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ABSTRACT. A graph G is collapsible if for every even subset R C
V(G), there is a spanning connected subgraph of G whose set of
odd degree vertices is R. A graph is supereulerian if it contains
a spanning closed trail. It is known that every collapsible graph
is supereulerian. A graph G of order n is said to satisfy a Fan-
type condition if max{d(u),d(v)} > n/(g — 2)p — € for each
pair of vertices u,v at distance two, where g € {3,4} is the
girth of G, and p > 2 and € > 0 are fixed numbers. In this
paper, we study the Fan-type conditions for collapsible graphs
and supereulerian graphs.

1 Introduction

We follow the notation of Bondy and Murty [2], except that graphs have
no loops. Let G be a graph. A cycle of order n is denoted by C,,. The
distance, denoted dist(u,v), between two vertices u and v of a connected
graph is the minimum length of all paths joining » and ». For a graph G,
let u be a vertex in G. Define Ng(u) = {v € V(G) |uv € E(G)}. A graph
G is called hamiltonian if G has a cycle containing every vertex of G. Let
K'(G) denote the edge-connectivity of G, and let O(G) denote the set of
vertices of odd degree in G. A graph G is eulerian if it is connected with
O(G) = 0. A graph G is called supereulerian if it has a spanning eulerian
subgraph. A graph G is called collapsible if for every even set X C V(G)
there is a spanning connected subgraph Hx of G, such that O(Hx) = X.
Exambples of collapsible graphs include K,, with n > 3, C,, and Cjs, but not
C; with ¢ > 4. It is known that all collapsible graphs are supereulerian (see
[3],[4]). The trivial graph K, is both supereulerian and collapsible, and is
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regarded as having infinite edge-connectivity. The line graph of G, denoted
by L(G), has E(G) as its set of vertices, where two vertices are adjacent
in L(G) if and only if the corresponding edges are adjacent in G. Harary
and Nash-Williams [13] showed that if G has at least 3 edges, then L(G)
is hamiltonian if and only if G has an eulerian subgraph that contains at
least one end of every edge in G.

Various sufficient degree conditions for the existence of spanning eulerian
subgraphs and hamiltonian line graphs have been derived.

Theorem A. (Lesniak-Foster and Williamson [15]). Let G be a graph of
order n > 6. If §(G) > 2 and if any pair u,v of non-adjacent vertices of
G, d(u) + d(v) > n—1 then G is supereulerian. o

Theorem B. (Catlin [5]). Let G be a simple graph of order n with edge-
connectivity x'(G) = k € {2,3}. If n is sufficiently large and if any pair
u, v of non-a vertices of G, d(u)+d(v) > Uc%ﬂm-z’ then G is supereulerian.
a

Theorem C. (Chen, Lai [10], and Veldman [16]). Let G be a 3-edge-
connected simple graph of order n. If n is sufficiently large and if for every
edge wv € E(G), d(u) + d(v) > § —2, then G is supereulerian. u}

Theorem D. (Lai [14]). Let G be a 2-edge-connected simple graph of
order n. If for every edge uv € E(G), max{d(u), d(v)} > n/5 — 1, then for
n large, L(G) is hamiltonian except for a class of well characterized graphs.
m]

In the study of hamiltonian graphs, Fan [11] proved the following:

Theorem E. If G is 2-connected simple graph of order n and max{d(u),
d(v)} > n/2 for every pair of vertices u,v with dist(u,v) =2 in G, then G
is hamiltonian. ]

A simple graph G of order n is said to satisfy a Fan-type condition if for
every pair of vertices u,v with dist(u,v) =2in G

n

max{d(u), d(v)} 2 =50 — 1)

where g is the girth of G, p > 2 and e > 0 are fixed numbers.

Note that it is easy to show that for a simple graph G of order =, if
max{d(u),d(v)} = n/m for every pair of distance-2 vertices u,v in G, where
m is a fixed number, and if n is large, then G has girth at most 4. Thus,
we only consider g € {3,4} in (1).

In this paper, we shall use Catlin’s reduction technique [3] to study
the Fan-type conditions for collapsible graphs and supereulerian graphs.
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Catlin’s reduction technique. In section 3, we study the structures of the
reduction graphs of graphs satisfying (1). Our main results are presented
in section 4.

