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Abstract
Let m and n be positive integers, and let R = (ry,--+,rm) and S =
(s1,-++,3x) be nonnegative integral vectors with r) +---+rp = sy +---+

sn. Let Q = (gi;) be an m x n nonnegative integral matrix. Denote by
A°(R, 5) the class of all m x n nonnegative integral matrices 4 = (a,)
with row sum vector R and column sum vector S such that a;; < gi, for all
i1 and j. We study a condition for the existence of a matrix in QlQ(R, S).
The well known existence theorem follows from the maxflow-mincut the-
orem. It contains an exponential number of inequalities. By generalizing
the Gale-Ryser theorem, we obtain some conditions under which this ex-
ponential number of inequalities can be reduced to a polynomial number
of inequalities. We build a kind of hierarchy of theorems: under weaker
and weaker conditions, a (larger and larger) polynomial (in n) number of
inequalities yield a necessary and sufficient condition for the existence of
a matrix in QlQ[R, S).

1 Introduction

Let m and n be positive integers, and let R = (ry,---,rm) and S = (s1,-.8n)
be non-negative integral vectors with ry+---+r,, =s;+---+s,. Let Q = (gi5)
be an m x n non-negative integral matrix. Denote by A9 (R.S) the class of all
m X n non-negative integral matrices A = (a;;) with row sum vector R and
column sum vector S such that a;; < ¢;; for all i and all j, denoted by A < Q.
We use (R, S) to denote the class of all (0, 1)-matrices of size m by n with row
sum vector R and column sum vector S, which corresponds to A9(R, S) when
Q is the matrix of 1's.

We can interpret A°(R. S ) in terms of network flows. The reader is referred
to [3] for the basics of Network flow theory. Matrices in 2A9(R. ) can be consid-
ered as integral flows of size r{ +: - - + I in the following network. The vertices
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consist of a source s, a sink ¢, and vertices Ry,---, R, S1,--+,Sn. There is an

edge from s to R; with capacity r; for i = 1,---,m. There is an edge from S;
to t with capacity s; for j = 1,---,n. Finally there are edges from R; to Sj
with capacity ¢;; for i = 1,---,m and j = 1,---,n. Suppose that there is an

integral flow from s to ¢ of size ry +- - -+ rm,. Then we can construct a matrix in
A9(R. S) from the flow. Let a;; be the flow from R; to Sj and let A = (a;;). We
easily deduce that A € A9(R.S). Conversely, from a matrix A in A9(R. S) we
can construct an integral flow of size ry ++--+rp,. Thus A9(R, S) is nonempty
if and only if there is an integral flow from s to ¢ of size ry + - - 4+ rm. Now the
maxflow-mincut theorem says that 2A?(R.S) is nonempty if and only if no cut
has capacity less than ) +- - -+ rm. The number of cuts in the above network is
2m+n By Lemma 1 in Section 2, the number of cut inequalities can be reduced
to 2" inequalities, but it is still an exponential number.

D. Gale [5] and H. J. Ryser [6] independently obtained the result that in
the special class %(R, S) we can reduce the exponential number of inequalities
to a linear number of them, that is only n inequalities. D. R. Fulkerson [4]
observed that the result of Gale and Ryser can be generalized to the class of
(0, 1)-matrices with given row and column sums and zero trace. Also R. P.
Anstee [1] obtained the generalization to the class of (0, 1)-matrices with given
row and column sums and with zeros in a prescribed set of positions consisting
of at most one position per column. Recently W. Chen [2] generalized these
results to the class mQ(R, S) of integral matrices satisfying a certain condition
(see Section 2).

In Section 2, we state a generalization of the Gale-Ryser Theorem, that is if @
and S satisfy some ‘regularity’ condition, then we have a necessary and sufficient
condition for the existence of a matrix in 249 (R, S) containing only n inequalities
(Theorem 3). The results of Gale-Ryser, Fulkerson, Anstee and Chen can be
regarded as special cases of our result, since they can easily be derived from it.
We build a kind of hierarchy of theorems: under weaker and weaker conditions,
a (larger and larger) polynomial (in 1) number of inequalities yield a necessary
and sufficient condition for the existence of a matrix in A9(R.S) (Theorem 4).
In Section 3, we give the definition of the auxiliary digraph for a matrix A,
which is used to prove Theorem 4. In Section 4, we give the proof of Theorem 4
using an auxiliary digraph and standard Network flow theory. In Section 5, we
remark on our next goal.

