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Abstract

The binary linear code of a Steiner triple system on 2% — 1 points,
where d > 3 is an integer, contains a copy of the Hamming code Hg4; this
fact can be used to characterize those systems on 2¢ — 1 points that have
low dimension, and to show that these systems can always be extended
to Steiner quadruple systems whose binary code is the extended code of
the Steiner triple system.

1 Introduction

One of the questions that Steiner asked in his 1853 paper [9] was whether every
Steiner triple system extends to a Steiner quadruple system. Much work has
been done on this question, and no counter-examples are known. However,
the question has been answered in the affirmative for various classes of triple
systems (see the surveys in Phelps [8] and Hartman and Phelps [5]). Among
those classes that are known to extend are the classical triple systems obtained
from the design of points and lines of a projective space over Fa, PGg1(F5),
which extends to the design of points and planes of the affine geometry, i.e.
AGd41,2(F2), and, in this extension, the code of the affine-geometry design is
the extended code of the projective-geometry design. Here we take a mostly
coding-theoretical approach to consider a related class of triple systems and
prove the following theorem:

Theorem 1 Let D be a Steiner triple system on v = 29+1 —1 points and suppose
that the 2-rank of D is 29+ — 1 —d or 241! —d. Then D can be extended to a
3-(2%+1,4,1) design whose code is the extended code of D.

It is well known that the theorem is true for dimension 2¢ —d — 1, and, in fact,
we use this in the proof of the stated theorem. The fact that the systems extend
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when the dimension is 2¢ — d or 2¢ — d+ 1 also follows from other considerations
regarding the existence of projective hyperplanes that extend: see Teirlinck [11]
for more on this. Our approach here is from the point of view of coding theory.
The construction described here is analogous to a construction given by Etzion
and Vardy [4] for non-linear perfect binary codes.

The theorem is proved in Section 3. In Section 2 we describe our terminology
and give previous results that will be needed for our propositions.

2 Terminology and previous results

An incidence structure D = (P, B, Z), with point set P, block set B and incidence
T, is a t-(v, k, \) design if every block is incident with precisely & points and any
set of ¢ distinct points are together incident with precisely A blocks. A Steiner
triple system D is a 2-(v,3,1) design, i.e. every block is incident with precisely
three points and any two distinct points are together incident with exactly one
block. For 2-designs with A = 1, we sometimes refer to the blocks as lines. A
Steiner quadruple system Q is a 3-(v,4,1) design; the derived design obtained
by deleting any point z and all the blocks not containing that point, forms a
Steiner triple D system with parameters 2-(v — 1,3,1). The 3-design Q is an
extension of D.

We denote by PGy,1(F2) the 2-(2¢*! — 1,3,1) design of points and lines of .
the projective geometry PG4(F2) of dimension d over F,.

For any finite incidence structure D = (P, B), the code Cp(D) of D over a
prime field F, is the subspace of the space F of all functions from P to Fy
that is spanned by the incidence vectors of the blocks of D. If X C P, denoting
the characteristic function on X by vX, we have Cyp(D) = (vB|B € B). The
dimension of Cp(D) is referred to as the p-rank of D. The all-one vector in any
code will be denoted by ; thus 3 = v®. The orthogonal of a code C defined on
the coordinate set P will be denoted by C*, and is taken with respect to the
standard inner product, i.e.

ct={ulue F;’,(u,w) = Zu(:c)'w(:z:) =0 for all w € C}.
z€P

The support of a vector ¢ € Cp(D) is {z € P|c(z) # 0}, denoted by Supp(c).
We say c is a weight-m vector if |Supp(c)] = m. The non-zero vector c is
constant if c(x) = @, a constant, for all z € Supp(c), i.e. if c = avSupp(e),

If D = PGg4,1(F2) then C3(D) is a Hamming code, generally denoted by
Hay1. The dimension is 24+! — (d + 1) — 1, the minimum weight is 3, and the
minimum-weight vectors are precisely the incidence vectors of the lines: see (2],
for example.

The following is well-known and a proof can be found in [6]:
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Figure 1: Interchanging points in the Fano Plane

Result 2 Let D be a 2-(v,3,1) design where v > 7 and let C = C3(D). If the
minimum weight of C is 3 then the weight-3 vectors are the incidence vectors
of the blocks of D. Further, v =2%—1 for somed >3, D = PGg_1,1(F2) and
C =H,.

