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ABSTRACT. Let D be a set of natural numbers. The distance
graph G(D) has the integers as vertex set and two vertices u
and v are adjacent if and only if [u — v| € D.

In the eighties, there have been some results concerning the
chromatic number x(D) of these graphs especially by Eggleton,
Erdés, Skilton and Walther. Most of these investigations are
concentrated on distance graphs where the distance set D is a
subset of primes.

This paper deals with the chromatic number of distance graphs
of 3-element distance sets without further restrictions for the
elements of D.

1 Introduction

This paper considers chromatic properties of distance graphs on the inte-
gers. Let Z be the set of integers and IV be the set of natural numbers.
Any finite or infinite subset D C N determines a distance graph G(D) on
the integers: G(D) is the graph with the integers as vertex set, V(G) = Z,
and with edge set E(G) comprising all pairs of integers with difference in
the distance set D, so E(G) = {{u,v}:u,v€ Z, [u—v| € D}.

In earlier studies, such as [1] and [5], distance graphs have been defined
with more general subsets of euclidian space as their vertex set, and with
arbitrary subsets of the positive reals as their distance sets.

A number of results for distance graphs on the real line were established
in [1]. That paper also introduced prime distance graphs (distance graphs
on the integers with distance sets of prime numbers), which have been the

ARS COMBINATORIA 52(1999), pp. 3-12



focus of attention in most subsequent published work on distance graphs
(. (2] - [6], 9] - [13)).

But it is natural to consider distance sets without such restrictions. For
example, it was shown in [14] that every finite graph can be represented
as a distance graph on the integers, in the following sense: for every finite
graph H there is a distance set D such that G(D) contains an induced
subgraph isomorphic to H.

In the following we are concerned with distance sets D = {r, s, t} of three
elements where r < s < t. The chromatic numbers of distance graphs with
only one or two elements in their distance sets were determined in [1]. It was
noted for any 7 € N that G(r) is isomorphic to G(1), so x(r) = x(1) = 2.
For any r,s € N it was shown that x(r,s) = 2 or 3 according as r and s
are both odd or have opposite parity and it was noted that all cases follow
from these since G(r, s) 2 G(r/d, s/d), where d = gcd{r, s}.

These results can readily deduced using the inequality x(D) < |D|+1 for
any D C N, given in [13], and its generalization, given in [11], asserting
that x(D) < n(|Dn|+1) for every n € N , where D, is the set of multiples
of n in D. Noting the presence of odd cycles in G(r,s) when r, s have
opposite parity completes the demonstration that x(r, s) = 3 in this case.

These same inequalities and the case where r, s have opposite parity imply
the following results for distance graphs with distance sets {r, s,t}:

1. x(r,s,t) <A4.

2. x(r,s,t) =2if r,s,t are all odd.

3. x(r,s,t) < 3if non of r, s, is a multiple of 3.

4. x(r,s,t) > 3if r, s,¢ include numbers of opposite parity.

Note also that it suffices to restrict attention to cases in which {r, s,t} is a
relative prime set, that is, gcd{r, s,t} = 1, since G(r, s,t) = G(r/d, s/d, t/d),
where d = gcd{r, s,t}.

Now, we will give some definitions which are very useful for the following
investigations.

For any set C with |C| = k a k-colouring of a distance graph on the
integers, with colour set C, is a mapping f : Z — C. Such a colouring is
pertodic, with period p, if f(i+p) = f(i) foreveryie Z .

In the following, colours are denoted by a,b,c,.... As introduced in [13]
a periodic colouring is described by a "P” indexed by the length of the
period and the order of colours, for example: Ps := aabce. A block of 4
colours of the same type is sometimes indicated by the exponent i, that
means aabcc = a2bc?.



It is well-known that any periodic sequence has a least period, and that
all periods are multiples of that least period. Thus, with periodic colourings
we will normally assume that p denotes the least period.