2 Catlin’s reduction technique

Let G be a graph, and let H be a connected subgraph of G. The con-
traction G/H is the graph obtained from G by contracting all edges of
H, and by deleting any resulting loops. In [3], Catlin showed that every
graph G has a unique collection of vertex-disjoint maximal collapsible sub-
graphs Hy, Hy, -- - , H, such that | J;_, V(H;) = V(G). The reduction of G,
denoted by G’, is the graph obtained from G by successively contracting
Hy, Hy,--- , H,. Since V(G) = J;_, V(H;), [V(G')| = c. Let v be the ver-
tex in G’ that is the contraction image of a subgraph H(v). Then H(v) is
called the preimage of v. If H(v) = K, we say H(v) is the trivial preimage
of v and we call v a trivial vertex. A graph G is reduced if G = G’. Note
that a reduced graph is a simple and Ks-free graph, and every subgraph of
a reduced graph is also reduced [3]. By the definition of contraction and
k'(K1) = oo, we have x'(G’) > £'(G). It is known that the smallest 2-
edge-connected reduced non-supereulerian graph is K53, and the smallest
3-edge-connected reduced non-supereulerian graph is the Petersen graph
[9].

Throughout this paper, we let d(v) and d’(v) denote the degree of v in
G and G’, respectively. Let E(G’) be the edge set of G'. We regard E(G')
as a subset of E(G). Note that E(G') = E(G) — ] E(H;). For a vertex
v € V(G), we define

I(v) = {u € V(G")| wv € E(G")}.

Define i(v) = |I(v)|, which is the number of edges in G’ incident with v in
G. Note that since each edge uv € E(G’) is also an edge in E(G), we also
view as a subset of V(G). We define Ng_j(,)(v) = Ng(v) — I(v), where
v € V(G). Thus, for any v € V(G),

d(v) = i(v) + |[No-1(s) (0)|- (2)

As an example, consider a graph Gy of order n > 15 obtained from K 3
by replacing each vertex of K33 by a complete graph of order n/5 in the
way as shown in Figure 1 below (where each circle in Gy represent a K,,/5
subgraph). Then Gy has five vertex-disjoint maximal collapsible subgraphs
H; = Kp/5 (1 < i < 5), and so Gj, the reduction of Gy, is Ka 3, and
E(G}) = {a,b,c,d, e, f} = E(Go) — U5 E(H,). For a vertex v € Go, if v is
not incident with any edges in {e,b,c, d, ¢, f}, then I(v) = 0. For instance,
from the figure below, we can see that i(vo) = 0, but i(v;) = i(v2) =1, and
i(vs) = 3.
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Go G(') = Kz,a
Figure 1

We shall make use of the following theorem:
Theorem F. (Catlin [3],[6]). Let G be a connected graph and let G’ be
the reduction of G.

(a) Let H be a collapsible subgraph of G. Then G is collapsible if and
only if G/H is collapsible. In particular, G is collapsible if and only
if G' = K;.

(b) G is supereulerian if and only if G’ is supereulerian.

(¢c) G’ is a simple graph with §(G') < 3, and G’ contains no K3 or K3 3—e
as a subgraph, and either G' € {K,, K2} or

|E(G")] < 2[V(G')] - 4.

3 The Fan-Type Conditions and the Reduction of a Graph
Let G be a graph satisfying Fan-type condition (1). Let G’ be the reduction
of G. Define

I(G") = {v' € V(G")|there is a z € V(H(v')) such that d(z) > G:"z—)p —e},

and define I'(G’) = V(G’) - II(G").

Lemma 1. Let G be a k-edge-connected simple graph of order n satisfying
(1) with girth g € {3,4} and k € {2,3}. Let G’ be the reduction of G. Let
V(G') = {v},v5,--- ,v.}. Let H(v}) be the preimage of v{inG (1<i<c).

