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Abstract
In this paper. we study path-factors and path coverings of a claw-
free graph and those of its closure. For a claw-frec graph G and its
closure cl(G). we prove (1) G has a path-factor with k components if
and only if cl(G) has a path-factor with k components. and (2) V(G)
is covered by & paths in G if and only if V'(cl(G)) is covered by &
paths in cl(G).

1. Introduction

In this paper. we deal with finite undirected graphs G = (V(G). E(@))
without loops and multiple edges. A graph is called claw-free if it contains
no induced subgraph isomorphic to L'y 3. A graph is defined to be hamil-
tonian if it contains a hamiltonian cycle. while traceable if it contains
a hamiltonian path. Let Hy..... H;. be subgraphs of a graph G. Then G
is said to be covered by H;..... Hi if V(G) = V(H))U---UV(Hg). A
path-factor of a graph G is a set of vertex-disjoint paths covering G.

2. Ryjacéek Closure

Recently. Ryjacek [3] has introduced a new closure for claw-free graphs.
A vertex x of a graph G is said to be locally connected if the neighborhood
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Ng(x) of v in G induces a connected graph. For a locally connected vertex
x of a graph G. we consider the operation of adding edges between every
pair of nonadjacent vertices in Ng(r) so that Ng(r) induces a complete
graph in the resulting graph. This operation is called local completion
of G at x. Now we consider a series of local completions. For a graph G.
let G = Gy.Ghy..... G,—1.G, = H be a sequence of graphs in which G; is
obtained from G;_; by a local completion (1 < i < r). If we cannot obtain
a new graph from G, = H by any local completion. i.e. if Ny () induces a
complete graph in H for every locally connected vertex x in H. we call H
a closure of G and denote it by cl(G). Ryjacek has proved the following

theorem.

Theorem A ([3]). Let G be a claw-free graph. Then
(1) a graph obtained from G by local completion is also claw-free. and
(2) c)(G) is uniquely determined.

3. Hamiltonicity and Traceability

It has been proved that the closure preserves hamiltonicity and trace-

ability.

Theorem B ([3]). Let G be a claw-free graph. Then G is hamiltonian if

and only if ¢)(G) is hamiltonian.

Theorem C ([1]). Let G be a claw-free graph. Then G is traceable if and
only if cl(G) is traceable.

Ryjacek. Saito and Schelp proved the following two theorems as gener-

alizations of Theorem B.

Theorem D ([4]). Let G be a claw-free graph. If cI(G) has a 2-factor
with k components. then G has a 2-factor with at most k components.

Theorem E ([4]). Let G be a claw-free graph. Then G is covered by k
cvcles if and only if c(G) is covered by k cycles.
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4. Main Results

We prove the following two theorems as generalizations of Theorem C.

Theorem 1. Let G be a claw-free graph. Then G has a path-factor with
k components if and only if cl(G) has a path-factor with k components.

Theorem 2. Let G be a claw-free graph. Then G is covered by k paths if
and only if cG) is covered by k paths.

Before proving the above theorems. we introduce some terminology and
notation which are used in the subsequent arguments. For a graph G and
I C V(G). the subgraph of G induced by T is denoted by G[T]. When
we consider a path or a cycle. we always assign orientation. Let P =
Zoxp---dy be a path. We call ro and z,, the starting vertex and the
terminal vertex of P. respectively. The set of internal vertices of P is
denoted by int(P). namely int(P) = {rq.2q...... tm—1}. The length of P is

the number of edges in P. and is denoted by I(P). We define .1',.+'P) = Tip1

~(P) ++H(P)

; = 2j-1. Furthermore. we define x;

and x = 2;p2. When it is

obvious which path is considered in the context. we sometimes write x7

and &r; instead of .rf(P) and .ri_(P) . respectively. For z;.xr; € V/(P) with
i < J. we denote the subpath x;xi41---x; by x; E.rj. The same path
traversed in the opposite direction is denoted by x; P ;. We also use the
same notation for a cycle. For graph theoretic terminology and notation
not defined in this paper. we refer the reader to [2].