2 Theorems

Throughout this paper, we will use the following notation:

_ {a,a+1l,a+2.---,b} ifa<b
[a.8] = { ] otherwise
at = max {a.0}
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By the maxflow-mincut theorem of networks, QlQ(R.S) is nonempty if and
only if for all I C [I,m] and J C [1,n],

DD 2 D= s (1)
iel jeJ i€l igd
So we have 2™+" inequalities. But the following lemma reduces these 2"

inequalities to 2" inequalities.

Lemma 1 A°(R, §) is nonempty if and only if for all J C [1,n],

Z(r. doa)t < Yos; (@)

jeJ igJ

Proof. First, suppose that A9(R, S) is nonempty. Let J be any subset of [1,n].
Let I = {i|r; > Zjejq,’j}. Then

SUEDIILED DR W o

jeJ iel iel jeJ

By (1),

PILEDDI I

iel i€l jeJ igJ

So we can obtain inequality (2).
Conversely, suppose that (2) holds for all J C [1,n]. For any I C [1,m] and

JC[L,n],

Z(Ti - Z‘I:‘j)+

Sr-Y T <
iel iel jeJ i=1 j€ed
< s;.
" .

In the general case of A9(R,S). we have (2) for all subsets J of [1,n], an
exponential number of inequalities. Now n inequalities suffice for A(R,S). We
will state the Gale-Ryser theorem formally here in the notation of the above
lemma.

> et 2 Sp.

Theorem 2 [Gale-Ryser Theorem] [3] [6] Suppose that s1 > sa >
~ (L7 (& > 1),

Then there erists a matriz in A(R. S) if and only if for all J

Z(r,-h"‘ > Y s (3)

J€J
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The following theorem is seen to be a generalization of the Gale-Ryser the-
orem. We will not give its proof here, because this theorem is a special case of
Theorem 4. But we state it scparately because of its simplicity.

Theorem 3 Suppose that

m
Z(‘Iﬁj—Qik)"'Ssj"Sk'*'l for 1<j<k<n. (4)

i=1

Then there exists a matriz in A (R.S) if and only if for all J = [1,h] (h > 1),

Sr-da)t < Y s (5)
1=1

jeJ ied

We can derive from the above theorem not only the Gale-Ryser Theorem,
but also Fulkerson’s result [4] on the existence of a matrix in 2(R, S) with zero
trace and Anstee’s result [1] on the existence of a matrix in %(R, S) which has
zeros in a prescribed set of positions consisting of at most one position per
column. In [2], Chen gives the same theorem as the above theorem, except that
instead of our condition (4) he gives the following condition:

m
n!A—Z(]ikSSj—3k+1 forl<j<k<n (6)

=1

where A is the maximum entry of Q. In his condition, each column sum of Q is
required to be close to mA. In our condition, each entry in column j is required
to be close to the corresponding entry in column k. This makes our condition
less restrictive than his condition. The following example shows the difference.

Example 1 Let R =(4,3.2) and S = (3,3,3). Let

1 3 1 21
Q=11 31, A= 1 1 11}.
1 3 1 01

The matrix 4 is in A9(R, S). The reader can easily see that Q and S satisfy
our condition (7) but violate Chen'’s condition (6). [ |

[ )

The following theorem is a kind of hierarchy of theorems: under weaker
and weaker conditions, a (larger and larger) polynomial number of cut inequal-
ities yield a necessary and sufficient condition for the existence of a matrix in
A9(R, S). Its proof is given in Section 4.
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Theorem 4 Let ! be a nonnegative integer. Suppose that

Yolai—ga)t <sj—si+1 for 1<j<k<min{j+ [l"_':_l—l'Jv"}- (7

i=1

Then there ezists a matrir in A®(R, S) if and only if

=)t < Y s (8)
i=1

jed i¢d
where

J = [],h]U[h]_,hz]U[h3,h4]U"'U[h2[_1,hg[]
or
[h1,ho] U [h3, ha] U - - U [hai_y, hai]

(1<h<h <ha<--<huy L hu<n).