(a). If v} € II(G"), then there is a u; € V(H(v;)) such that

V(H)) +9—-4
g—2 '

(g—_n2)—p—65d(ui)$i(ui)+



b). If v; € I'(G’) then there is a u; € V(H(v})) such that
t

VHE)I +9-4

k < d(w) < i(u) + p)

Proof: The lemma is trivial if g = 3. Thus, we may assume g = 4. If
[V(H(v)))] = 1 then (a) and (b) are trivially true. In the following, we
assume that [V(H(v}))| > 1. Then since H(v{) is Ks-free and collapsible,
[V(H(v)))| = 6 and |E(H(%}))| > 1.
Case 1. v} € II(G").
Let z be a vertex in V(H (v})) such that
n
G=2p e < d(z) = |[Ng(z)|- (3

Since #'(G) > 2 and |V(H(v}))| > 6, |Ng_1(z)(z)| > 2. Let y and z be
two vertices in Ng_j(;)(x) with d(y) > d(z). Since G is K3-free, yzz is a
length-2 path in G. Therefore, by (1),

ﬁ}; —e< d(y). 4)
Since G is K3-free, No_1(z)(z) N Ng_r(y)(y) = 0. Therefore,
ING-1(z)(®)| + [INg—10)®)] < IV(H @), (5)
min{INo- 1o ) Na—rop ]} < gl - MR+ 94,

Hence, Lemma 1(a) follows from (3), (4), and (5).
Case 2. v{ e I'(G").
Since |E(H (v))| > 1, H(v{) contains an edge (say e = zy). Since G is
s-free, No_1(z)(z) N Ng_1(y)(y) = 0. Then (5) still holds in this case.
Smce G is k-edge-connected, d(z) > k and d(y) > k, and so by (2) and (5),
Lemma 1(b) holds.

Lemma 2. Let G be a graph satisfying (1). Let G' be the reduction of G.
Let v' € I'(G’). Then all vertices in Ng+(v') except for at most one are in
I(G").
Proof: Let r = d'(v'). Let Ng/(v’) = {z},25,--- ,z.}. Let H(v’) be the
preimage of v’ in G. Let H(x}) be the preimages of z} in G. Let v;z; be
the corresponding edge of v’z in G.
Case 1. [V(H(v'))|=1.

In this case, v; = v; (1 < 4,5 <), and so V(H(v')) = {v'}. Then z;v'z;
(i#3)isa Iength 2 path in G. Suppose that d(z1) < n/(g—2)p—e. By (1),
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d(z;) > n/(g—2)p—e for all 2 < i < r. This shows that {z5,25,---,2;} C
II(G'). Thus, the lemma holds.
Case 2. |V(H(¥))| > 1.

Since |V(H(v"))| > 1 and V(H(v')) N V(H(z;)) =0, for each v;z;, there
exists a vertex y; in V(H(v')) such that y;v;z; is a length-2 path in G.
Since v’ ¢ II(G'), d(y:) < n/(g—2)p—e. By (1), d(z:) 2 n/(g—2)p —¢
for all 1 < i < r. This shows that {z},z5,---,z.} C II(G’). The proof is
complete. O

Lemma 3. Let G be a 2-edge-connected simple graph. For any v € V(G),
i(v) < [(G')|.

Proof: Let r = i(v). Let I(v) = {},z5,--- ,z,}. Let H be the maximal
collapsible subgraph of G containing v, and let v’ be the contraction image
of H. Then I(v) C Ng/(v'). Let H(z}) be the preimage of z;. For each
z!, there is a vertex z; in H(z}) such that vz; is the corresponding edge
of v'z} in G. Since V(H(z;)) N V(H(x;)) = 0 (i # j), ziz; € E(G), and
so z;vz; is a length-2 path in G. By (1), all vertices in I(v) except for at
most one are in II(G’). If one of the vertices in I(v) is not in II(G’), say
4, then since x'(G’') > k/(G) 2 2, INg/(z}) — {v'}| > 0. Let y’ be a vertex
in Ng/(z}) — {v'}. Since G’ is K3-free, y’ ¢ I(v). Let y be the vertex in
H(y') such that z,y is the corresponding edge of z}3’ in G. Then vz,y is
a length-2 path in G. By (1), either v’ € II(G') or ¥’ € II(G’). We may
assume that 3’ € II(G’). Summing up above, we have

either I(v) C II(G’) or (I(v) — {z1}) U {¥'} C I(G").
Thus, i(v) < [II(G’)). O

In the following, we use an abbreviated notation n >> p to say that n is
sufficiently large relative to p.