The next result was first proved in [3]:

Result 3 (Doyen, Hubaut and Vandensavel) LetD be a 2-(v,3,1) design,
and let G be its automorphism group. If G is transitive on points then
rankz(D) = v or D is the design of points and lines of a projective geometry
over Fs.

Our construction of extensions is based on the following result that is a
particular case of a theorem from Key and Sullivan [6]:

Result 4 Let D be a 2-(2% — 1,3,1) design where d > 3 and let C = Cy(D).
Then C contains a subcode isomorphic to the Hamming code Hy. Equivalently,

C contains a set of weight-3 vectors whose supports form the blocks of the design
PGy_1,(Fz).

3 Extensions of the designs and the codes

We show now how the theorem can be proved using the binary codes and their
extensions. We first describe the construction, which is based on Figure 1, and
make the following observation as a lemma which is easily verified:

Lemma 5 Let S and S’ be Steiner triple systems on v points. If Co(S) C
C3(S'), then Ca(S’) contains a weight-1 vector not in Cy(S).

The construction described in Proposition 6 and Figure 1 can be found
essentially in Sullivan [10]:
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Proposition 6 Let D be the design PG4,1(F2) of points and lines of the pro-
jective geometry PG4(F3). Let C = C2(D) = Hayi, and suppose d > 3. If the
Fano plane F shown in Figure 1 is a configuration in D, and if two points are
interchanged as shown in F', then the structure D' formed by taking the lines
shown in F' and all the other original lines of D is a Steiner triple system with
code C' = C @ (v{1}).

Similarly, if a further change to F" is performed, it will produce a design

" with code C" = C @ (v{1}) ® (v{?}).

Proof: The proof is quite elementary and direct. O

Corollary 7 Any number of planes containing the point 1 can be altered in
the manner described in Proposition 6 and the resulting code will be C' or an
isomorphic copy of C.

Any number of substitutions of the type described in Proposition 6 in planes
that intersect in the line {1,2,3}, or substitutions of the type described, with 1
replaced by 2 or 3, in planes that meet other altered planes only in the points 1,
2 or 3, respectively, will result in a design whose code is C", or an isomorphic
copy of C' or C.

Proposition 8 The designs D' and D" obtained as in Proposition 6 extend
to Steiner quadruple systems whose codes are the extended codes C' and C"
respectively.

Proof: In the notation of Proposition 6, C is the extended Hamming code. It
is well known (see, for example, Assmus and Key [2]) that the codewords of
weight-4 in C form a Steiner quadruple system, £ say, and that Ca(€) =

Let C’ be the extended code of C’'. We describe how to construct the design
&', an extension of D'. We know that the sets

{1,2,4,6},{1,2,5,7},{1,3,5,6},{1,3,4,7}

are the supports of weight-4 codewords in C. Replace these codewords by the
four weight-4 vectors in the coset C + v{1} with supports

{1,2,4,7},{1,2,5,6},{1,3,4,6},{1,3,5,7}.

Now €' is defined as follows: take all the triples of D' with the new point oo
attached, and the supports of all weight-4 vectors in C, apart from the four
substitutions noted above. Notice that all other weight-4 vectors are also in C'
since C is a subspace of C". It is a straightforward process to verify that C2(£')
- C’I

The corresponding construction for D" and cn proceeds in an analogous
manner. 0
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Proof of Theorem 1: We prove this for D of rank 2¢+! — 1 —d; the other case
follows similarly. We know, from Lemma 5, that the code C' of D is C & (e)
where C = Hayy and e is a weight-1 vector. Suppose that e = v{1}. The lines
of D can be found among the supports of the weight-3 vectors in C'. These
vectors are either weight-3 vectors of C or are obtained from weight-4 vectors
of C' whose support contains the point 1. Thus the only weight-3 vectors in
C' whose supports contain the point 1 are the incidence vectors of the lines of
P = PG4, (F2). Thus these lines will necessarily be lines of the design D also.
Since the weight-4 vectors in C are precisely the sums of two intersecting lines,
they always define a unique Fano plane in P. The new weight-3 vectors thus
always define Fano planes containing the point 1 in the design P.

Suppose £ is a line of D that is not a line of P. Then 1 ¢ £ and £U {1}
is on a Fano plane, say F as shown in Figure 1 of P. Suppose £ = {2,4,6}.
Since our lines through 1 are the same as the original, we have to choose our
other lines in this plane to be those shown in F' in Figure 1. These observations
show that any line £ of D that is not a line of P generates, together with the
point 1, a Fano plane as a subsystem of D. Of course this will not be true for ¢
together with an arbitrary point not on £. For any line £ of D that is also a line
of P, if 1 € ¢, then again £U {1} generates a Fano plane. Notice that we have
shown that the design D has been obtained according to the method described
in Corollary 7.

