Therefore, there exists a graph
G such that H = M(G). Consequently, G contains maximum matchings
M, M,,M3,M, suchthat H =((M,My, M3, M,}) =K, —e, where we
may assume that H’ is labeled as shown in Figure 8.
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Figure 8

Since M, is adjacentto M, in G, each of M| -M, and M, -M,
consists of exactly one edge of G,say M; -M, = (e;} and M,-M, =
{e;). Hence M;=M; N My) L (e} for i=1,2. Now since M, and
M, are adjacent, e; and e, are adjacent. Next, we consider the matching
M,. Since e; and e, are adjacent in G, at most one of these edges belongs
to M;. We consider two cases.

Case 1 Exactly one of e; and e, belongsto M. Without loss of generality,
assume that e, € M5 and e, ¢ M5. Since M, and M, are adjacent
matchings, each of M, -M; and M5 - M, consists of exactly one edge.
Moreover, since ey € M, but e, & M, it follows that M, - M4 = (ey]).
By hypothesis, e; € M5. However, e; € My; 50 M3 - M, = {e;}. This
implies that M5 = (M, N M3) U {e)) and My =M, N M3)U (e,}). But
My=M; M) L (e,); thus MynMy=M, "M, So M) =(M;N
M3 v [el} = M5, which is a contradiction.

Case2 Neither e; nor e, belongsto M. Since M, and M, are adjacent
matchings, there exists an edge e; in G such that M3 - M, = (e;}. On the
other hand, e; € M, but e; € M5;s0 M, ~-M3 = {e;]). Consequently, e,
and e, are adjacent edgesin G. Also, M, and M, are adjacent matchings.
Since ey € M, and e, € M5, it follows that My - M5 = {eg). If e5 €
M,, then necessarily e; € M, which contradicts the fact that ¢) € M, and
e; and e; are adjacent. Consequently, e; € M,. Therefore, M3 - M, =
{e3). Thus My =M, M5 L (e3). Since My=M, "My U {e;} and
M, and M, have all but one edge in common, M, " M3 =M, N M, so
that Mz=M, "My U {e3).

Hence we have shown that if a matching graph contains three mutually
adjacent matchings M, M,, M3, then these matchings are precisely M, =
M, AM,u (e;}, where eq,e,,e5 are distinct edges with ¢;¢ M, " M,
for i =1, 2,3. Thussince M, Mj, and M, are mutually adjacent
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matchings, it now follows that M, =M, N M, L (e,}, where e, e M, -
M. Butsince M, and M, are matchings that differ by exactly one edge,
they are adjacent, producing the desired contradiction. Q

There are many problems yet to be studied regarding matching graphs.
Clearly, it would be of interest to characterize those graphs that are matching
graphs. Assuming that this is a difficult task, one may wish to determine those
graphs whose matching graph has a specified property. For example, which
graphs have a connected or a hamiltonian matching graph? It has been
previously noted that if G is a graph with j (2 1) perfect matchings, then
M(G) = jK,. Also,let G =H, v H,, where H, has j (1) perfect
matchings. By Theorem 9, M(G) = JM(H,), and thus if M(H,) is connected,
then the matching graph of G consists of j copies of some connected graph.
It is not known whether every disconnected maiching graph consists only of
isomorphic components.
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REFERENCES

[11 C. Berge, Two theorems on graph theory. Proc. Nat. Acad. Sci. U.S.A.
43 (1957) 842-844.

[2]1  G. Chartrand and S. Schuster, On the independence numbers of
complementary graphs. Trans. New York Acad. Sci. Ser. 11 36 (1974)
247-251.

[3]1 L.Eroh, L. Ng, and M. Schultz, Matching graphs. In progress.

[4] F. Harary and M. Plantholt, Minimum and maximum, minimal and
maximal: Connectivity. Bull. Bombay Math. Colloq. 4 (1986) 1-5.

[5]1 M. Lesk, Propriétés cardinales des couplages maximaux; graphes
extrémaux, Centre National de la Recherche Scientifique, Univ. Pierre et
Marie Curie Rapport No. 9, Juin 1981.

[6] E. A.Nordhaus and J. W. Gaddum, On complementary graphs. Amer.
Math. Monthly 63 (1956) 175-177.

79