Following [5] and [13], for any subset M € N we say that a colouring
f 1 Z — C is M-consistent if f(i +m) # f(3) for every 1 € Z and every
m € M. If M = {m}, we shall simply say that f is m-consistent. Thus,
if f has to be a proper vertex-colouring of the distance graph G(D), then
f must be D-consistent. As noted in [12], if f is an m-consistent periodic
colouring with period p > m, then f is (np &= m)-consistent for every n €
N.

2 Distance graphs with chromatic number 4

In view of the results for x(r, s,t) mentioned in the Introduction, we already
know the chromatic numbers of many distance graphs G(r, s,t), and the
only unresolved cases are among those where the following restrictions hold:

(a') gcd{rv 8, t} =1
(b) at least one of r, s,t is even;

(c) at least one of 7, s,¢ is a multiple of 3.

For all such cases we know 3 < x(r, s,t) < 4 because of the results given in
the introduction. In the present section we shall establish some instances
in which x(r, s,t) = 4.

Theorem 1 If t is any multiple of 3, then x({1,2,t}) = 4.

Proof: Suppose G(1,2,t) has a proper 3-colouring f : Z — {a,b,c}. Then
f is a proper 3-colouring of the subgraph G(1,2), so f = P3 = abc without
loss of generality. But P; is not m-consistent, if m is any multiple of 3.
Therefore P; is not ¢-consistent, so it is not a proper colouring of G(1,2, t).
By contradiction, x(1,2,t) = 4. ]

Theorem 2 If ged{r,s} =1 and r # s (mod 3), then x(r,s,r+s) =4.

Proof: Please note that at least one of the elements r, s and r+s is even and
gcd{r, s} = 1 if and only if ged{r, s, + s} = 1. The additional assumption
r # s (mod 3) is fulfilled if and only if at least one of the elements {r, s, ¢}
is a multiple of 3.

Suppose G(r, s,r + 8) has a proper 3-colouring f : Z — {a,b,c}. Then
f(0) = a and f(r) = b without loss of generality. Put ¢ := r + s, so
f(t) = f(r+5) = cand f(s) = b, by considering the 3-cycles 0rt0 and 0st0.
Further consideration of 3-cycles yields f(r +t) = a, f(s +t) = a, f(2t) =



b, f(r +2t) = ¢, f(s + 2t) = ¢, f(3t) = a. Generalizing this reasoning, it
follows that f(i+7) = f(i+s) and f(i+3t) =f(¢) forallie Z ,s0 f is
an periodic colouring, and s — r and 3t are periods of f.

Let p be the smallest period of f. Then p|(s — r) and p|3t. But f
must be ¢-consistent, so ¢ cannot be a multiple of p, hence p|3t implies
3|p. Then 3|(r — s), so r = s (mod 3), a contradiction to the assumption.
Consequently, we obtain x(r,s,r 4 8) = 4. ]

The 4-chromatic distance graphs discussed in Theorems 1 and 2 contain
many triangles. In the next section we shall investigate the other cases in
which G(r, s,t) contain triangles: s = 2r,t = 2r and ¢t = 2s. It turns out
that none of these graphs is 4-chromatic.

3 Remaining cases with triangles
Theorem 3 If ged{r,s} =1 and r > 1, then x(r,2r,s) = 3.

Proof: We construct periodic 3-colourings f : Z — {a,b,c} with period
3r. For each positive integer i < r, let j be specified by 7 = r (mod 2¢) and
0<j<2i

First, define a block AF¥(i) of r terms, comprising alternate blocks of
i terms equal to z and ¢ terms equal to 3, and terminating either with a
block of j terms equal to = (when 0 < j < i) or with a block of j — i terms
equal to y (when i < j < 2i), thus:

z..ZY...Y...2...Z ...k if 0<5<1
(&..2y-y fo<j5<

ot i i i i
A7V () = z...TY...Y :cr Ty z...z2yY...y otherwise
i i i i i
\ r

Let Ps,.(i) be the periodic colouring
Py (4) 1= AZ°(5) A (i) A% (s)

with period 3r. A routine check shows that Ps,(3) is {r, 2r, {} consistent.
Furthermore, it is also easy to ascertain that Ps,.(r) = a"b"¢" is k-consistent
for any positive integer k satisfying r < k < 2r.