Now we show how to extend D to a Steiner quadruple system whose code is
the extended code of D. Let oo be the new point. Then the blocks containing
oo are given. Suppose now we take a set S of three points that form a triangle
in D. If S also forms a triangle in P then S is in a Fano plane F of P. If the
lines of F are lines of D, then define the quadruple containing S as is done by
extending F. If F is a relabelled plane (and thus contains the point 1), then
extend S as would be done for the relabelled plane. In either case, the extension
is achieved within C’.

Now suppose S is a triangle in D but a line of P. Then 1 ¢ S, and S is
in a unique Fano plane, as a subsystem of D, containing 1. This Fano plane
necessarily has the three lines through 1 common to D and P, and the remaining
four lines interchanged for triangles, as in F and F' above. There is a unique
fourth point z such that S U {z} is the support of a weight-4 vector in C’, and
we choose this set to be a block. All cases are covered, and D extends to a
Steiner quadruple system whose binary code is C’.

In fact, to get the Steiner quadruple system that extends D, only the weight-
4 vectors whose supports contain 1 need be replaced, since if a weight-4 vector is
in the Hamming code it is the sum of the incidence vectors of two lines that meet
and hence span a Fano plane in P; if 1 is in this plane then the support will still
form a quadrangle in D, and thus all the weight-4 vectors of the Hamming code
C that do not contain the point 1 in their support can be taken as blocks. For
the remaining blocks not containing oo, we choose as follows: if w is a weight-4
vector in C' with support S 3 1, then if S — {1} is one of the lines £ of D that
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replaces a line ¢ of P, then replace S by £ U {1}; if S — {1} is not a line of D,
then S is included as a block. O

This completes the proof of the theorem.

Further applications seem more complicated, since the number of weight-3
vectors increases, and the choice is harder. However we can produce a chain of
designs that all extend, using the construction of Proposition 6.

Proposition 9 Let Dy be the design PGa,1(F2) of points and lines of the projec-
tive geometry PG4(F2) where d > 3. Then we can define a sequence of Steiner
triple systems, Di, for 1 < i < d, such that dim(C2(D;)) = 2%+ ~d—2+1, and

C2(Do) C Ca(D1) C... C Co(Di) C ... C C2(Da) C Fg““—l_

Further, each deiign is extendable to a Steiner quadruple system, Q;, and the
extended code C2(D;) = C2(Q;:) for each i.

Proof: Starting in Dy as usual, choose first a point 1, say, and add its incidence
vector to Cy(Dy); choose D, as described in Proposition 6. Then proceed with
another point 2, say, and obtain D, as in Proposition 6. Now add the vector
v{7}, where this is a point not on the line through 1,2, as illustrated in Figure 1.
Adding this vector gives all the weight-1 vectors from this plane. All the triples
are now changed, as shown in F'"' of Figure 1. This gives the next design D3
with code Cz(D;) @ (v{™}). For the next step we must choose a Fano plane
in D, that is disjoint from F"': this is possible within our restrictions on the
dimension of the code. In this new plane we need make only one switch, as in
Proposition 6, in order to have 15 weight-1 vectors. We continue in this manner
to get the triple systems and their codes, all satisfying the conditions stated.
The extension to quadruple systems with the desired codes follows easily, using
our previous arguments. O

We are unable to extend this result to the full dimension because the choice of
triples becomes too numerous. However, Steiner triple systems with transitive
automorphism groups always have the full space as binary code, unless they
are the projective-geometry design: this is clear from Result 3 or by the simple
observation that if the design is not the projective-geometry design then the code
has weight-1 vectors, and by transitivity it will have all the weight-1 vectors.

Notes

(1) Bases of weight-3 and weight-1 vectors for the codes of these Steiner triple
systems can now easily be found, using the basis of minimum-weight vectors for
the binary Hamming code as described in [6].

(2) Similar results for ternary codes can be found in Key and Sullivan (7].

(3) After this paper was first submitted in October 1994, a paper of E. F. Assmus
[1] giving a comprehensive analysis of the binary codes of Steiner triple systems
appeared. That paper mentions our results.
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