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ABSTRACT. Let G = (V, E) be a graph and let H be a set of
graphs. A set S C V is 7H-independent if for all H € H,
< S > contains no subgraph isomorphic to H. Aset SC V is
an H-dominating set of G if forevery ve V-5, < SU{v} >
contains a subgraph containing v which is isomorphic to some
He™H.

The H-domination number of a graph G, denoted by v#(G),
is the minimum cardinality of an H{-dominating set of G and the
‘H-independent domination number of G, denoted by ix(G), is
the smallest cardinality of an H-independent H-dominating set
of G.

A sequence of positive integers a2 < --- € am is said to
be & domination sequence.if there exists a graph G such that
Y(x,}(G) = ax for k = 2,...,m. In this paper, we find an
upper bound for y4(G) and show that the problems of com-
puting v(k, ) and i(k,) are NP-hard. Finally we characterise
nondecreasing sequences of positive integers which are domina-
tion sequences, and provide a sufficient condition for equality
of Y{k,}(G) and i(k,}(G).

1 Introduction

Let G = (V, E) be a graph with p vertices and ¢ edges. For a subgraph H
of G, p(H) and g(H) denote the number of vertices and edges of H respec-
tively. For any vertex v € V, the open neighbourhood of v, denoted by N (v),
is defined by {u € V : wv € E}. The closed neighbourhood of v, denoted by
N[v), is the set N(v) U {v}. For S C V, the open neighbourhood of S, de-
noted by N(S), is defined as (J,cg N(v), while the closed neighbourhood of
S, denoted by N[S], is defined by |J,cg N[v]. The private neighbours of a
vertez v with respect to a set S is denoted by PN[v, S] = N[v]—N[S —{v}].
the clique number of G, denoted w(G), is the number of vertices in a max-
imum clique of G.

A set S is an independent set if no two vertices in S are adjacent; S is a
dominating set if N[S] =V, or, equivalently, if for every vertex v € V - S,
there exists u € S such that wv € E(G).

The domination number of a graph G, denoted by ¥(G), is defined as
min{|S] : S is a dominating set of G} . Similarly the upper domination
number of a graph, I'(G), is the size of a largest minimal dominating set.
The independent domination number of G, denoted by i(G), is defined
as min{|S| : S is an independent dominating set of G}. Equivalently,
i(G) can also be defined as the size of a smallest maximal independent
set, while Bp(G) is the size of a largest (maximal) independent set. The
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connection between these graph invariants can be seen by noting that a
maximal independent set S satisfies two criteria:

1. S is an independent set.

2. For every v & S, there exists a vertex u € S such that » is adjacent
to v.

If we focus on the second property, it is clear that any set which satisfies
this property is a dominating set. Thus the maximality of independence
is precisely the defining property for domination. It follows that every
maximal independent set is a minimal dominating set and consequently
the following inequality emerges for any graph G:

7(G) <i(G) < /(G) <T(G)

Before looking at a generalization of these ideas, it is helpful to restate
the two items above by casting them in a different light. In any graph G,
a set S is a maximal independent set if it satisfies two criteria:

1. There is no K5 in S.

2. For every v ¢ S, there exists a K3 in < SU {v} >.

These concepts were generalised as follows in [3]. Let G = (V, E) be a
graph and let H be a set of graphs. For u,v € V and S C V, we say that
u and v are H-adjacent in S if there exists an H € H such that < § >
contains a subgraph containing » and v which is isomorphic to H.

We say that a set S C V is H-independent if for all H € H, < S >
contains no subgraph isomorphic to H. A set S C V is an H-dominating
set of G if for every v € V — S, < SU{v} > contains a subgraph containing
v which is isomorphic to some H € H.

The H-domination number of a graph G, denoted by v4(G), is defined
as min{|S| : S is an H-dominating set of G} and the H-independent dom-
ination number of G, denoted by iy(G), is defined as min{|S| : S is an
‘H-independent H-dominating set of G}.

Note that a maximal H-independent set S again satisfies two criteria:

1. S is H-independent.

2. For every v & S, there exists a subgraph isomorphic to some H € H
in< SU{v}>.

Thus any set which satisfies the maximality condition of H-independence
is an H-dominating set. Consequently v4(G) < iy(G). Also, it may be
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noticed that in the special case when H = K, these definitions reduce to
the standard domination and independence parameters.