In Theorem 4, a set J must be the union of at most ! intervals, or the union
of at most !+ 1 intervals if 1 is contained in J. If the inequality in (7) is required
to hold for fewer and fewer pairs of columns, the inequality in (8) must hold for
more and more subsets of [1,n]. If{ > [3], then | 2| < 1 and so the inequality
in (7) is not required to hold for any pair of columns. Also if ! > | 2], then the
inequality in (8) must hold for all subsets J of [1,n]. Thus the case of { > | 3]
is equivalent to Lemma 1.

3 Auxiliary Digraph

In this section we give the definition of an auxiliary graph, which is used to
prove Theorem 4. We can easily see that there exists a matrix A with row sum
vector R and A < Q. If the column sum vector of 4 is S, A%(R, S) is nonempty.
Suppose that the column sum vector of A4 is not S. Then there exists an integer
k such that the j** column sum of A is s; for j = 1,2,---,k — 1, but the k*
column sum is not sx. Without loss of generality, we may assume that a matrix
A is chosen so that k is as large as possible and subject to that the difference
between the k** column sum and s, is as small as possible. Using the auxiliary
digraph and standard Network flow theory we show the following: if the k4
column sum is greater (resp. less) than sk, then we can “shift one” from (resp.
to) the k** column to (resp. from) one of columns k + 1,-- -, n keeping the row
sum vector R and the j** column sum (1 < j < k—1) s; and each entry of (i, j)
less than or equal ¢;j. After shifting the kt* column sum is closer to si and we
arrive at a contradiction to the choice of A.
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Definition 5 Let A = (aij) be a matriz. We say we shift one from column j to

column k if there is a sequence of entries (i1, j1), (i1, j2), (i2,J2). (12, J3), - -+, (Z¢, Jt),
(it, Je41) (possibly t = 1) where j1 = j, jig1 = k and we alternately add and
subtract one from the entries: a;,;, + a;,j, — 1, @i,j, & @i j, + 1. -, @ipj, &

e — Ly Giyjog + Qijogs + L

Let

Iy {i}ai # 0}
I = {i|aij < gi; for some j > k}

Construct a digraph G = (V, D), where V = {v1, -, tm} U {wy, -, we—1} U
{s,t} and D consists of the following arcs:

vi—w; if ey < gij
w; —* Y if a,-,-#O
s—uy; if i€l
vy —t f iel

Call the digraph G = (V, D) the auziliary digraph for A.

In Section 4, it’s shown that if the k*# column sum of 4 is greater than si
then there exists a directed path P from s to ¢ in the auxiliary digraph for A.
By alternately adding and subtracting 1 from the entries along P, we can shift
one from the k** column to one of columns k + 1,---,n. If an arc s = v; is
in P, subtract 1 from ai. If an arc v; = w;j is in P, add 1 to a;;. If an arc
wj — v; is in P, subtract 1 from a;;. If an arc v; = ¢ isin P, find j (> k) such
that a;; < ¢i; and add 1 to a;;. It is easy to see that after shifting the row sum
vector is still R, the j** column sum is s; (1 < j < k — 1), each entry of (. j)
is less than or equal ¢;; and the kt* column sum is closer to sy.

Suppose that the k** column sum of A is less than s.. Shifting one from
one of columns k + 1,---,n to the k*» column in the matrix A is equivalent to
shifting one from the k** column to one of columns k + 1,---, n in the matrix
Q@ — A. In Section 4, it’s shown that there exists a directed path from s to ¢ in
the auxiliary digraph for Q — A.

4 The proof of Theorem 3

Suppose that A°(R. S) is nonempty. Then by Lemma 1, (8) holds. Now we will
do the other direction of the proof by contradiction. Assume that condition (7)
and (8) hold but 2A9(R, S) is empty. Then there exist an integer k < n and a
matrix A with row sum vector R and A < Q such that the j** column sum of A
issjfor j=1,---,k—1and the kth column sum is not s (k may be 0). Choose
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a matrix A so that k is as large as possible and subject to that the difference
between the k** column sum and sy is as small as possible. Let s} be the j**
column sum of A. If there exists a directed path P in the auxiliary digraph
for A (resp. @ — A), we can shift one from (resp. to) the k** column to (resp.
from) one of columns k + 1,---,n along P and we arrive at a contradiction to
the choice of A. It’s enough to show that there exists a desired directed path
from s to t in the auxiliary digraph.