Before closing this section. we present the following lemma which is used

in the proof of the main theorems.

Lemma 3. Let G be a claw-free graph and let x be a locally connected
vertex of G. Let I1.T, C V(G) with Ty N T, = {x}. Suppose G[T1] is
traceable and G|T3] is either hamiltonian or isomorphic to K, but G[T1UT3]
is not traceable. Choose a path Py and a cycle or an edge C'; with V(P;)U
V(C2) = UT; and V(P )NV(Cy) = {x}. and a path Py in G[Ng(x)] with
starting vertex in {x+ P} p=UP)} and terminal vertex in {x+(C2), r~(C2)}
(if Cy is a cycle) or V(C'2) — {x} (if C is an edge) so that P, is as short as
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possible. Then 2 < 1(Pp) € 3 and int(Po) N (V(P)UV(C2)) = o.

Proof. Note first that each hamiltonian path @, in G[T;] and each hamil-
tonian cycle Dy in G[T2] (if G[T3] is hamiltonian) or an edge D> in G[T?]
(if G[T») is isomorphic to R7) satisfy 17(Q1) U V(D;) = T UT; and
1(Q1) NV (Dy) = {x}. Let s, and t; be the starting and terminal vertices
of Q,. respectively. If r = s;. then G[T, UT] is traceable. This contradicts
the assumption. Hence we have x # s;. By symmetry. we have x # #;.
These imply that both +~(@) and +*@1) exist on Q;. Furthermore. since
v is a locally connected vertex of G. there exists a path in G[Ng(x)] with
starting vertex in {x+(@), y~(21)} and terminal vertex in {x (D2} y=(P2)}
(if Dy is a cycle) or V(D) — {x} (if D2 is an edge). Therefore. we can
make a choice of (Py.C. ).

Let s and t be the starting and terminal vertices of P;. respectively.
By the same reason as in the above. both =P and 2P exist on Pp.
Let u; = =P and vy = 71 If Cy is a cycle, let up = aHC2) and
vy = 2~1C2) If CY is an edge. let C2 = 2. (An edge uzr is also denoted
by ug C—g x in the subsequent arguments.) In either case. we may assume
that the starting and terminal vertices of Py are u; and uz. respectively.

If wjus € E(G). then P = s I;l uy s 52 xr I_’; t is a path in G with
V(P) = V(P)UV(C,) =Ty UT,. This contradicts the assumption that
G[Th U T3] is not traceable. Hence we have ujus ¢ E(G). Similarly. we
have ujvg. t1ug. vy ¢ E(G) if Ca is a cycle, viuz ¢ E(G) if C2 is an edge.
Since & and {u1.v1. 42} do not form a claw in G, u1r, € E(G). Similarly.
upty € E(G) if Cy is a cycle. (See Figure 1.)

First. we prove 2 < I(Py) € 3. By the choice of (P,.C2. F). Py is an
induced path. Hence. if {(Po) > 4. {u1. u'lH'(P"). u2} is an independent set.
Since V(Py) C Ng(x) and G is claw-free. this is a contradiction. Thus.
I(Po) < 3. Since uyuz ¢ E(G). (P) = 2.

Next. we prove int(Po) N (V(P) UV (Ca)) = 0. Let w = u'lHP“ and
y=u, (Po)  Note that. if [(Py) = 2. w = y. We show the following two
facts.

Claim 1. w ¢ V(P)UV(C?)

Proof. Assume. to the contrary. w € V(P;)U1(C?). Since w € V(F) C
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t X u,
\{]
P, C: P, C:
Figure 1:
Ng(r) and uyuy ¢ E(G). w ¢ {2, uz2}.
Case 1.1. w € sPyuj
First. suppose w # s. Thus. «w € st El uy. Let w™ = =P

and wt = P Since w and {v.w”.w*} do not form a claw in G.
{ewt e e ewt}NE(G) # o. If w™w* € E(G). let

P = sI?l ll.'_ll'+F] Uy ll'.l'1;1 t. (5=Cp and Pj = wl;o us.
If w=a € E(G). let

Pl = 31;1 u".vwl—’-l w1t .51 t. C3=Cy and Py = u’];o Uz,
If zut € E(G). let

P = sl?’l w.rur+};1 uy v I_’; t. C3=Cp and Py = wl;o us.

