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Abstract

If D is an acyclic digraph, its competition graph is an undirected
graph with the same vertex set and an edge between vertices z and
if there is a vertex @ so that (z,a) and (y, a) are both arcs of D. If G
is any graph, G together with sufficiently many isolated vertices is a
competition graph, and the competition number of G is the smallest
number of such isolated vertices. Roberts [1978] gives an elimination
procedure for estimating the competition number and Opsut [1982]
showed that this procedure could overestimate. In this paper, we
modify that elimination procedure and then show that for a large
class of graphs it calculates the competition number exactly.

1. Introduction

In this paper, we study the notion of competition graph which was in-
troduced by Cohen [1968] and has been widely studied since. If D is an
acyclic digraph (V, 4), then its competition graph is an undirected graph
G = (V, E) with the same vertex set and an edge between vertices z and
y if there is a vertex a in V and arcs (z,a) and (y,e) in D. We say that
a graph G is a competition graph if it arises as the competition graph of
some acyclic digraph. (Sometimes the condition of acyclicity is weakened;
see for example the papers by Dutton and Brigham [1983] and Roberts and
Steif [1983]. However, we do not weaken the condition here.) Competition
graphs arose in connection with an application in ecology and also have
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applications in coding, radio transmission, and modelling of complex eco-
nomic systems. (See Raychaudhuri and Roberts [1985] for a summary of
these applications and Greenberg, Lundgren, and Maybee [1981] for a sam-
ple paper on the modelling application.) The vast literature of competition
graphs is summarized in the survey paper by Lundgren [1989]. We shall
study the notion of competition number which arose in connection with the
attempts to characterize competition graphs, and show that a certain elim-
ination procedure computes this number exactly for a large class of graphs,
thus going a long way toward settling a question that has been around since
1978.

We will use the notation I, to denote a graph with r isolated vertices
and G U I, for the graph obtained from graph G by adding r isolated ver-
tices. Roberts [1978] observed that if G is any graph, then GU I, is a
competition graph of an acyclic digraph for r sufficiently large. He defined
the competition number of G, k(G), to be the smallest such r, and observed
that characterization of competition graphs is equivalent to computation
of competition number. The notion of competition number has since been
widely studied, as have variants such as niche number and double compe-
tition number (see for example Cable, et al. [1989], Fishburn and Gehrlein
[1992], Jones, et al. [1987], Lundgren [1989] and Scott [1987]). Opsut [1982]
showed that computation of competition number is NP-complete.

Roberts [1978] introduced an elimination procedure for computing a pa-
rameter m(G), the elimination number of G, and showed that k(G) < m(G)
and that for various interesting graphs, ¥(G) = m(G). Opsut [1982] showed
that there were graphs for which these two numbers could be different.
In this paper, we modify the elimination procedure so that it computes
a parameter M(G) called the modified elimination number, observe that
k(G) < M(G) < m(G) for all graphs G and that for a very large class of
graphs, k(G) = M(G). We have not been able to find an example for which
k(G) # M(G). Both elimination procedures are similar to (but different
from) the ones used by Parter [1961], Rose [1970], Golumbic [1978] and
others in applying graph theory to study optimal orderings of elimination
in Gaussian elimination. Such elimination procedures have been widely
studied. Some of the literature about them is summarized in Golumbic
[1980]. Neither the original nor our modified elimination procedure for the
competition number are very efficient. (Recall that the problem of comput-
ing k(G) is NP-complete.) In fact, these elimination procedures require n!
different runs. Each of those runs involves a computation that is exponen-
tial. Our emphasis here is not so much on the efficiency of the procedure
as it is on making progress on the old question of whether an elimination
procedure can be used to calculate the competition number.

In what follows, it will be useful to adopt some terminology that is
commonly used in the literature of competition graphs and has its origins
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in the ecological applications of the subject. Specifically, if (z,y) is an arc
of digraph D, we call y a prey of £ and = a predator of y. If (z,a) and
(y,a) are arcs, we say that a is a common prey of z and y. We will also be
concerned with vertez cligue coverings of a graph Gj these are collections
of cliques that include all the vertices of G. We will use the notation 8(G)
to denote the smallest number of cliques in a vertex clique covering of G.
In searching for a vertex clique covering with 8(G) cliques, we can always
limit ourselves to maximal cliques. It will sometimes be necessary to speak
of a vertex clique covering of a graph G that is a subgraph of another graph
H, and where we are allowed to use cliques of H that may contain vertices
not in G. We denote the number of cliques of H in a smallest such vertex
clique covering by 85 (G). Ng(v) will denote the open neighborhood of v in
G, the set consisting of all vertices adjacent to v in G. Ng[v] will denote
the closed neighborhood of G, the set Ng(v) U {v}. We will be interested in
0u(Ng[v]) for G a subgraph of H. For undefined graph-theoretical terms,
the reader is referred to Bondy and Murty [1976].