Lemma 4. Let G be a k-edge-connected simple noncollapsible graph of
order n with girth g € {3,4} and k € {2,3}. Let G’ be the reduction of G.
If G satisfies (1) and if n >>p > 2 and n >> ¢, then

2<|(G)| < p- (6)
Proof: The lower bound is trivial. In the following, we shall prove |[I(G’)| <

p only. Let ¢ = |V(G’)| and t = [[I(G’)|. Then |['(G’)| = c—¢. By Lemma
1, for each vertex u’ € II(G’), there is a vertex u in V(H(u')) such that

< dtu) < i)+ VHED o=

oy ¢ S i+ e —,
and so

(gfz)p-*-(::g)—eSi(u).;.W_(w_ -
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Then by (7) and t = |[[I(G")],

n_, (4=g) - Swenen VHW))
R i D D e e Y

For each v’ € I'(G"), by Lemma 1, there is a vertex v in V(H(v")) such that

V(H@) +g-4

k <d(v) <i(v)+ 92 )

and so

4-g _. [V(HEN)
k+g_2St(v)+ =2
Then since |I'(G")| = c— ¢,

= SHe=t< ) i)+ Lvern [VHE)]

{k+
9~ v EN(GY) (9-2)

(9)

By (8), and (9), and V(G’) = II(G') UT(G"),
-9
=2 9

> i(v)+Euzev(<;)_|‘;(H(v’))l_

vEV(G’)

4—g n
{k+ ;_—2}(c—t)+t{(g_2)p+

4—g n
{k+g_2}c+t{(g_2)p —(k+€)}

< T i S VEO
g-—2
vev(GY)
Note that E‘J’EV(G’) i(’U) < zvlev(cl) d’(v’) = 2|E(G,)l and
2owev(a [V(H(@'))| = n. By Theorem F(c), |E(G’)| < 2c — 4. By (10),

(10)

{(g—2)k+4—g}c+t{§ — (g -2)(k+€)} < (9 - 2)(dc—8) +n,

Ho ~ (9 -2)(k+e} < {9 -2(@—K) -4 +g)c—8(g-2) +n.
(11)

Since ¢ < n, by (11)

t{g —(g-2)(k+€}<{(g—2)4-k)—3+g}n—8(g—2). (12
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Since g € {3,4} and k € {2,3},
(9-2)(4—k)—3+g<5. (13)
By (12) and (13),
o = (9= 2)(k+)} <5n—8(9 - 2)

5p%(g —2)(k+¢) —8(g —2)p
n—(g-2)(k+e)p )

Therefore, when n >> p and n >> ¢,

t<5p+

¢ < 5p. (14)

By Lemma 3, i(v) < [TI(G)| =t < 5p. By (8), (14) and }_ .y [V (H(v))]
<n,

tn+(@-gp—(9—-2pe) <(g-2p Y. i(v)+np,
vell(G')
tin+ (4 —g)p — (9 — 2)pe) < (9 — 2)5p%t + mp,
t{n+ (4 — g)p — (9 — 2)pe — 5(9 — 2)p°} < mp,
t < p+ —PLo = 2)pe+5p) — (4~ g)p}
=7 T n—{(g—-2)pe+5(g-2)p* - (4-g)p}

Therefore, t < p for n >> p and n >> €. The proof is complete. 0O
Remark. One can check that Lemma 4 holds if n satisfies the following:

B+e€)p+1)p—8p ifk=3and g=3,
max{2(3+ €)p(3p+1) — 16p,2p(p +1)(¢ + 3p)}  if k=3 and g=4,
max{(2+¢€)p(2p+1) — 8p,p(p+1)(2p+€—1)} if k=2 and g=3,
max{2(2+ €)p(5p+1) — 16p, 2p(p + 1)(5p+ €)}  if k=2 and g=4.

n>

However, these bounds are not the best possible.

Corollary 1. Let G be a graph satisfying the conditions of Lemma 4. Let
v € II{(G’). Let H(v) be the preimage of v in G. Then

|WH@mz§+@—m—@—m@+m. (15)
Furthermore, if [lI(G’)| = p then

(G < p{(9 —2)(c +p) +9 -4} (16)
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Proof: The inequality (15) follows from Lemmas 3 and 4, and (7) in the
proof of Lemma 4. For the inequality (16), if |II(G’)| = p, then by (15)

n= Y |[VEH) = Y IVHE)+ Y. [VHE)

vev(G') vel(G") vell(G)
n
> |r(G) +p{; +(4-g)-(9-2)(c+p)}

Thus, [T(G)| < p{(9—2)(¢ +p) +9 -4} o

Lemma 5. Let G be a graph satisfying the conditions in Lemma 4 Let G’
be the reduction of G. Suppose that |II(G’)|=p andn >>p and n >> e.
Let v’ € II(G’).