Now, let k be the unique positive integer satisfying k¥ = s (mod 3r) and
0 < k < 3r. Please note that k ¢ {0,r,2r} because s is not a multiple of r.
It follows from the remarks about periodic m-consistent colourings in the
Introduction that



1. Ps(k) is {r,2r, s}-consistent if 0 < k <,
2. P.(r) is {r,2r, s}-consistent if r < k < 2r,

3. P3,.(3r — k) is k-consistent and consequently it is {r, 2r, s}-consistent
if 2r < k < 3r.

In all cases we have produced a proper 3-colouring, so x(r,2r,s) =3. O

Usually, throughout the paper it is assumed that r < s < t. However,
Theorem 3 and the construction contained in its proof does not specify any
relation between the magnitudes of r and s. Hence, it follows from Theorem
3 that x(r,2r,t) = 3 with 2r < ¢, x(r,s,2r) = 3 with r < s < 2r and
x(r,s,2s) = 3 with 1 < r < s. Thus, Theorem 3 covers all cases of distance
graphs with 3-element distance sets which contain isosceles triangles.

All remaining distance graphs of 3-element distance sets for which the
chromatic number is unknown so far does not contain triangles. This fact
leads up to the following conjecture:

Conjecture. If {r,s,t} C N with r < s < t satisfies gcd{r,s,t} = 1,
then the chromatic number of the distance graph G(r, s,t) on the integers
is x(r,8,t) =4 if r=1,8=2,t=0 (mod 3) ort =r + s and r # s (mod
3), and in all other cases x(r, s,t) < 3.

However, the conjecture is not inevitably. In 1986 Eggleton, Erdés and
Skilton conjectured (see [2]) that the chromatic number of prime distance
graphs (the elements of the distance set are primes) is 4 if and only if D
contains 2,3 and at least a pair of twin primes. Obviously, these distance
graphs are exactly the prime distance graphs with triangles. This conjecture
was disproved by presention of 4-element prime distance sets D without
pairs of twin primes and x(D) = 4 (e.g. D = {2,3,11,19}). This result
was published first in [4] by the same authors.

However, it is known that there is exactly one 3-element prime distance
set D (D = {2,3,5} such that x(D) = 4) (see [1]). Furthermore it exists
only a finite number of 4-element prime distance sets D (exactly 8) which
does not produce distance graphs with triangles and x(D) = 4 (see [12]).

The results of the remaining sections of this paper add further evidence
in support of our conjecture, and show many classes of 3-chromatic distance
graphs with 3-element distance sets.

Furthermore, we will notice that it is sufficient to investigate a finite set
of vertices to obtain results about the chromatic number of a distance graph
on the integers.

4 Restriction to a finite vertex set

Computer experiments have been made to investigate chromatic numbers of
distance graphs on the integers (see [6]). Such experiments have also been



conducted in the author’s institute. A key question in such investigations is:
In any given case, how many vertices have to be investigated to determine
the chromatic number.

In (6] and [13] it is proved: If a distance graph has a proper k-colouring,
then it has a periodic k-colouring. Consequently, it is sufficient to investi-
gate a finite number of vertices.

However, the proofs are concentrated on existence arguments. The au-
thors construct periods, but they use the Pigeonhole Principle in a way
which does not lead up to tight bounds. The following result gives a prac-
tical bound for 3-element distance sets which happen to be 3-chromatic.

Theorem 4 Suppose {r,s,t} C N admits a 3-colouring f : Z — {a,b,c}
which is a proper 3-colouring of r+ s+t consecutive vertices of the distance
graph G(r,s,t). Then x(r,s,t) < 3.