2. The Elimination Procedure

The following is the modified elimination procedure. After describing it
both informally and formally, we shall compare it to the original elimination
procedure in Roberts [1978]. The basic idea is to eliminate one vertex of
G at a time to build an acyclic digraph whose competition graph is graph
G together with some added isolated vertices. We order the vertices of G
as v, U2, ..., Up. At the j*# stage of the procedure, we “eliminate” vertex
vj+1 by accounting for its adjacencies in G. Beginning the j** stage, we
will have built an acyclic digraph F; = (V;, A;) whose vertex set contains
the vertex set of G. Digraph F, will have the property that its competition
graph is G together with some isolated vertices. Some edges {z, y} of G are
covered at the j** stage of the procedure in the sense that we add arcs to
F; from z and y to a common prey. We shall keep track of the remaining
uncovered edges of G by using a graph G; which is a spanning subgraph
of G. The procedure also keeps track of the subgraph H; of G induced by
vertices that have not been eliminated in previous stages. We pick arcs to
add to F; in the j** stage of the procedure by using maximal cliques in
H; that cover all of the edges from vj4; that are not yet covered, i.e., that
remain in graph G;. For each such clique, we let all of its vertices prey on
a common prey; this is chosen from previously eliminated vertices or new
vertices added to G where the new vertices play the role of isolated vertices
in the competition graph. By this method, we cover all the edges in G;
between v;41 and its neighbors and the edges in those maximal cliques of
H; used. We keep track of the available candidates for common prey by
using a set Sj.
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The Elimination Procedure

Input: A graph G = (V| E) of n vertices and an ordering of vertices
P=‘01, V2y +eey Une

Output: An acyclic digraph F, on V together with M new vertices
so that G U Ips is the competition graph of Fj,.

Step 0. Set Go = G, So =0, Ho = G, and j = 0. Let a digraph Fp
have vertex set Vo = V and arc set Ag = 0.

Step j1(j > 0).Let N;[v; 1] be Ng;[vj41]. Calculate 8z, (N;[vj41]).
(By the way that G; and H; are defined, N;[v;;1] is always a subgraph
of H; and therefore 8p,(N;j[vj41]) is defined.) Let h; be this number
except when Nj[v;;1] has just one vertex v;4,, in which case take h;
tobe 0. If h; = 0, let Sj41 = S; U {vj11}, Gj+1 = Gj, Hj;y = Hj,
Fjy1 = Fj, Vi1 =Vj, and 4;4) = Aj, and go to Step j3. If h; # 0,
find maximal cliques Kj, ..., K, in H; that form a minimum ver-
tex clique covering of Nj[vj;1). (Note that vj+1 € Kj, fors =1, ...,
h;.)

Step j2. If S; # 0, pick h; distinct vertices vj,, vj,, ..., vj,, ifrom
Sj, using lowest indexed vertices of Sj first. If S; has fewer than h;
elements, then after using all the elements of S;, add new vertices
Vj(w+1), Yj(w+2)s -+ +» Yjh;, Where w = |S;|, that are not in V;. Add
to A; arcs from the vertices of Kj, to vj,,8=1, ..., hj, and let A;4,
be A; plus all added arcs and Vj41 be V; plus all new vertices added
in this step, and let Fj;3 = (Vj41, 4j4+1). Set Sj41 equal to the set
of all vertices of S; not used as vj, plus the vertex vj4,, i.e.,

Si+1=8; = {vjss- -, v, }U {vj 11}

Step j38. If j = n — 1, output the digraph F, and stop. If not
and h;j # 0, let G, be the graph obtained from G; by deleting all
edges in cliques K;;, (but not their vertices) and let H;, be obtained
from H; by deleting vertex v;41. (Thus, Hj4, is always an induced
subgraph of G.)

Step j4. Set j «— j + 1 and go to Step jl.

Remark: F;, G;, H;, and so on depend upon the order P, but our notation
suppresses P.