(a). If g=3 and Ngr(v') NT(G') # O, then
IWHWM2§+1—a (17)

(b). If g=4, then
IWHWMZE—%. (18)

Furthermore, if |[V(H(v'"))| = g — 2¢, then H(v’) is a bipartite graph with
bipartition V(H(v')) = X UY such that |X|=|Y| = % -
Proof: Since |II(G’)| = p, by Corollary 1,
V(&)= &) +ID(G)| < p+p{(g—-2)(c+p) +9 -4}, (19)
and so
d@) < |V(@)-1<p+p{(9-2(e+p)+9—4}-1.  (20)

There are two cases. Let us consider the case when g = 3 first.
Case 1. g =3.

Let ' € Ng/(v')NT(G’). Let zv be the edge in G corresponding to z'v’
in E(G'). Then d(z) < n/p — e since ' ¢ II(G’). Let A = Ng_j()(v).
Then A C V(H(v')) — I(v). Note that since G’ is simple and Ks-free, for
any z € A, zz ¢ F(G), and so zvz is a length-2 path in G.

Subase 1: There is a vertex y in A such that i(y) = 0.

Since yvz is a length-2 path in G and since d(z) < n/p — ¢, by (1),

i(y) =0and y € ACV(H(v')),

gqs«wswwwm—L
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Inequality (17) follows in this case.
Subcase 2. Every vertex y in A has i(y) # 0.

By the definition of reduction, each vertex in Ng-(v’) can only be adjacent
to one vertex in V(H(v')), and so in this case [A] < |Ng/(v')| = d’'(v’). By
Lemmas 3 and 4, i(v) < [I(G’)| < p. Thus, by (2) and (20) with g = 3,
andn >>pand n >> ¢,

d(v) = i(v) + |Ng—_1(w)(v)| = i(v) + |A] < [I(G")| + &'(¥) < LY
P

Note that for any z € A, zvz is a length-2 path in G. By (1), since
d(z) <n/p—e¢,

|Ng(2)| = d(z) > % —c

By (19) and g = 3, [V(G’)| < p(e+p). When n is large, |[Ng(2)| 2 n/p—e >
[V(G")| > d'(v) > | A|, and so there exists a vertex u in Ng(z) —A such that
i(u) = 0. Since uz € E(G), z € V(H(v')), and i(u) = 0, u € V(H(v')).
Therefore, since u € A and i(u) = 0, uv € E(G), and so vzu is a length-2
path in G. Thus, (21), (1) with g = 3, and i(u) = 0 implies that

g - e<d(u) <i(u) +|V(HE)) - 1= [V(H{))| - 1.

This proves the lemma for g = 3. Next we consider the case when g = 4.
Case 2. g =4.
Since v’ € II(G’), there is a vertex (say y) in V(H(v')) such that

INe(y)| = d(y) > g; —e.

If i(y) = 0, then |Ng_r() ()] = INc(¥)| 2 n/2p—e > d'(v')+p. Ifi(y) 2 1,
then since i(y) < p, [Ng—1()(¥)| = |Ne(¥)| = i(y) > n/2p — e —p > d'(v').
Note that each vertex in Ng/(v’) can be adjacent to only one vertex in
H(v'). This shows that not matter whether y is adjacent to a vertex in
Ng(v') or not, there are two vertices (say z1,22) in Ng_1(y)(¥) such that
i(z1) = i(z2) = 0. Since G is Ks-free, z1z2 ¢ E(G), and so z1yz2 is
a length-2 path in G. We may assume that d(z;) > d(z2). By (1) and
1'.(2'1) = 0,

INg(z1)| = d(z1) 2 2—’; —¢, (22)

Ne(z1) € V(H(®"). (23)
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By (22) and (23), similar to the argument above, there are two vertices (say
21, z2) in Ng(z;) such that i(2;) = i(22) = 0 and d(z;) > d(z). Thus, by
(1) and 5(21) = 0:

[Ng(21)| = d(21) > 25 =6 (24)

Ne(z1) € V(H(v')). (25)

Since G is Ks-free, and z,2; € E(G), Ng(z1) N Ng(21) = @ Therefore, by
(22), (23), (24) and (25),

[V(H("))| 2 INe(z1)| + INe(21)] 2 2(— —€)=--2 (26

Furthermore, if |V (H(v'))| = n/p — 2¢, then (26) holds with equality, and
so V(H(v’)) = Nc(zl)UNa(zl) with |Na(.’l:1)| = |Na(z1)| = n/2p—e. The
proof is complete. a

4 The Fan-Type Conditions for Collapsible Graphs

We are now ready to prove our main results.

Theorem 1. Let G be a simple 2-edge-connected graph of order n satisfy-
ing (1) with girth g = 3, p =2, and € = 2. If n is sufficiently large (n > 30)
then either G is collapsible, or G can be contracted to Cy (4-cycle) in such

a way that the preimages of two vertices in Cy are K, or K, — e, where
r=n/2-1.

Proof: Let G’ be the reduction of G. Suppose that G is not collapsible.
Then ¢ = |V(G')| > 4. By Lemma 4, t = [[I(G")| = 2. Let II(G’) = {v},v5}.
Let H(v}) be the preimage of ¥} in G, (1 < i < 2). Since d'(v{) > 2 and
[TI(G")| = 2, Ng+(v}) NT(G') # 0. Therefore, by Lemma 5(a) with g = 3,
p=e=2

[V(H(@))| = > 7~ L
Therefore,

n>|I‘(G’)|+Z|V(H('vi))|>(c 2)+2(——1)-—c 4+4n. (27)

i=1

Since ¢ > 4, (27) holds with equality, and so ¢ = |V(G’)| = 4 and |V (H (v{))|
=n/2—1 (1 <i<2). This shows that G’ = C,;. By (1) withp =€ =2
and g = 3, H(v;) € {Kn/2—1, Knj2—1 — €}. The proof is complete. (]
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Theorem 2. Let G be a simple 2-edge-connected and Ks-free (g = 4)
graph of order n satisfying (1) with p =2 and € = 1/2. If n is sufficiently
large (n > 126), then either G is collapsible, or G can be contracted to Cy
in such a way that the preimages of two vertices in C4 are K, s or K, , —e,
where s = (n —2)/4.

Proof: Since G is K3-free, G has girth ¢ = 4. Let G’ be the reduction of
G. Suppose that G is not collapsible. Then ¢ = |V(G’)| > 4. By Lemma
4, (G")| = 2. Let II(G’) = {v},v3}. Let H(v;) be the preimage of v} in
G, (1 £i<2). Since d'(v}) > 2 and |II(G")| = 2, Ne«(v}) NT(G’) # 0. By
Lemma 5(b) with g =4, p=2 and e =1/2,

VEHE) 2 5 - 1. (28)

Therefore,

2
n> NG+ Y IVHED) 2c-2+ 2(% —1)=c-4+n. (29)
i=1

Hence, ¢ = |V(G')| = 4, and so G’ = C;. Then (28) and (29) hold
with equality. By Lemma 5(b), H(v}) is a bipartite graph with biparti-
tion V(H(v{)) = X UY and | X|=|Y| = (n —2)/4. By (1) with p=2 and
€ = 1/2, this forces that H(v{) € {K,, Ks,s — €}, where s = (n — 2)/4.
The proof is complete. a

Since collapsible graphs and Cj are supereulerian, by Theorem F(b), we
have

Corollary 2. A graph satisfying Theorem 1 or Theorem 2 is supereule-
rian. o
Remark. Let V(K23) = {z,¥,v1,v2,vs}, where d(z) = d(y) = 3 and
d(v;) = 2. Let G be a graph obtained from K3 3 by replacing vertices z and
y by H(z) = K(n—3)/2 and H(y) = K(n-3)/2 (or K, where s = (n—3)/4),
respectively, and replacing each path zv;y by a path z;v;y; such that z; # z;
and y; # y; (i # J), where z; € V(H(x)) and 3 € V(H(y)). Then
G is a 2-edge-connected simple (or Ks-free) graph of order n such that
max{d(u), d(v)} > (n—5)/2 (or max{d(u),d(v)} > (n—3)/4) for each pair
of distance-2 vertices u, v in G. The reduction of G is the non-supereulerian
graph K3 3. Thus, Theorem 1, Theorem 2, and Corollary 2 are best possible.
For 3-edge-connected graphs, we have the following:

Theorem 3. Let G be a 3-edge-connected simple graph of order n sat-
isfying (1) with p = 4 and € = 9/4. If n is sufficiently large, then G is
collapsible.