Then in each case. we have V(P)UV(C}) = V(P)UV(Cy) =ThUT,
and V(P{)NV(C3) = {x}. Furthermore. w € {x+'P) =P} and I(P}) <
I(Fy). This contradicts the choice of (P;.C5. Py).

Next. suppose « = 5. Let

P=uyCorwPyuyvy P t.

Then P is a path in G with V(P) = V(P)UV(Cy) = Ty UT,. This
contradicts the assumption.

Case 1.2. w € 1, I;It
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If y@ € E(G). let

P= slgl y'.rC—'g u-zyl;l Uty I;l t.
If vy € E(G). let

P= 31;1 y*'zc—'z-l‘y+1;1 Ull'l};; t.

Then in either case. P is a path in G with V(P) = V(P )UV((,) = T UT,.
This contradicts the assumption.
Next. suppose y = s. Let

P=u, C_'-z.ry Piuivg 1;1 t.

Then P is a path in G with V(P) = V(P)UV(Cy) = T, UT,. This
contradicts the assumption.

Case 2.2. y € vl’"lglt
By similar arguments as in Case 2.1, we have a contradiction.
Furthermore. if C'; is a cycle. we also consider the following case.
Case 2.3. y € u}'l—:’-] e

By the choice of Py. y # vo. Thus. y € uf C_g vy . Let y = y=t¢2) and

y" = yt€?) Since y and {a.y’.y"} do not form a claw in G. {y'y". y'r.

Y2} NE(G) # . Tt y'y" € E(G). let

Pl=P. C= .l'yugC_'gy'y"E'Q.t and Pj=u I;Oy.
If y’x € E(G). let

P/ =Pi. C)=1yCavauzCay's and P, = Poy.
If y"x € E(G). let

Pl=P. ()= .ryC—’g Urzl’g(-:»—'zy”.'l' and Py = u; I_’;y.

Then in each case. V(P{)UV(Cy) = V(P)UV(C2) =Th UL, V(P)N
V(C3) = {x}. y = 212 and I(P}) < I(Py). This contradicts the choice of
(P1.C2.FR). O
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Therefore. we have completed the proof of Lemma 3. B

5. Proof of the Main Theorems

In order to prove Theorem 1 and Theorem 2. we prove a stronger state-
ment. Let G' be a graph obtained from a claw-free graph by local comple-
tion at a vertex. Using Lemma 3. we prove that for each set of ¥ disjoint
paths in G’ there exists a set of A disjoint paths in G which contains it.
We can also impose some restrictions on the sum of the lengths of these k
paths of G. Since the “only if” part of Theorem 1 is trivial. Theorem 1 is
a consequence of the following result.

Theorem 4. Let G be a claw-free graph and let x be a locally connected
vertex of G. Let G' be the graph obtained from G by local completion at
x. Then for each set of k disjoint paths {Pj..... P} in G’ there exists a
set of k disjoint paths {Q..... Qk} in G with UL] V(P) C U:‘:l 1(Qs)
and LIz, (P! € Tho, Qi) < (Tiz, ((PD) +3.

Proof. Let B = E(G')—E(G). If (Ui, E(P!))NB = o. then {P]..... P}
is a required set of & disjoint paths. Hence we may assume (Uf»;] E(P)))Nn
B #o.

Let S, = (U, V(P))U{}. I o€ Ui, V(P)). then {P]..... P} is
a path-factor of G’[S§] with k components.