We establish next a few notational conveniences. Let S C V be a set for
which |S| > min{p(H)-1: H € H} and v € S. The open H-neighbourhood
of v with respect to S, denoted by Nj;(v), is defined as {u € V : w and v are
H-adjacent in SU{u}}. The closed H-neighbourhood of v with respect to S,
denoted by N§j[v], is defined as N3 (v)U{v}. Also, let N§[S] = U,es NR[Y]-
For S CV and v € S, the set Njj[v] — N,‘z_{"} [S — {v}] is called the set of
special H-neighbours of v with respect to S and is denoted by PNy|v, S].
We say that a vertex v is H-isolated if v is in no subgraph H of G such that
H is isomorphic to some member of H. Generalizing the concept of an edge
cover in G, we define an H-cover as follows. A set S = {H' C G : there is
an H € H such that H’ 2 H} is an H-cover for G if Uy V(H') = V(G).

Subsequently, we denote {K,} by K,, while yx,} and ifg, ; will be
denoted by v, and %, respectively.

We organise the paper as follows. In Section 2, we characterise H-
dominating sets which are minimal and in Section 3, we determine an upper
bound on 4(G). For the remainder of the paper we look specifically at
‘H = K,,. In Section 4, we show that the problems of computing -, and
in are NP-hard. A sequence of positive integers a2 < --- < an is said to
be a domination sequence if there exists a graph G such that yx(G) = ax
for k= 2,...,m. (Sequences related to other generalised parameters were
characterised in [2] and [4].) In Section 5, we characterise nondecreasing
sequences of positive integers which are domination sequences. We close by
determining a sufficient condition for a graph G to satisfy v, (G) = i,(G).

2 Minimal H-dominating sets

In this section we characterise H-dominating sets which are minimal. Let
G = (V, E) be a graph and let P be a property enjoyed by some of the
subsets of V. A subset of V' with (without) property P is called a P-set
(P-set). A property P is superhereditary if each superset of a P-set is also
a P-set. A subset S of V is called a I-minimal P-set if S has the property
P, but S —{v} is a P-set for all v € S. A subset S of V is called a minimal
P-set if S has the property P, but all proper subsets S’ C S are P-sets.
For properties which are superhereditary 1-minimality and minimality are
equivalent [3].

Notice that the property of being an H-dominating set is a superheredi-
tary property. We now characterise minimal H-dominating sets or, equiva-
lently, 1-minimal H-dominating sets. This result generalises a result of Ore

({5D)-

Proposition 1 Let S be an H-dominating set of a graph G = (V, E).
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Then S is a minimal H-dominating set of G if and only if every vertex
v € S satlisfies at least one of the following two properties:

Py: v is H-adjacent to no other vertex of S.
Py: There ezists w € V — S such that w € PNy[v, S].

Proof: Suppose first of all that S is & minimal H-dominating set of G.
Then, for each vertex v € S, S — {v} is not an H-dominating set of G.

Hence there is a vertex w € V — (S — {v}) such that w ¢ N,‘i_{”} [S - {v}].

However, since S is an H-dominating of G and since w ¢ Ny, S5—{v} (S —{v}),

we must have that w € PNyv, S]. If w = v, then v has property Py, while
if w € S, v has property P.. Conversely, if each vertex v € S has one of
the properties P; or P, then for each such vertex v, S — {v} is not an
‘H-dominating set of G, which implies that S is a minimal H-dominating
set of G. a

3 An upper bound on y4(G)

Ore ([5]) showed that if G is a graph of order p containing no isolated
vertices, then ¥(G) < §. We now generalise this result, by establishing
an upper bound on y4(G), where G is a graph containing no H-isolated
vertices.

Proposition 2 Let G be a graph of order p and let H be a set of graphs
such that for each H € H, there exists H' C G such that H = H'. If G
has no H-isolated vertices, then
P

<p- .
™G <p max{p(H) : H € H}

Proof: Let § = {H{,...,H}.} be an H-cover for G of minimum cardi-
nality. Then, for each ¢ = 1,...,m, there exists v; € V(H]) such that
v & (UjZ, V(H)) — V(H]), for otherwise S —{H]} is an H-cover for G,
contradicting our choice of S. Also, since |Ji~, V(H}) = V(G), it follows
that 3°1°, p(H{) > p. Hence, m(max{p(H) : H € H}) > 3_12, p(H]) > p,
so that m > p/max{p(H) : H € H}. Since V(G) — {v1,...,vm} is an
‘H-dominating set of G, y(G) <p—-m <p—p/max{p(H): He H}. O
As an immediate consequence, we have

Corollary 3 Let n > 2 be an integer. If G is a graph of order p containing
no Ky-isolated vertices, then 7,(G) < 2= 1 a

Note that if we take n = 2, then we obtam Ore’s result. Let n > 2 and
k > 1beintegers. Then v,(Kn) =n—1=2-lpn= “_lp(K,.), which shows
that the bound of Corollary 3 is best possnble
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4 Complexity results

In this section we show that the following decision problems are NP-complete,
by describing polynomial transformations from the problem 3SAT.
K,.-DOMINATING SET (KDS)

INSTANCE: A graph G = (V, E), a positive integer n and a positive integer
k<|V]

QUESTION: Is there a K,-dominating set of cardinality at most k?
K,-INDEPENDENT DOMINATING SET (KIDS)

INSTANCE: A graph G = (V, E), a positive integer n and a positive integer
k <|V].