Proposition 1 The elimination procedure produces acyclic digraphs Fj,
j =0, ..., n, and the competition graph of F,, is G U Ipr, where M =
M(G, P) is the number of vertices added.
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Proof. Since every arc of Fj either goes from a vertex to one with a lower
index or to an added vertex, this digraph is clearly acyclic. Moreover, since
the added vertices have no outgoing arcs, they are isolated vertices in the
competition graph of F,,. If z and y have a common prey in F,,, then they
are in a clique Kj;, and so are joined by an edge in H;, which is a subgraph
of G. If z and y in V(G) are adjacent, then the edge {z,y} remains in
the graph G; until at some step <1 it appears in some clique K;,, at which
time we add a common prey for z and y ;from S; and so = and y are
joined by an edge in the competition graph of F;, Fi;,, ..., F,. Every
such {z,y} = {vp,v,} appears in a clique K;, no later than step i1 where
i+ 1 = min{p, ¢}, since v, and v, are in the closed neighborhood of v;41
and v;4; is in every maximal clique Kj,. Q.E.D.

The modified elimination procedure we have presented differs ;from
that of Roberts [1978]. In the latter, the neighborhood of vj+, in Gj is
covered by cliques in G; and, moreover, we look for cliques that cover not
only the vertices of this neighborhood but also its edges. In the modified
procedure the neighborhood of v;4; in G; is covered by cliques in Hj,
not Gj, and we search for cliques covering all of the vertices (and hence
all of the edges between vj;; and its neighbors in G;). If m(P,G) is the
number of added vertices under the original procedure and M (P, G) is the
number of added vertices under the modified procedure, it is easy to see
that M(P,G) < m(P,G). This follows because Ng;[v;4+1] is a subset of
Ny, [vj41] and therefore the number of cliques of H; required to cover the
former is no more than the number of cliques of H; required to cover the
latter.

The number of added isolated vertices depends upon the ordering P.
Hence, we define the modified elimination number M(G) to be the minimum
of M (P, G) over all orders P. The minimum m(G) of m(P,G) is called the
elimination number by Roberts [1978]. It follows from Proposition 1 and
the fact that M(G, P) < m(G, P) for any P that k(G) < M(G) < m(G).
Opsut [1982] gives an example (see Figure 1) in which k(G) is less than
m(G). It is easy to show that for this graph, k(G) = M(G). This result
will follow from Theorem ?? below. It is also easy to see here since k(G) > 1
whenever G has no isolated vertices, and since M (G, P) = 1if P is the order
a, b, c,d, e, f. That m(G, P) > 2 for any order P is straightforward. (Here,
m(G) = 2, with the optimum obtained using the order b, q, f, ¢, d, e.)

3. Sufficient Conditions for k(G) = M(G)

The graph of Figure 2 will play an important role in this paper. We shall
call it a kite. In a kite, the solid edges must appear and the dotted edges
cannot appear. The remaining edge is possible. A kite-free graph is a graph
that does not have a kite as a configuration.

Our main theorem is the following:
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Theorem 2 If G is kite-free, then k(G) = M(G).

We recall that the computation of the competition number of G is an
NP-complete problem. So is the computation of 6(G). We make no claim
that the elimination procedure gives a relatively efficient algorithm for cal-
culating k(G) even for kite-free graphs. Indeed, it requires n! different runs.
In each run, we have to compute 8 a total of n times. It is not hard to
show that although computation of 6(G) is an NP-complete problem, the
greater computational difficulty comes from the need to repeat the entire
procedure n! times.

The rest of this paper will be devoted to proving Theorem ??. We
already know from Proposition 1 that k(G) < M(G). We shall use the
notation of the elimination procedure.

Let us say that a kite body is the configuration of Figure 3 and that a
graph G is kite-body-free if it contains no such configuration.

Lemma 3 Suppose G is a kite-body-free graph, S is a subset of V(G), H is
an induced subgraph of G, and K, Ka, ..., K4 is a vertez clique covering
of S using mazimal cliques of H. Suppose a subset C of S forms a clique
in H. Then C 13 contained in some K;.

Proof. Suppose that we have z, y in C such that z € K;,y € K;, z € K;,
y & K; for some 1 < i,j < g. Then there is u € K; not adjacent to y and
v € K; not adjacent to z. It follows that u, z, y, v form a kite-body. Since
this cannot happen, we conclude that whenever y ¢ K; and y € Kj, then
if z € K;, we must have z € Kj;. It follows that K; N C C K; and, since
y € K and y € K, we have K; N C a proper subset of K; NC.