Suppose & ¢ UL] V(P!). Let e = uv € BNE(P}) (1 < j < k).
We may assume j = 1 and ¢ = «HP 1), Let s and ¢ be the starting and
terminal vertices of Pj, respectively. Note that {u.v} C Ng(x). Let P|' =

s P{ urv P{ t. Then {P/'.P,..... P} is a path-factor of G'[Sp] with &
components.

Now choose a path-factor {Q].....Q}} of G'[S;] with k components so
that

(a) |(Uf=1 E(Q%)) N B| is as small as possible.
In either case. we have a set of k disjoint paths {Q].....Q}} in G’ with

k

k
(Jvemufzyc Jv@) and
i=1

i=1
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13

ZI(P' <ZI(Q O_UPH) +1.

=1 i=1

Let F = ULI E(Q}). If FN B = o. then {Q]..... Q%} is a required
set of & disjoint paths. Hence we may assume F N B # o. We denote the
starting and terminal vertices of @} by s} and ¢} (1 < i < k). respectively.

Suppose x € 1(Q}). Then we have the following fact.

Claim 1. U,_ZE NMNB=o

Proof. Assue. to the contrary. E(Q;)N B # o.say f = u'¢' € E{Q})N B.
(2 < i< k). We may assume i = 2 and v/ = ¢/+(@),
If v = si. let

= 4 Qher @it Q= sy’
and F' = F—(E(Q)UE(Q%))U(E(QY)UE(QY)). Then F' is the edge set
of a path-factor of G’[S}] with k components and |[F'NB| = |FNB| - 1.
This contradicts the minimality of |F N B|. Therefore. we have & # s]. By
symmetry. we have & # t{.
Let «* = +HQ1), Since x and {x*.u¢’.t'} do not form a claw in G.

{atd' .t} NE(G) # o. If xtu’ € E(G). let

1 —SlQl xre Q2f2 Q7 = s Quu'xt Q1 1y

and F/ = F - (E(Q})UE(Q%))U(E(QY)UE(QY)). Then F’ is the edge set
of a path-factm of G'[Sg] with k components and |F'NB| = |[FNB|-1. This
contradicts the minimality of |[FNB|. By symmetry. we have a contradiction
if et € E(G). O

Since F N B # o. E(Q}) N B # 0. Furthermore. we have the following
fact.

Claim 2. |E(Q{)NB|=1

Proof. Assume. to the contrary. |[E(Q71) N B| > 2. say ej.e2 € E(Q}) N B.
ey # ey. Let e; = x;y; (i = 1.2). Then. by symmetry. we have only to
consider the following two cases.

Case 1. s}. 2. ry. y1. &2. y2 and #{ appear in this order along Q.
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Then «t.y; and y, are distinct vertices in Ng(x). Since x and {x*. y;.
y2} do not form a claw in G. {y1y2. x1y1. 2T} N E(G) # 0. If y1y2 €
E(G). let

= s1Q1r102Q) y1y2Q1 1] (note x1x2 € E(G')).

Then V(QY) = V(Q}) and E(Q!) = E(Q}) - {211. x2y2} U {x122. y132).
This implies |E(QY) N B| < |E(Q}) N B|. which contradicts the minimality
of [FNB|. If aty; € E(G). let

Qi = 1 Qe Qi Q4 8.
Then V(Q}) = 1(@4) and E(QY) = E(@}) — {z2*. iy} U {zer,at ).

Since &y € E(G). we have |[E(QY) N B| < |E(Q}) N B}, again a contradic-
tion. We have a similar contradiction if *y, € E(G).

Case 2. s}. 1. §1. r. ra. y2 and t} appear in this order along Q.
1 Y 1 1

Similarly as in Case 1. v*.y; and yp are distinct vertices in Ng(x). and
{my2. 2%y 2y} N E(G) # o. In each case. by a similar argument. we
have a contradiction. O

Let E(Q})N B = {x1y1}. We may assume s}, x. r1. y and t] appear
in this order along Q. Let

Ty =s,Q,rUy Qi t; and T =zQ) 1.