Case 1 s}, > si:

Let G = (V, D) be the auxiliary digraph for A. We will show that there is a
directed path from s to ¢ in G by contradiction. Assume that there is no such
path. Let

I = {i|3 adirected path from s to v;}
Jo {j < k| 3 a directed path from s to w;}

Then

Viel & Vie[l,k-1]\J a;; = qij
vid!l & Vi€ a,-j=0
If a;; is nonzero, then there is an arc s — v; and i is in /. So a;; = 0 for all
i & I. I there is a pair (i, j) such that i € I, j > k and a;j < ¢;j, then there is
a directed path from s to t. Thus a;j = ¢;; for all { € I and all j (> k). Thus
viel & Vje[JoU{k}]° aij = qij
Vl¢1 & VJEJOU{k} a,-j=0
where [JoU{k}]° is the set [1, n]\[JoU{k}]. We use J° to denote the set [1,n]\J.
Suppose that k < 2{. The set [1,k — 1]\ Jo can be written as
[1, h]U[h[,hZ]U"‘U[h2p—l!h'-7p] ’ or
(h1,h2] U -+ U [hop-1, hap]
where h; # 1 and p<1—1. Let J = [Jo U {k}]°. Then J = ([l.k = 1]\ Jo) U
[k+1,n}]. So J is
(1,A]U [y, ha] U+ - U[hzp—1, hap] U [haps1, hopye] . oOF
[R1, ha] U+« - U [hop—1, hap] U [hop1, hapyo]
where hapy1 = k + 1 and hapy2 = n, and p+1 < 1. Note that a;; = ¢;; for all
i€landallje€J, and sj =s; for all j € J°\ {k} and s, > six. We have the
following inequality:

m

(%) Yor=d gt > D= @)t

i=1 jed iel jeJd
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L IDNCEDIHED I/
i€l jed ied
> 28
jgd
This contradicts (8).
From now we suppose that & > 2{.

Claim 1 There erists a pair (L,u) such that t < u < k, aet < gez for some
e€l, and ay, #0 for some f & I.

Proof. First, we will show that there exists u (< k) such that as, # 0 for some
f & 1. Assume that no such u exists. Then a;; =0 for all i € I and all j (< k).
Alsoa;; =0foralli g I. Thus

Vigl & Vi< hy ai; =0
Viel & Vj with h1515h2 aij = qij

where hy = k + 1 and ha = n. Let J = [hy, h2). By an argument similar to (x),
we obtain a contradiction to (8). :

Let u be the last column before column k that has a nonzero ay, for some
f & I. Now we will show that there exists t (< u) such that a., < ge, for some
e € I. Assume that there is no such ¢t. Then a;; = g;; for all i € [ and all j
(< u). Since agy # 0, u & Jo and aju = giy for all i € I. Thus

Viel & Vj€([lL,hUlh, ko ij = gij
Vigl & Vj with h<j<h a; =0

where h = u and h; (i = 1,2) is the same as above. Let J = {1, h]U[hy, h2]. By
an argument similar to (+), we obtain a contradiction to (8). ll

Claim 2 There exist | pairs (j1,j2), -, (ja-1,Ju) of (t.u) satisfying cond:-
tions of Claim 1 where j; < j2 < --+ < jau-1 < ju < k.

Proof. We will prove it by an induction on the number of pairs of (¢,u) we
obtain. Let us suppose that we have p pairs (jai—1,j2i) of ({.u) where i =
I,1=1,....,1 =p+ 1. Now we want to obtain the (p+ 1)** pair. Without loss of
generality, we can assume that

viel & Vj with j'_}((_p)+] < J £ Jaq-py42 ai; = qij
Vigl & Vj with jag—pye2 < J < Jo-p)+3 a;; =0
viel & Vi with jay—y < j < ju ai; = ¢ij
Vigl & Vj with ju <j<k aij =0
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Now we will show that there is jp(;—p) such that jo_py < Jag—py+1 and Gejy,_ ) #
0 for some e & I. Assume that there is no such jay_py. Then a;; = 0 for all
i¢Tand all j < Jag—p)41- Let

(#%)  hi=jau_pyr+ 1, h2 = ja-pys2:
hopr = Ju-1+ 1, hayp =ju, hypp=k+1, hypey=n

Let J = [hy, ha] U --- U [hop—1, hap] U [h2p41, hap41)]. By an argument similar
to (), we obtain a contradiction to (8).