Let ¢ be chosen so that K; N C has the maximum number of vertices.
Then C must be a subset of K;. Otherwise, if y is in C' — K;, y must be in
some K. By our previous argument, K; N C is a proper subset of K; NC,
which contradicts the above choice of K;. Q.E.D.

If D is acyclic, we can label the vertices of V(D) with distinct positive
integer labels 7(z) so that if (z,y) € A(D), then w(y) < 7(z). We call such
a labelling of vertices of an acyclic digraph an acyclic labelling.

Suppose that G has competition number k = k(G) and F is an acyclic
digraph whose corresponding competition graph is G U Ix. Let @ be an
acyclic labelling of vertices of F. Let us label the vertices of V(G) as vy,
.«+y Un 80 that m(v;) < w(v;) if and only if i < j. We shall use the ordering
P on V(G) defined by the labelling v, ..., v to perform the elimination
procedure and we shall show that the procedure produces a digraph F,
with competition graph G U I;.

Let
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D(P) =D = {D: D is an acyclic digraph whose competition graph is
G U I, that has no outgoing arcs jfrom any vertex outside of V(G), and
that has an acyclic labelling that agrees with P on V(G)}.

Certainly D # 0 since F € D. We may restrict ourselves to D’s with no
outgoing arcs from any added vertex because deleting such arcs does not
change GUI.. If D € D, let

R, = R,(D) = {z € V(D) : (v,2) € A(D)}
and
Q: =Q:(D)={ye V(D): (3 2) € A(D)}.
Let
Vo(D) = V(G), Ao(D) =0, Wo(D) =0
and for 1 < j < n, let

Vi(D)=V(G)U{u€ Ik : (v,,u) € A(D) for some 3,1 < s < j},

Ai(D) = U’Z=1 User, Uyeq. {(v,2)}
= {(y,z) € A(D): (v,,z) € A(D) for some 3,1 < 3 < j}

and
W;(D) = {z € V(D) : j is the lowest index for a predator of z in D}.

We recall that n = |V(G)|; hence V(D) = V(D), A,(D) = A(D).
Thus, it suffices to show that there is a digraph D in D(P) = D so that
(Vn(D), An(D)) = F,. In fact, we show by induction on j < n that there
is a digraph D € D such that

(Vi(D), A;(D)) = Fj. (1)

(The proof will show that we will not need to change the order P ;from
the one with which we start, and so we obtain the stronger result that the
elimination procedure applied to an acyclic order for a digraph D that has
competition graph GUI; does indeed give rise to the competition number.)
It is clear by definition that for any D € D, (Vo(D), Ao(D)) = (V(G),0) =
Fo, so (1) holds when j = 0. We assume that (1) holds for some j < n
for some F* € D and show the same for j + 1. That is, we will set out to
construct a digraph D* in D(P) so that
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(Vi+1(D*), Aj+1(D™)) = Fja. (2)
Suppose hj = 0. Then Nj[vj;1] has one vertex, v;;1. If there is no arc in
F* from v;41 to an isolated vertex u, or if whenever there is such an arc
there is also an arc from v; to u for some ¢ < j+1, then V;11(F*) = V;(F*),
Ajp1(F*) = Aj(F*), and Fj41 = Fj, so (2) holds. If there is an arc in F~
from vj41 to an isolated vertex u but no arc from v; to u for ¢ < j + 1,
we may drop the arc (vj41,u) from F*. This clearly does not change the
acyclicity or the acyclic ordering. Since Nj[vj41] = {vj+1}, vj41 is not
adjacent to any v,, 8 > j+1, in G, and so the indegree of « is one in F*; it
follows that the competition graph does not change after deleting the arc
(vj+1,u). However, in the digraph D* resulting from dropping such arcs,
(2) holds since Vj41(D*) = V;(F*), Aj41(D*) = Aj(F*), and Fj;, = Fj.
Thus, we may assume that h; # 0, and we do so for the rest of the proof.

For each D € D satisfying (1) and for each y € Wj41(D), let

Cy(D) ={=z: (=,y) € A(D)}.

It is easy to see that Cy(D) is a clique in G and since y € Wj1(D),
there is an arc from v;4; to y in D and hence v;4) belongs to Cy(D).