Then T; UT> = V(Q}) and T; NT; = {x}. Since x1y) € B. xx1.2y1 €
E(G). Hence s} Q| xy, Q) t} is a hamiltonian path in G[T1). If #* # x;.
then x @, xyx is a hamiltonian cycle in G[T3]. If 2+ = x,. then G[T3] is
isomorphic to L. Note that, by the minimality of |F N B|, G[T} U T3] is
not traceable.

We consider a path P; and a cycle or an edge C in G[T; U T3] with
V(P)UV(Cy) = THUT, = 17(Q}) and V(P)NV(C2) = {x}. and a path P
in G[Ng(x)] with starting vertex in {z+ P} x=(P)} and terminal vertex in
{aH€) =€} (if C, is a cycle) or V(Cp) — {2} (if C2 is an edge). Note
that. since x is a locally connected vertex of G. G[Ng(z)] has such a path
Py.
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Now choose {Q]..... Qi }. Pi. Cy. and Py so that
(b) Py is as short as possible. subject to (a).
Then. by Lemma 3. 2 <I(Py) < 3 and int(F) N (V(P)UTV((y)) =o.

Let s; and t; be the starting and terminal vertices of Py, respectively.
Since G[T) U T] is not traceable. we have x ¢ {s,.¢; }. which implies that
both =P and »+ P exist on Py. Let uy = +~P) and v; = 2P I G,y
is a cycle. let up = o+ €2 and vy = 272, If C is an edge. let C = uya.
(An edge uyr is also denoted by uy (.'_'2 & in the subsequent arguments.) In
either case. we may assume that the starting and terminal vertices of Py
are u; and u,. respectively.

Since G[T; UT,] is not traceable. we have uyuq. u;vy. vyus. vy vy € E(G)
if C'y is a cycle. uyuy. vyuy ¢ E(G) if C is an edge. Since x and {u;.vy.uz}
do not form a claw in G. w7 € E(G). Similarly. uave € E(G) if Cy is a

cycle. (See Figure 2.)

Py

Figure 2:
Let w = uiH Po) and y=uy (%) Then we have the following two facts.
. k -
Claim 3. « ¢ |J;—, V(Q})

Proof. Assume. to the contrary. w € Uf:z V(Q%). Suppose w € V(Q5).
If w = sh. let

= uy Crx Pty "= s1Phww )t
1 2 242

and F/ = F - (E(Q})UE(Q3))U(E(QY)UE(QY)). Then F’ is the edge set
of a path-factor of G[Sy] with & components and [F'NB| = |[FNB|-1=0.
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This contradicts the minimality of |[F N B|. Therefore. we have w # s3. By
symmetry. we have w # t).

Let w* = w9 and w~ = w2, Assume wtr € E(G). Since
upty ¢ E(G) and @& and {wt.u1.uz} do not form a claw in G, {w*u;.
wtug} N E(G) # o. If wtu, € E(G). let

1= 8,05 u'uzé—'«z.r};l t. Q5 = 1;1 et Qyty
and F' = F = (E(Q})UE(Q%))U(E(QY)UE(Q3)). Then F'is the edge set
of a path-factor of G'[S}] with & components and F'NB C {u uz}. By the
minimality of |FNB|. F'NB = {wuz}. Furthermore. P| = s @ wx Pty is
a path and C%) = (' is a cycle or an edge in G with V' (P))UV(C3) = V(QY)
and V(P))NV(CY) = {a '}. Since w Po us is shorter than Py. this contradicts
the choice of {@]..... Q.}. Pi. C2 and Py given in (b). If wtug € E(G).
let _ o _ _

'l' =t,QyutuaChx Piti. QF =s1 PunwQysh
and F' = E(Q})UE(Q4))U(E(QY)UE(Q7)). Then F' is the edge set
of a path-factm of G'[S4) with k components and |[F'NB| = |[FNB|-1=0.
This contradicts the minimality of |[FNB|. Therefore. we have vtz ¢ E(G).
By symmetry. we have v~ ¢ E(G).

