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Abstract. In this paper we prove that the partial sums of the
chromatic polynomial of a graph define an alternating sequence
of upper and lower bounds.

We consider finite undirected graphs without loops or multiple edges.
For such a graph G, let n(G) resp. m(G) denote its number of vertices
resp. edges. The girth of G is denoted by ¢(G), where g(G) := +o0 if G
is cycle-free. For any A € N, let Pg(A) denote the number of mappings of
the vertex-set of G into {1,..., A} such that any two vertices joined by an
edge receive different values. By Birkhoff [1], Pg(\) is a monic polynomial
in A of degree n(G), i.e.,

n(G)
Po(X) = ) a(G)AMO7F, a(G) = 1. 4y
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This polynomial is called the chromatic polynomial of G. A good account
of results and conjectures on it is given in the article of Read and Tutte [4].

Subsequently, we prove that the partial sums in Eq. (1) define an alter-
nating sequence of upper and lower bounds.

Theorem. For any graph G, A€ N and ¢ =0,...,n(G) we have
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Z ax(G) AMO) -k (q even),
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Pe(d) 2 quak(G)/\"(G)"c (g odd).
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Proof: We prove the theorem by induction on the number of edges. If G
has no edges, then Pg()\) = A™%) and the statement holds. Now let G
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have at least one edge e, and assume that the statement is true for graphs
with fewer edges. Let G — e resp. G/e denote the graph obtained from G by
deleting resp. contracting e and then, in the resulting multigraph, replacing
each class of parallel edges by a single edge. Note that n(G — e) = n(G)
and n(G/e) = n(G) — 1. By the deletion-contraction formula (cf. [4]),

Pg(A) = Pg-e(A) — Pgye(X) (2)
and consequently,
ax(G) = ax(G —€) —ar-1(Gle)  (k=1,...,n(G)). )

The induction hypothesis applied to G — e and G/e gives
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Pge(N) > D ax(Gle) AMC/k = N ap (G le) AOE,
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in the case where g is even. From this and Eq. (2) we conclude that

Ps()) < A 4 i (ax(G - €) — ap_1(G/e)) NIk |
k=1

Now apply Eq. (3). The case where ¢ is odd is treated similarly. o

For q < g(G) — 1, a different proof of the above inequalities can be found
in [2]. As a consequence of our result, we now deduce the main result of [2].
Corollary. For eny graph G, A € N and ¢ = 0,...,min{n(G), g(G) — 1},

g . (G) s
Pe(n) < ST (Mm% (g even),
¢ Far ( k )

I

M-

Ps()) (—1)* (’”ECG))A"@-" (q odd).
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Proof: By a result of Meredith [3] we have

(1ta@) = (M) k=0 -1. a6 < (M)

By combining Meredith’s result with our theorem the corollary follows. O
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