Let us recall some terminology. In applying the elimination procedure,
we encounter edges {z,y} in Nj[v;41] and arcs from z and y to some vertex
of Sj or some new vertex added in step j. We then say that edge {z,y} is
covered in step j. All edges {z,y} with z, y adjacent to v;4, are covered
in a step r with » < 5.

The proof proceeds with a series of lemmas that will be used to replace
F* by other digraphs in D. We first replace F* by D € D, then D by
D' € D. We use a procedure called “raising” to replace D’ by D" € D.
From D", we will construct an explicit D(®) € D, and we will then again
use this raising procedure to change D) into D*) € D. By continuing
with this procedure, we eventually build D* € D satisfying (2).

Lemma 4 If D € D satisfies (1), then

Uyew_,-.,,;(D)Cy(D) 2 NJ ['Uj.|.1].

Proof. Suppose that z is in Nj;[v;41] but not in Uyew;,,(0)Cy(D). Then
T # vj41. Since z is in Nj[v;41], the index of z is greater than j+1 because
all vertices of lower index are isolated in G;. Since z is adjacent to vj4; in
G, = and vj4; are predators of a vertex z in D. If all the other predators
of z in D have indices greater than j + 1, then z is in W;;1(D). Since z is
in C;(D), we have reached a contradiction. Therefore, one of the incoming
arcs to z in D is from a vertex w of index ¢ less than j + 1. However, since
(1) holds, edge {z,v;41} was covered in step r for r < i and cannot be in
G;. This is a contradiction. Q.E.D.
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Lemma 5 There ezists D € D such that D satisfies (1) and for each y in
W;1(D), Cy(D) 1is included in some Kj,.

Proof. We take D = F* and let y be in W;;1(D). We consider two
cases.

Case 1: There is z # vj41 in Cy(D) so that z € Nj[v;41]. Then z € Kj,
for some s. We shall show that Cy(D) C Kj, for some t. Let G’ be the
subgraph of G induced by vertices of Ng(v;4+1), the open neighborhood of
vj+1 in G. Then since G is kite-free, G’ is kite-body-free. Let H be the
subgraph of G’ induced by vertices in Ng;(vj41) and let § = Cy(D) -
{vj+1}. Now for any ¢ =1, ..., h;, any vertex in K; — {v;41} is adjacent
to vj41 and Kj, — {vj41} is a clique in G’ . It is a maximal clique in
H. Moreover, S is a clique in H. It is a clique because every pair of
elements in Cy(D) has y as a common prey in D and it is in H because
every element in S has index at least j + 1, by definition of W;;1(D). We
claim that the collection of maximal cliques K; — {vj41}, ¢ =1, ..., h;j,
is a vertex clique covering of S. This will allow us to use Lemma 3 (with
C = S) and conclude that S C K, for some ¢, as required, and complete
the proof in Case 1. Thus, we suppose there is a vertex u in S that is not
in any of the maximal cliques K; — {vj+1}, ¢ =1, ..., hj. We will reach
a contradiction from this assumption. Since u is not in any K; and u is
in S which is in H, we conclude that for ¢ = 1, ..., h;, there is z;, € Kj,
so that z, is not adjacent to u in H and therefore in G. Since u is not in
any K; , u is not in Nj[vj41], and so edge {v;41,u} is covered in a step ¢
prior to step j. This implies that {v;41,%,vi41} is included in a maximal
clique in Hj;, say K;_, among the maximal cliques used in the elimination
procedure at step . If z is not adjacent to v;41, then v;41, 2, 2, u, vi41
form a kite in G, which cannot be. (We get the edge {u, z} from Cy(D), the
edges {u, vit1}, {4,vj+1}, {vi+1,vj41} from K; , and the edges {z,,v;41},
{z,vj41}, and {z,z,} from Kj,; we get the non-edges {u,z,} and {z,v;41}
by assumption.) Therefore, suppose z is adjacent to v;41. If z belongs to
K;.,, then edge {z,v;+1} would have been covered in step i and z could not
be in Nj[vj4+1]. Thus, there is v in K;, such that v, is not adjacent to 2.
Then vj41, 2s, z, u, v form a kite in G, which again cannot be. (We get
the edges {u,v:} and {vj41, v} from clique K;, and the non-edge {z, v}
by assumption, and the rest of the argument is as in the previous kite.)