QUESTION: Is there a K,-independent dominating set of cardinality at
most k?

Proposition 4 The decision problem KDS is NP-complete.

Proof: To see that KDS € NP, let S C V be such that |S| < k and
consider v € V—S. Let 8’ = SNN(v). If || £ n—2, then S is not a K-
dominating set of G. Hence, suppose that |S’| > n — 1. Let §” C S’ such
that |S”| = n — 1. It is easy to verify, in polynomial time, whether S” is
a clique. There are at most (“%(*)) such sets; hence, it takes a polynomial
amount of time to verify whether S is a K,,-dominating set or not.

To show that KDS is an NP-complete problem, we will establish a poly-
nomial transformation from the NP-complete problem 3SAT. Let I be an
instance of 3SAT consisting of the finite set C = {C},...,C,} of three lit-
eral clauses in the s variables {z,,...,z,}. Transform I to the instance
(G, k) of KDS in which k = s(n — 1) and Gy is the graph constructed as
follows.

Let J be a graph isomorphic to K, select any two fixed vertices of J, say
z and Z, and let Y = V(J) — {z,Z}. The graph H is constructed by taking
a set Z of n — 1 independent vertices and joining each vertex in Z to every
vertex in J. Denote {z}UY by X and {z}UY by X. With each variable z;,
we associate the graph H;, a copy of H. Let X;, X;, Z; be the names of the
vertices of H; that are named X ,.7, Z, respectively, in H. Corresponding
to each clause C; we associate the graph ¢; = K. The construction of G,
is completed by joining the vertex c; to the three special vertex sets that
name the three literals in clause C; (e.g., if C; = {z1,T3,z4}, then ¢; is
joined to every vertex in the sets X;, X3 and X3).

It is easy to see that the construction of the graph G can be accomplished
in polynomial time. All that remains, is to show that I has a satisfying
truth assignment if and only if G; has a K,,-dominating set of cardinality
at most k.

First suppose that I has a satisfying truth assignment. We construct a
K,-dominating set S of cardinality at most k, as follows. For each i =
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1,...,s, do the following. If z; = T, then include the vertex set X; in the
set S. On the other hand, if z; = F, then include the vertex set X; in the
set S. Then it is straightforward to verify that S is a K,-dominating set
of cardinality k.

For the converse, suppose S is a K,-dominating set of cardinality at most
k. Before proceeding further, we prove the following claim.

Claim 1 |[V(H;)NS|2n—1fori=1,...,s.

Proof: If Z; C S, the assertion follows trivially. We suppose therefore
that z € Z; — S. Then, since z must be K,-dominated by S, < SU {2} >
contains a K, containing z. Since N(z) C V(H;), it now follows that
[VH)NS|>2n-1. o
Since [V(H;)NS| >n—1fori=1,...,s, we have that |S| > k = s(n—1).
But |S| < s(n—1), so that |S| = s(n —1). This implies that [V(H;)NS| =
n—1fori=1,...,s Note that, since {ci,...,c-} NS =0 and c; must be
Kn-dominated by 3, there exists X; C S or X; C S such that
< X;U{c;} > K, or < X; U {c;} >= K, (for some i € {1,...,s}).
Define f : {zi1,...,zs} — {T, F} by f(z;) = T if and only if X; C S for
i=1,...,s. Then f is a satisfying truth assignment for Cy,...,C,. If not,
there is a clause, say C;, that is not satisfied by f. If C; = {z;,,%i,,Zis },
then X;, € S for t =1,2,3. But then < SU{¢;} >% Kj, contradicting the
fact that ¢; is K,-dominated by S. If C; = {=;,, zi,, i, }, then X;, C S,
while X;, € S for t =2,3. As before, we obtain a contradiction. Similarly,
contradictions are obtained when the cases C; = {Z;,,%i,, Zi,} and C; =
{Zs,,Ti,, Tig } are considered. O

A similar proof suffices to establish the following result.

Proposition 5 The decision problem KIDS is NP-complete. 0

5 Domination sequences

In this section we characterise sequences ag < --- < a, of positive integers
which are domination sequences.
We begin with two lemmas.