Proof: Without loss of generality let the vertices 1,2,3,...,7r 4+ s+ ¢ be
properly coloured by f. Now, we colour successively the integers outwards
from this interval (ie. r+s+t+ 1,7 +s+¢t+2,... and 0,-1,-2,... )
with a colour which is not used for the already coloured neighbours of the
coresponding vertex.

Assume that such an extension of f is not possible. Without loss of
generality let v be the smallest integer such that all colours a,b and c are
used already for the neighbors of v and assume f(v —r) = q, f(v — 5) =
b, f(v—t) = c. It follows: f(v—(r+s)) =c, f(v—(r+t)) =b, f(v—(s+t)) =
a. Consequently, there is an already coloured vertex v — (r +s+41¢t) > 1
which cannot be coloured with e, b or ¢ contradicting the choice of v as the
first such vertex. m]

It follows a similar result for distance sets with more than three elements:

Corollary. Suppose D := {dy,dz,...,dx} C N withd; < dp < --- < dj,
admits a 3-colouring f : Z — {a,b,c} which is a proper 3-colouring of
di—2 + di—1 + di. consecutive vertices of the distance graph G(D). Then
x(D) <3. 0

Please note that this result does not give any information about a smallest
period of a proper colouring of G(D).

5 Further classes with chromatic number 3

In [12] it is proved: There are exactly 8 prime distance sets (excluded the
sets with a twin of primes) with 4 elements and chromatic number 4. For all
other such distance sets there were constructed 3-colourings for the distance
graphs. In the following, we attempt to construct colourings for distance
sets with 3 elements in a similar way.

First, we give a result for a special type of distance graphs.



Theorem 5 Suppose r,s,t C N has the properties r,s odd, r < 3, L even,
28 <t and gcd{r,s,t} =1. Then x(r,8,t) =3

Proof: First note that G(r, s, t) contains odd cycles, since = and ¢ have op-
posite parity, so x(r, s,t) > 3. For suitable chosen k, we construct periodic
3-colourings with period 6k + 3 which are proper 3-colourings of G(r, s,t).
For any k € N let Pgi+3 be the following periodic colouring:

Ps43 = (ab)*a(bc)*b(ca)*c = gbab...ababche. .. bebeaca . . . cac
241 2k+1 2%k+1

It is routine to check that Psi,3 is (2¢+1)-consistent for all i with0 < i < k
and also (4k + 2)- and (4k + 4)-consistent. Now we consider two cases for
t.

1. t =0 (mod 4)

Put k := &%, Then ¢t = 4k + 4, and the odd numbers r, s satisfy
r<s< 2 = 2k + 2. Hence, Pgi43 is {r, s, t}-consistent.

2. t =2 (mod 4)

Put k := &2, Then ¢t = 4k + 2, and the odd numbers r, s satisfy

r < 8 < £ =2k+1. Hence, Perq3 is {r, s, t}-consistent.

In both cases Pgy43 is a proper 3-colouring of G(r, s, t), so x(r,s,t) = 3.0

Next, for relative prime distance sets {r, s,t} with at least one even el-
ement and r < 8 < ¢t, let 8 = k (mod 3r) where 0 < k < 3r. We shall
show that x(r, s,t) = 3 if 0 < k < 2r and ¢ is big enough in relation to r
and s. It is convenient to split the discussion into two cases, the first with
0 < k < r, and the second with 7 < k < 2r. The next two theorems accord
with these cases.

Theorem 6 Suppose {r,s,t} C N with r < s < t has the properties
t > 9s% — 10s + 2, ged{r, s,t} =1, at least one of 7,s,t is even and s = k
(mod 8r) with 0 < k < r. Then x(r,s,t) = 3.