Case 2: For every z # vj41 in Cy(D), z & Nj[v;41]. Consider 2 € Cy(D).
Recall that y € Wj41(D), there is an arc vj4) to y and hence since z €
Cy(D), {2,vj41} is an edge of G. This edge is covered in a step i prior
to step j because 2z is not in Nj[v;41]. Thus, every edge {z,v;41} for
z € Cy(D) is covered in a step prior to step j. Then the new digraph D’
obtained from D by deleting arc (vj41,¥) still is acyclic and has the same
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acyclic order. Also, Equation (1) holds for D’ since arc (vj4+1,y) was not
added in any step prior to step j, by the definition of W;1(D). Finally,
we note that D’ has competition graph G U I; and so is in D. To see why,
note that deleting arc (vj41,y) will result in not covering edges {z,v;41}
for 2 € Cy(D) at step j. However, these edges are covered in steps prior
to step j and so are in the competition graph of D’. By replacing D by
D', we get a situation where Wj;1(D’) has fewer elements than W;;1(D).
By continuing the process, we end up in a situation where the hypothesis
of Case 1 holds or where W;;1(D) is empty. In the latter case, the lemma
holds vacuously. Q.E.D.

If D is any digraph in D, let
¥;(D) = max{w(v) : v € Wj41(D) N S;}
and let

D(S;) = {D€D: D satisfies (1) and there is no ¢ < (D) so that
v € §j — Wi1(D)}

Lemma 6 There is a digraph D' € D(S;) such that for each y in Wj41(D’),
Cy(D') is included in some K;,.

Proof. By Lemma 5, there is a digraph D € D such that D satisfies
(1) and for each y in W;41(D), Cy(D) is included in some K;,. Suppose
Wj+1(D) ns; = {vjl,...,vjp}, with j; < ...< Jp- Then j, = ¢J(D)
Suppose that there is an ¢ < j, so that v; € S; — Wj41(D). Note that
i # jp by definition of ¥;(D). Build D' from D by replacing every arc
(=, v;,) by an arc (z, v;) and every arc (u,v;) by an arc (u,v;,). Obviously,
the competition graph does not change. The digraph D' is still acyclic. To
see why, note that j, < j because v;, € S;. By definition of W;,1(D), all
predators of v;, in D have indices > j+1 > j > jp, > i. All predators
of v; in D have indices > j > jp, for if (v,,v;) € A(D) and 7 < j, then
v; € R.(D); then since D satisfies (1), we conclude that v; was used as a
prey in the elimination procedure at a step prior to step r and so prior to
step j and could not be in Sj, which is a contradiction. The acyclic order for
D is still an acyclic order for D’. Hence, D' is in D. Since the only changed
arcs in going from D to D' are from vertices of index > j + 1, we note that
(V;(D'), A;(D")) = (Vj(D), A;j(D)) = Fj and (1) still holds. Finally, since
Wi1(D') = Wiaa(D) — {13, U {5} and Co,(D') = Co,, (D), Cy(D') is
included in some Kj, for each y € W,+1(D ). By continuing this process,
we end up with D’ such that there is no i < j, with v; € S; — W;41(D’).
Q.E.D.

We now describe a method, called raising, of transforming one digraph
in D(S;) into another. We shall use this method several times in the proof.
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Given E € D(S,-), let L(E) be a list of the vertices of Wj41(E), starting
with vertices in G in order of increasing index, and following by any added
vertices not in G, in any order. We define a new digraph E' = A(E) called
the raised digraph obtained from E. Define E’ as follows:

V(E') = V(E);

A(E') = A(E) - {(z,y) € A(E) : y € Wj41(E)}+ arcs from all vertices of
K, to the ¢'* vertex in list L(E), ¢ = 1, 2, ..., h;.

We have enough vertices in Wj41(E) to do the latter. For, each Cy(E) for
y in Wj41(E) is a clique in H; and by Lemma 4, these cliques form a vertex
clique covering of N;[vj+1] and so there are at least as many y’s as there
are cliques K, since the K;_ define a minimum vertex clique covering.