Lemma 6 Let G = (V, E) be a graph and let s and t be integers such that
2 < s<t. Then v(G) < 7(G).

Proof: Suppose S C V is a K,-dominating set of cardinality ~;(G). If
S CV,then, forallv e V~S, < SU{v} > contains a K, containing v,
so that, for all v € V — 5, < SU {v} > contains a K, containing v. In this
case S is also a K;-dominating set of G, so that v,(G) < v(G). f S=V,
then, clearly, 7,(G) < p(G) = 1:(G). o
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Lemma 7 Let G = (V, E) be a graph of order p > 1 such that v(G) =
Ye+1(G) for some t > 2. Then v,(G) = v(G) =p for all s > t.

Proof: We will show that each vertex of G is K -isolated. For suppose
vertex v is contained in some K. Clearly, 7:(G) < p —1. We now show
that there is no clique with ¢ +1 or more vertices. Suppose, to the contrary,
that such a clique exists and let S be a K;;;-dominating set of cardinality
7t+1(G). Since 4(G) = v¢+1(G), S is also a minimal K,-dominating set of
G. Let U = {ul,...,u¢+1} C V be such that < U > Kipr. If IUnSI >t,
with, say, %1,...,u¢ € S, then, since S is a minimal K;-dominating set
of G and u; is K,-adjacent to u; in S, Proposition 1 implies that there
exists w € V — § such that w € PNk, [u1,S]. However, since S is also
a K;.i-dominating set of G, < SU {w} > contains a K;,, containing w.
Hence, < SU {w} — {u;} > contains a K; containing w, implying that
w & PNk, [u1,S], which is a contradiction. We conclude that if U is the
vertex set of a clique with £+ 1 vertices, then |[UNS| <t —1. We now show
that V = S. For suppose v € V — S. Then < SU {v} > contains a K.,
say K, containing ». But then |V(K) N S| > ¢, contradicting our earlier
observation. Hence, S = V, so that v41(G) =p > p—1 > 7(G), which
is a contradiction. This shows that every vertex of G is K;-isolated and
therefore Kj-isolated for all s > ¢. But then 4,(G) = 7:(G) for all s > ¢, as
required. m]

‘We now show that the necessary conditions implied by the statements of
Lemma 6 and Lemma 7 are also sufficient for a sequence of positive integers
to be a domination sequence. In particular, we prove:

Proposition 8 Let a3 < --- < a,, be a sequence of positive integers such
that if t € {2,...,m} and a; = a41, then a; = a; for all s€ {¢,...,m}.
Then there exists a graph G such that v(G) = ax for all k=2,...,m.

Proof: If a; = a1 for somet € {2,...,m}, let £ be the smallest ¢ such that
a; = ag4; otherwise, let £ = m. Let Uy, ..., U, be disjoint sets of vertices
such that |Us| = ap—1, while |[Uyx| = ax—ax_;—1fork =3,..., £. Note that
[Ugl 2 0for k =2,...,¢ Let W = {ws,...,ws} be a set of vertices such
that WNU, = @ for k = 2,...,£ Furthermore, let Wi = {wo,...,wi}
for k =2,...,—1andlet U = Ui:zUk- Construct the graph G as
follows: Let V(G) = UUW. Add edges so that < W >= K,_; and, for
k=3,...,¢, join each vertex in U, with every vertex in W;_;. Note that
U is an independent set and that p(G) = a,. The graph corresponding to
the sequence ap = 2,a3 = 4,a4 = 6 and a5 = 9 is illustrated in Figure 1.

We now prove that vx(G) = ax for k = 2,...,m. Since w(G) < £-1,
every vertex in G is Ki-isolated for all k¥ > €. This implies that v(G) =
P(G) = ag for all k > ¢, whence vx(G) = ai for all k € {¢,...,m}.
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Figure 1. The graph corresponding to the sequence
az=2,a3=4,04=6and as =9

Let, therefore, k € {2,...,£} and let Dy =, U; UW;. Ifv € V(G) -
Dy, then < Dy U {v} > contains a K containing v, so that Dy is a K-
dominating set of G. Hence 7x(G) < |Dk|=k -1+ (a2 —1)+ -+ + (@ —
Q-1 — 1) = Qg.

We now show that if S is a Ki-dominating set of G for a k € {2,..., £},
then |S| > ak, implying that 7,(G) > ak.

We start by showing that U’ := UX_,U; C S. Suppose, to the contrary,
that v € U’ — S. Then < SU {v} > contains a Ki containing v. This
implies that v is adjacent to at least k — 1 vertices in W, contradicting the
fact that each vertex in U’ is adjacent to at most k — 2 vertices in W. It
now follows that [SNU’| > (a2 — 1)+ -+ (ax —ax—1 — 1) = ar — (k- 1).