Since w and {u*.w™.x} do not form a claw in G. w*w™ € E(G). Let

Qf = s1 Prunywuz Cre Pity. Q) = s'zQ—'2 wwt Q—'zt'2
and F' = F— (E(Q})UE(Q3))U(E(QY) 5)). Then F’ is the edge set
of a path—factm of G'[Sg] with k components aud F'N B C {wuz}. By the
minimality of |FNB|. F'NB = {wuz}. Furthermore, P| = s1 1;1 u]wa'l;l 4
is a path and C% = (3 is a cycle or an edge in G with V(P{)UV(C3) =
1(QY) and V(P]) N1V(C3) = {x}. Since wIS(', u9 is shorter than Pg. this
contradicts the choice of {Q]..... QL}. P, C3 and Py given in (b). O

Claim 4. y ¢ Uf=2 (Q1)

ks .
Proof. Assume. to the contrary. y € UJ;—, V(Q?}). Suppose y € V (Q%). By
a similar argument as in the proof of Claim 3. we have y ¢ {s3.13}.
Let y* = yH @) and y~ = y~'92). Assume y¥a € E(G). Let

QY = sh Qyyu Caxyt Qaty. Q3 =s1 PLuivi Pty

126



and F' = F - (E(Q})UE(Q}))U(E(QY)U E{ %)). Then F” is the edge set
of a path-factor of G'[Sg] with k components and |[F'NB| = |FNB|-1 = 0.
This contradicts the minimality of |FNB|. Therefore, we have y+z ¢ E(G).
By symumetry. we have y~u ¢ E(G).

Since y and {y*.y~.x} do not form a claw in G. y*y~ € E(G). Let

Qf = s1 Pruiyua Cre Pty Qf = s3Qhy™y* Qo)

and F' = F — (E(Q}) U E(Q4)) U(E(QY) U E(QY)). Then F' is the edge
set of a path-factor of G'[Sg] with & components and F' N B C {u,y}. By
the minimality of |F N B|. F'N B = {u1y}. Furthermore. Pl=Pisa
path and C} = .l'yUQC_'Q.l' is a cycle in G with V(P{)UT(C}) = V(QY) and
V(P)NV(C3) = {x}. Since u, 13;, y is shorter than Py. this contradicts the
choice of {Qj..... Qi}. Pi. Cz and Py given in (b). O

Now we complete the proof of Theorem 4. By Lemma 3. Claim 3 and
Claim 4. we have int(Py) N Uf=1 1(Q}) = 0. Let

Qi =P w1 Poup Cox Pyty and Qi=Qi(2<igk).

Then {Q;..... Q+} is a set of k disjoint paths in G with
k k
U V(Qi) C U V(Q:) and
i=1 i=1
k & k
2UQD I uQ) < ST uQ) +2.
i=1 i=1 i=1
Therefore.

k k k
Uvtrh cUv@hc Ui and
i=1 i=1 1

k k k k k
DUP)SIUQ) <D UQ) < u@n+2< (SR +3.m
i=1 i=1 i=1 =1 i=1

Theorem 2 is a consequence of the following corollary of Theorem 4.
Corollary 5. Let G be a claw-free graph and let & be a locally connected

vertex of G. Let G’ be the graph obtained from G by local completion at
r. Then G is covered by k paths if and only if G' is covered by k paths.
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Proof. Since the “only if” part is trivial. we have only to prove the "if”
part of the corollary.
Suppose G’ is covered by k paths. say V(G') = V(P{)U---UV(P}) for

paths P{..... P/ in G'. By Theorem 4. for each P; there exists a path Q;
in G with V(P!) C V(Q;) (1 < i < k). Then V(G) = V(Q)U---UV(Qx).
[ ]

6. Concluding Remarks

Let T be a set of vertices in a claw-free graph G. Then, by Theorem 4.
the minimum number of disjoint paths covering T in G is the same as the
minimum number of disjoint paths covering T in cl(G). Furthermore. by
Corollary 5. the minimum number of paths covering T in G is the same as
the minimum number of paths covering T in cl(G).
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