The next lemma shows that under appropriate assumptions, raising
leaves a digraph in D. Before proving this lemma, we illustrate the pro-
cedure with the example in Figure 4. It can easily be checked that F
is a digraph which can be obtained from the elimination procedure ap-
plied to G by following the vertex ordering P = wv,...,vs, Where a is
an added isolated vertex. The digraph E belongs to D(P). We note
that F3 = (Va(E), A3(E)), 3 = {v2,v3}, and W4(E) = {v2,v3}. Since
E € D(83), E' = A(E) is well-defined. In fact, using raising with j = 3,
we find that Fy = (V.;(E’ ), A4(E’)) and E' = F together with arcs (vs, v4)
and (ve,v4). Also, it is easy to check that B’ is in D(Sy), Sy = {vs,va},
and Ws(E') = {v4}. Then, using raising with j = 4, we have A(E') =
A(A(E))=F

Lemma 7 If E is in D(S;) and for each y € Wj1(E), Cy(FE) is included
in some Kj;,, then the raised digraph E' = A(E) is in D, W;1(E') C
W;j+1(E), end |Wj1(E')| = hj. Moreover, Cy(E') is included in some
K;, for each y € Wj11(E') and E' belongs to D(S;).

Proof. E'is acyclic since any vertices in W;;+1(E) have indices < j if they
are in V(@) or no outgoing arcs if they are not in V(G) (by definition of D
and because raising does not add such arcs), and any vertices in K;_ have
indices > j + 1. Also, the same ordering of vertices that was an acyclic
ordering for E remains one for E’. The competition graph of E’ is still
G U I;; by the hypothesis of the lemma, since Cy(F) is included in some
Kj,. Thus, E' isin D.

Next, we note that W;1(E') C W;41(E) since if y is not a prey of v;+1
in E, it is still not in E’, and if y is a prey of v;, i < j + 1, in E, it is still
a prey of v; in E'.

Next, we show that |W;;1(E’)| = h;. Recall our assumption near the
beginning of the proof of the theorem, that h; # 0. In E', we have used
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hj vertices from list L(E) and each such vertex is in Wj41(E’'). No other
vertex is in W;1(E') since all vertices not in W;4+1(E) could not be in
W1 (E').

Clearly, for each y € W;j;1(E'), Cy(E') = K;, and therefore Cy(E') C
K;, for some q € {1, ..., h;}.

Finally, we show that E’' belongs to D(S;). We note that V;(E') =
V;(E) because if u € I} and (v,,u) € A(E) for s < j, then (v,,u) € A(E'),
and if u € I} and (v,,u) € A(F) for s < j, then (v,,u) is not added in
going to E'. Also, A;(E') = A;j(E). To see why note that if s < j, then
R,(E) and R,(E’) are the same since each arc added or deleted in going
ifrom E to E’ goes from a vertex v for k > j. If z € R,(E) = R,(E'),
then z &€ W;.1(F) and so Q:(E’) equals Q.(F). Thus, (1) holds for E'.

Since Wj+1(E') C W 41(E), it follows that Wj,1(E')NS; C W;1(E)N
Sj. Then, by definition of %;, ¥;(E') < 9;(E). Now suppose that v; €
Sj —W;1(E') for some i < ;(E'). If v; € Wj41(E), then 9;(E’) < ¥;(E)
implies that ¢ < ;(E). Then v; € S; — Wj11(E) implies that E ¢ D(S;)
contrary to the hypothesis of the lemma. If v; € Wj;1(E), then vy 5
and v; are in L(E). Hence, since vy,(gr) Was chosen in the construction of
E', v; should have been chosen before vy, ;(y and would be in W;4,(E'),
which is a contradiction. Q.E.D.

To complete the proof of Theorem ??, we take a digraph D' € D(S;)
such that for each y in Wj1(D’), Cy(D’) is included in some Kj;,. (This
D' exists by Lemma 6.) Then we let D” = A(D') be the raised di-
graph obtained from D’. Now we consider the relationship between S; and
W;41(D"). Suppose first that S; C Wj41(D”). By Lemma 7, W;41(D") C
W;41(D'). Thus, S; C W;41(D') and so the procedure to get D” from
D' (except the process of deleting arcs (z,y) € A(D') such that y €
W;1(D')) parallels exactly the elimination procedure in step j since el-
ements of W;1(D') are given in list L(D’') in increasing order of index
if they are in G. It follows that (Vj4+1(D"), A;j41(D")) = Fj41, which is
Equation (2) as desired.

Suppose next that W;j41(D") C Sj. Let Wj41(D") = {vj,,...,vj,_j}
with j1 < ... < jp;. By Lemma 7, there is no i < Jn; so that v; €
S; — Wj41(D"). But then since 8y;(Nj[vj+1]) = hj, and the vertices of
W;11(D") are the lowest indexed vertices of S;, the elimination procedure
in step j picks elements of W;1(D") from S; at the beginning and again
we conclude that (Vj11(D"), Aj+1(D")) = Fj41, as desired.