If [SNW]| > k-1, then |S| > ax, and we are done. We therefore
assume that [SNW| < k—2. Since k < ¢, there exists a vertex w €
W —S. Then < SU {w} > contains a K, say K, containing w. Since
ISNW| < k—2, there exists a vertex u € SNUNV(K). It now follows that
deg(u) > k — 1. Hence v ¢ U’. Also, since Uf=k +1 Ui is an independent
set, [V(K)NSNW| > k — 2, which implies that |S N W| > k — 2. Hence,
ISNW|=k-2, [SNU’| > ax— (k—1) and |SNU;_x,, Uil > 1. This
implies that |S| > ax and we are done. w]

We have, therefore, the following result:
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Theorem 9 A sequence a < --- < anm of positive integers is a domination
sequence if and only if whenever t € {2,...,m} and a; = a1, then a; = a;
for all se{t,...,m}. o

Let a2 < --- < a,, be a sequence of positive integers such that if a; = a4
for some t € {2,...,m}, then a; = a; for all s € {t,...,m}. Let £ be the
smallest integer ¢ such that a, = a;41; otherwise, let £ =m. If G is a graph
such that vx(G) = ax for k = 2,...,m, then, clearly, p(G) > a,. Since
the graph constructed in the proof of Proposition 8 has order ay, a; is the
minimum order of a graph with ao,...,a., as its domination sequence.

6 A sufficient condition on G for v,(G) and i,(G) to be equal

A graph G is claw-free if it has no induced subgraph isomorphic to Kj 3.
Allan and Laskar [1] proved that if a graph G is claw-free, then i(G) = 7(G).
We now establish a sufficient condition on a graph G for v,(G) and i,(G)
to be equal.

Theorem 10 If n > 2 is an integer and if the graph G = (V, E) has
no induced Ky 3 and no subgraph isomorphic to an induced K4 — e, then
(G) = in(G).

Proof: Let S be a K,-dominating set of cardinality v, (G) with a minimum
number of induced K,,’s in < S >. If < § > contains no K,,’s, then S is
a K, -free set and the result holds. So assume that < S > contains a K,,
say K, and that v € V(K). Then, since S is a minimal K,-dominating
set, v has at least one special neighbour, say v € V — S. Then v and
are in a Ky, say K’, such that K’ C< SU {v'} > and ¢’ is in no K,, in
< SU {2’} — {v} >. Note further that all the remaining » — 2 vertices of
V(K’) are in S. At this point we claim that v’ is not adjacent to any of the
vertices in V(K) — {v}. For suppose to the contrary that v’ is adjacent to
u € V(K) — {v}. Then, if there is a vertex w € V(K with w not adjacent
to v/, then < {u,?’,u,w} >= K, — e, contradicting our hypothesis. So v’
must be adjacent to every vertex in V(K). But this contradicts the fact
that v' € PNk, [v,S]. Hence, v’ is not adjacent to any of the vertices in
V(K) — {v}. Now suppose v"” € PNk_[v,S] — {v'}. As before, v” is not
adjacent to any of the vertices in' V(K) — {v}. We now prove that v’ and
v" are adjacent. To see this, let u be a vertex, distinct from v, in K. Notice
that v is adjacent to v’, v” and u and that neither v’ nor v” is adjacent
to u. Thus, since G is K 3-free, we must have that v’ is adjacent to v".
Finally, notice that every vertex of K’ is adjacent to v”, for otherwise an
induced K4 — e results.

Now consider the set ' =S — {v} U {v'}. Then |S| = |S’|. Since every
vertex in PNk, [v,S]— {v'} is Kn-adjacent to v/, S’ is a Ky-dominating set
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of G. Moreover, since |[V(K)N S| =n—1, <5’ > contains fewer induced
K,.’s than < S >, contradicting the choice of S. a

Of course, 7,(G) and i,(G) may differ on a graph G. To see this, let G
be the graph constructed as follows. Let H; = K,,_; for i =1,...,6 and
add edges so that < V(H;) U V(Hj) >=
< V(Hz) U V(Hs) >=< V(Hy) UV (Hy) >=< V(Hy) UV(Hs) >2<
V(H4) U V(Hs) >2 Kon_o. Then V(Hz) U V(H4) is a minimum K,-
dominating set of G and V(H;) U V(H3) U V(H,) is a minimum K,-
independent dominating set of G. Hence, v7,(G) = 2(n — 1) and i,(G) =
3(n-1).
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