To prove Theorem 3, the following lemma is needed.
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Lemma 6. (Chen [9]). Let G be a 3-edge-connected simple graph on
n < 11 vertices. Then either G is collapsible or G is the Petersen graph. O

Proof of Theorem 3: Let G’ be the reduction of G. Suppose that G is
not collapsible. Then by Lemma 4, ¢ = [TI(G’)| < 4, and by Lemma 6,

c=|V(G")] 2 10. (30)

Claim 1. ¢t = |II(G’)| = 4.

By contradiction, suppose that ¢ < 3. Then by (30) [I(G')|=c—-t > 7.
Note that G is 3-edge-connected, and so is G’. Hence, d'(u) > 3 for every
u € V(G'). By Lemma 2, for every u € I'(G’), all neighbors of u except
for most one are in II(G’). Since |[(G')| > 7, and d'(u) > 3 for every
u € I'(G"), and V(G’) = II(G’) UT'(G’), by observation, one can find that
G’ contains either a K3 or a K33 — e as a subgraph, and so by Theorem
F(c) G’ is not a reduced graph, a contradiction. Claim 1 is proved.
Claim 2. Let v’ € II(G’). Then Ne:(v')NT(G’) # 0.

By contradiction, suppose that Ngr(v’) C II(G’)—{v’}. Then by Claim 1,
|[Ng:(v')] <t —1=3. Since G’ is 3-edge-connected, [Ng:(v')] = 3. Let S =
V(G')—(Ngr (v')U{v'}). Since [I(G’)| =4, S =T'(G’) and |S| = c—4 > 6.
Note that for any u € S = I'(G’), wv’ € E(G’). Therefore, by Lemma 2,
all neighbors of u except for at most one are in II(G’) — {v'} = Ng/(v').
Since |Ngs(v')| = 3 and |S| > 6, G’ contains either a K3 or a K33 —easa
subgraph, contrary to that G’ is a reduced graph. Claim 2 is proved.

By Claims 1 and 2, Lemma 5(a) can be applied, and so |V(H(v))| >
(n —5)/4 for any v € II(G’). Therefore,

n>c—t+ Y |[V(H@) Zc—4+4(nT—5) —c—9+n,
vell(G’)

and so ¢ < 9. This is contrary to (30). The proof is complete. n}

Theorem 4. Let G be a 3-edge-connected simple and Ks-free (g = 4)
graph of order n satisfying (1) with p =4 and ¢ = 5/8. Then G is collapsi-
ble.

Proof: By way of contradiction, suppose that G is not collapsible. Then
by Lemma 6, ¢ = |[V(G’)| > 10. Similar to the proof in Theorem 3, t =
|II(G")| = 4 still holds.

By Lemma 5(b), [V (H(v))| > (n — 5)/4 for every v € II(G’). Therefore,
since |II(G")| =4,

nc—t+ Y [VEHE)2c-4+422)—c—9+n,
4
vell(G’)
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and so ¢ < 9. This is contrary to ¢ > 10. The proof is complete. o

Remark. Let G be a graph obtained from the Petersen graph P by re-
placing four vertices of P by H; = K, (1 <1 < 4) where r = (n —6)/4 (or
H; = K, , if g = 4 where s = (n—6)/8) in an appropriate way (see Figure 2).
Therefore, G is a 3-edge-connected simple (Ks-free if g = 4) graph of order
n such that max{d(u),d(v)} > (n — 10)/4 (or max{d(u),d(v)} > (n —6)/8
if g = 4) for every pair of distance-2 vertices u,v in G. However, the reduc-
tion of G is the Petersen graph. This shows that Theorem 3 and Theorem
4 are best possible.

Figure 2
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