The last case is where neither S; C W;11(D") notr W;41(D") C S; hold.
Now we choose vertices z and y from W;41(D") - S; and S; — W;;.1(D"),
respectively. We may choose y to have the lowest index of vertices in
S; — W;41(D"). Now y is in V(G) and the index of y is < j since y is in
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S;. Moreover, z is not in V(G). For, since £ € W;4+1(D") C Wj41(D’), =
is a prey of v;41 and of no vertex of index < j. If z were in V(G), = would
have index < j and so by the elimination procedure, £ would have to be
in S, which is not the case. We now build a new digraph D(®) as follows.
For z and y as chosen above, let

V(D®) = v(D"),

AD®) = AD") - {(0,2): (4,2) € AD")} — {(v,5) : (v,5) € A(D"))
U {(v,9): (v,z) € A(D")}U{(v, z): (v,y) € A(D")}.

Clearly D®) has the same competition graph G U I; as D”. Also, D®) is
acyclic. To see why, note that if (v,z) € A(D"), then v has index > j +1
by the definition of W;41(D"), while y has index < j as noted above. Also,
since z € V(G), note that z has no outgoing arcs in D”, by definition of
D and the raising process, and so replacing the arc (v,y) by the arc (v, z)
cannot create a cycle. The acyclic order for D' is still an acyclic order for
D), Thus, D® is in D. Next, we show that (V;(D®), 4;(D®)) = F;.
The only possible way that V;(D(®) could change from V;(D") would be
if we were to include vertex z in the former. That could not happen since
y is in S; and so could not have an incoming arc from a vertex of index j.
Thus, V;(D®)) = V;(D"). Also, A;(D®) = A;(D") since neither z nor
y has a predator of index < j and thus R,(D®)) is the same as R,(D")
for s < j. Iffor 1 < s < j, z € R,(D") = R,(D®), then z ¢ Wj41(D"),
z ¢ S, and so Q,(D(®) equals Q,(D"). We shall show that D(® € D(S;).
If 7(y) < ;(D"), then D” is not in D(S;) since y € S; — Wj1(D").
Hence, 7(y) > 9;(D"). However, by selection of y, =(y) < w(z) for any
z € Sj — Wj1(D"). Now W;1(D®) = Wj;1(D") - {z} U {y}. Thus,
for every z € S; — W;+1(D®), we have z € S; — W;+1(D") — {y} (since
z is not in V(G) and so could not be z). Hence, n(z) > #(y) and in
fact #(z) > w(y) since z # y. Then 7(2) > w(yg > 9;(D"). But since
W;+1(D®) N S; = (Wjsa(D") U {y}) NS}, $;(DP)) = n(y). Thus, (2) >
$;(D®) and D® € D(S;). Moreover, it can be easily checked that for
each v € Wj41(D®), C,(D®) is included in some Kj,.

Now replace the digraph D(®) by the raised digraph D*) = A(D®)).
By Lemma 7, raising leaves us with a digraph D) in D and one for which
(Vi(D®), 4;(D@)) = F;. Also by Lemma 7, since D® € D(S;), the
same is true of D(*). Moreover, raising a second time does not change
Wi 1(DD®), ie., W1 (D®) = W;11(D®). But since Wj41(DP) =
Wi1(D”) — {z} U {g}, S; — Wj+1(D¥) has fewer elements than S; —
W;+1(D") and W;41(D®)) —S; has fewer elements than W;1(D") — S;.
By continuing with the same procedure, we eventually construct a digraph
D* in D with (Vj(D*), A;(D*)) = F; and either S; — W;41(D*) = 0 or
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Wj+1(D‘) - Sj = (. But then either Sj g Wj.‘.l(D') or Wj+1(D') g Sj.
In either of these cases, we conclude that (V;41(D"), 4j11(D*)) = Fj41,
as desired. This completes the proof of Theorem ?7.
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Figure 1: Opsut’s example of a graph where k(G) < m(G).

Figure 2: A kite. All solid lines are in the graph and all dotted lines are
not.

Figure 3: A kite-body. All solid lines are in the graph and all dotted lines
are not.
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Figure 4: An illustration for the raising procedure. The competition graphs

of F and E are both GUI; and A(A(E))=F.

113

Vs

Vs

Us