Proof: First note that G(r, s,t) contains odd cycles since {r, s,t} contains
elements of opposite parity, so x(r,s,t) > 3. To show that x(r,s,t) = 3,
we construct a periodic 3-colouring P;4. which is a proper 3-colouring of
G(r, s,t).

Choose k,q € N with 0 < k < r, so that s = 3rg+ k. For i € {0,1}
define

TYZ . (T 27)4 k—i _
ATV = (z"y ")z Z...ZY...YZ...2..

r k—i



and

Bay—i == AT AR AT

Now let m,n € N satisfy 3sm+(3s—1)n = s+t. Since ged{3s,35—1} =1,
there always exist such m and n provided s+t > 9s% —9s+2, by a classical
result of Sylvester (see [7], [8]). Define the periodic 3-colouring

* — m ()
Pyy¢ = B3B3, ;.

It is routine to check that P, is {r, s}-consistent. Since it has period s+¢
and ¢ = (s +t) — s it follows that it is also ¢-consistent. Hence P4, is a
proper 3-colouring of G(r, s,t) and x(r, s,t) = 3. u|

Theorem 7 Suppose {r,s,t} C N with r < 8 < t has the properties
t > (r+ )% — (r +2s), gcd{r,s,t} = 1, at least one of r,s,t is even and
8=k (mod 3r) with r < k < 2r. Then x(r,s,t) = 3.

Proof: First note that G(r, s,t) contains odd cycles since {r, s,t} contains
elements of opposite parity, so x(r,s,t) = 3. To show that x(r,s,t) = 3,
we construct a periodic 3-colouring P;;, which is a proper 3-colouring of
G(r, s,t).

Choose k,q € N with 0 < k < r, so that s = 3r¢+ k. For i € {0,1}
define

P = TH" 997" —7'+i= ee s DC...C... ) o e
Aryorii=(a7b"¢)%b c* a...ab...bec...c...a...ab...bc...c

r r r r r k—rti

Now let m,n € N satisfy (r+ s)m+(r+s+1)n = s+t. Since ged{r+s,7+
s+1} = 1, there always exist such m and n provided s+t > (r+35)%—(r+3)
(see [7], [8]). Define the periodic 3-colouring

e AM AN
PS'H = Ar+aAr+a+l°

It is routine to check that P,4. is r-consistent.

Next we shall show that P, is s-consistent. Let f : Z — {a,b,c} be a 3-
colouring corresponding to P, such that the integersv =1,2,...,r+s+1
are coloured by the colours of a block A,4s+i Of Pste. Obviously, it is
sufficient to show that f(v) # f(v+s) forallv e {1,2,...,r+s+1} where
i € {0,1} according to the block A,;,+; which is assigned to these vertices.
First assume that 1 < v < r+i4. It follows f(v) = f(v+3rq) = f(v+(s—k))
because of the structure of A,;,4;. Furthermore it is easy to check that
f(v+s—k)# f(v+s) and hence f(v) # f(v + s).

Now let v be one of the integers {r +i+ 1,7 +i+2...r+s+i}. Itis
routine to check that f(v) # f(v—(r+%)) because of the structure of A, 4.
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Furthermore it is easy to see that f(v—(r+1)) = f(v—(r+i)+(r+s+1)) =
f(v + s) and it follows f(v) # f(v + s).

Since P, has period s+t and ¢t = (s +t) — s it follows that it is also
t-consistent. Hence P, is a proper 3-colouring of G(r, s,t) and x(r, s, t) =
3. o

The case with s = k (mod 3r) and 2r < s < 3r remains unresolved,
though the presented Conjecture suggests that these distance sets produce
again 3-chromatic distance graphs. In addition to this tantalizing open
problem, other problems which remain include the following:

1. Determine the chromatic numbers of distance graphs on the integers
with distance sets of more than 3 elements.

2. Is there a simple generalization of Theorem 4 ?

3. Investigate relationships of distance graphs to other kinds of graphs,
such as indicated in [12] and [14].
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