Now we will show that there is jau—p)—1 such that jag_p)—1 < ja-p) and
@fjrtopr-s < Ufizup)-, fOF sOme f € I. Assume that there is no such jpi_p)-1-
Then a;; = ¢;j for all i € I and all j < jaq—p). Let h be jyy_p) and J be
[1,A]U Ry, ko] U - - - U [hop—1, hap] U [h2p41, Ra(p+1)]- By an argument similar to
(*), we obtain a contradiction to (8).

By repeating the above arguments, we can obtain ! pairs of (f,u). This
completes the proof of Claim 2. Bl

We have [ pairs (j1,j2),- -, (j2t—1, ju) satisfying conditions of Claim 2. For
any jop_1, there exists e € I such that aej,,_, < gej,,_,- Also, aij,,_, =0 for

alli ¢ [. So,
Zqihp-l > Zaij:p-x +1
ief iel
= Sjrpen + 1.
For any ja,, there exists e € [ such that a.j,, # 0. Also, aij,, = gij,, for all
i€ Il. So,
Z%‘je, < Z ijap, + (Z @ij,, — 1)
il i€l igl

= sj” - 1.
Since a; =0 for alli ¢ I.
doain > sk > s+l
iel
Since s = 51, -,sk_; = Sk~1 and s}, > 8, there exists j > k such that s} < s;.
Since a;; = ¢;; for alliel,
quj S S.Ii S Sj—l.
iel
Let jor+1 and jaryo be k and j, respectively. Then for any p with 1 < p < I+1,
m
S Giingr = Gii20)T = D (Gijapes — Giiny) T
=1

i€l
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v

Z Qijap_y — Z Gijap
i€l i€l
2 Sjzper — 8ia + 2

Among { + 1 pairs of (j2p—1,j2p), at least one pair has the difference less than
or equal ;77 — 1, that is jap — jop—1 < | f7|. Now we arrive at a contradiction
to (7).

Case 2 sp, < sp:

Let G = (V, D) be the auxiliary digraph for @ — A. By an argument similar to
Case 1, we will show that there is a directed path from s to ¢ in the digraph G.
Assume that there is no directed path from s to ¢. Let

Iy = {i|3adirected path from s to v;}

Jo = {j < k|3 adirected path from s to w;}
Then

Vielh & Vje[JU{k}I ij — @ij = gij

Vigly & Vje Jyu{k) gi; —aij =0

Let I = JS. Then

Vigl & Vjel[loU{k}* a;; =0
Vviel & Vje Uik} aij = gij

Suppose that ¥ < 20 + 1. Then Jo U {k} can be written as either [1,A]U
[hl,hg] u---u [th..l,hgp] or [hl,hg] U---u [h2p—hh2p] where p < I. By an
argument similar to (), we arrive at a contradiction to (8) with J = Jo U {k}.

From now, suppose that & > 2{ + 1.

Claim 3 There exist v such that v < k and a;y < ¢iy for some i € I.

Proof. Assume that there is no such v. Then a;; = ¢;; for all i € I and all j
(< k). Also a;x = gix for all i € 1. By an argument similar to (%), we arrive at
a contradiction to (8) with J = [1,4]. il

Now let v be the last column before column % satisfying the condition
in Claim 3. By arguments similar to Claim 1 and 2, we can obtain ! pairs
(71, d2), - -+, (Fai=1,Jat) of (t, u) satisfying conditions of Claim 1 where j; < j2 <
<o+ < jou < v (in (#*) hapyy and hypyq) become v + 1 and k, respectively).
With these ! pairs and the pair (v, k), we can obtain a contradiction to (7) in
the same way as in Case 1.

The proof of Theorem 4 is completed.
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5 Remark

In Chen’s result, if there exists a column order satisfying condition (6) then a
column order with s; nonincreasing satisfies the condition as well. Thus we can
check easily whether there exists such a column order. But at this moment we
don’t have a trivial way to check whether there exists a column order satisfying
condition (7), and we believe that there is no trivial way to do. Our next goal
is to modify condition (7) to be checked easily.
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