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ABSTRACT. Let A(n,3) denote the n-dimensional affine space
over the finite field of order three. In this paper, we use basic
combinatorial principles to discuss some old and new results
about the lines in A(3,3). For S C A(3,3), let ||S]|s and [|S||3,x
respectively denote the number of lines and the number of k-
lines of A(3,3) contained entirely in S. For each ¢, we compute
ag(t) = min{||S||a: |S] = ¢t} and ws(t) = max{||S|ls: |S| = t}.
We also give results about ask(t) = min{||S[jnx: |S] =}, and
w3,k(t) = max{||S|n,x: |S| = t} and results about 1-lines and
n-lines in A(n, 3).

1 Affine lines and k-lines

Let A(n,3) be the n-dimensional affine space over the finite field of order
three. A line £ in A(n,3) is a translate of a one dimensional subspace
and thus consists of three distinct vectors, £ = {(z;), (%), (z:)}, for which
(%:) + (3:) + (=) = (0;) and 1 < i < n. Let )\, denote the number of affine
lines in A(n,3). Since every pair of vectors in A(n,3) is on a unique line,
it is easy to see that

For an integer k with 1 < k < n, a k-line in A(n,3) is a line £ =
{(=:), (i), (z:)} in A(n, 3) for which z; # y; # 2; for exactly k of the n
indices. For example, {21011,22010,20012} is a 2-line in A(5, 3). Let A, &
denote the number of k-lines in A(n, 3). Henceforth, we will let z, y, and 2
denote vectors.
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Let z € A(n,3) and let V,,(z) and V,, x(z) respectively denote the set of
lines and k-lines in A(n,3) on the vector z. Because the cardinalities of
these sets are respectively invariant, we let |V, (z)| = v and [Voi(z)| =
Vn k. It’s not hard to see that v, = =1 and vn e = (3)2F1. Using vnx
one can easily compute that A, x = 3"~1(})2¥~1. The (n,k)th entry in
Table 1 is A k.

n\k] 1 | 2 3 ] 4 | 5
1| 1] - -
2 ] 6] 6 - -
3 | 27| 54 | 36 | - .
4 [108| 324 | 432 | 216 | -
5 | 405 | 1610 | 3220 | 3220 | 1296

Table 1. An

2 Basic results

For S € A(n,3), let ||S||l» and ||S|lnx respectively denote the number of
lines and the number of k-lines of A(n,3) contained in S. Let

on(t) = min{||S[la: |S| =},

wn(t) = max{||S||x: |S] =t},
an k() = min{||S|nk: |S] = t}, and
wnk(t) = max{[|S|lax: |S| = t}.

A set S C A(n, 3) is respectively called line free or k-line freeif || S||, =0
or ||Sfln,x = 0. One question is: For a given n, what is the first value of ¢
for which ay,(t) > 0?7 This is a difficult question and the answer is known
for only n < 4. (See [1] and [2].) Let 7, (respectively 7, x) denote the first
value of ¢ for which an(t) > 0 (respectively ay x(t) > 0). Then 72 = 5,
73 = 10, 74 = 21.! We show below that 7,1 = Th n = 2(3"~1) + 1 and that
73,2 = 14. For n > 2, it is interesting to note that 7,1 = 7n,» even though
)‘n,n > )\n,l'

Proposition 1 demonstrates a connection between oy and wk.

Proposition 1. Let S C A(n,3) with |S| = t, and let S’ denote the
complement of S in A(n,3). Then:

a) |Slln + 1S9Nn = An — t;ﬁz—_l_ + (;)
b) o (t) + wa(3® — t) = A — t551 + (2)

11t is not clear if a proof of this is in print. In [1] p.33, it is claimed without proof
that 74 = 21, but in [2] p. 205, it is claimed that 74 > 21.

162



Proof: It is obvious that [|S']ln = An = |U,es Va()| and |S|ln,x = Anjk —

IUIGS K‘vk(x)l'
From inclusion-exclusion we have:

U Va@)|=2_Va(@)l = 3 loa(@) N o)l
z€S z€S z,yES
+ Z lvn(z) N v (y) Nua(2)|
z,y,2€8
t
== (5) +1ln
3n-1 t
=22 (2) +1sll
By rearrangement part a) follows. From a) it is not hard to get b). O

An analogous analysis for k-lines is not as concise; but it does provide
some information. For (z;), (y:) € A(n,3), we call the pair {(z;),(v:)} a
k-pair if z; # y; for exactly k of the n indices. The unique line through a
k-pair must be a k-line. For S C A(n,3), let Dy, x(S) be the collection of
k-pairs contained entirely in S. By an argument analogous to that in the
proof of Propaosition 1, we have:

Proposition 2. For any S C A(n,3) with |S| =t,

n
[+ 15'H e = e = £ ) 257+ 1De(5)

= (3™ -t) (:) 2k=1 4 |D, x(S)|

=(t-2(3""")) (:) 2571 4 | Dy k()]

The latter equality in Proposition 2 comes from interchanging S and S’
in the former. The main difference between Propositions 1 and 2 is that the
left hand sum ||S||, x+|S'||n,x in Proposition 2 is not invariant with respect
to the cardinality of S. The reason for this is that different sets S; and S5
with the same cardinality can have |Dy x(S1)| # |Dn x(S2)|. However, we
have the following easy corollary.

Corollary 2.1. For each k < n, Tnx < 2(3"71) + 1.

Proof: By Proposition 2, we have that ||S]l.x = (t —2(3"1))(})25! +
D k(S)| = 1S In k. Soif |S] > 2(37~1), then ||S|lnx > O for all , with
1 < k < n, because | Dy x(S’)| = |5’ lln,x = 0. (Indeed | Dy, x(S")|— |5’ llnx =
2|8 ||nx) ]
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3 1-lines and n-lines in A(n, 3)
Proposition 8. For any n, Tp,1 = Tnn = 2(3" 1) +1.

Proof: Since the set of vectors {(z;) € A(n, 3): z; = 0 or 1} is n-line free,
we have by Corollary 2.1 that 7, » = 2(3"~!) + 1. To complete the proof,
we need to demonstrate that for any n, there is a 1-line free S C A(n,3)
with |S| = 2(3"1).

It is easy to verify as,1(6) = 0, so we have that the result for n = 2.
We proceed by induction on n. Assume apn—_y,1(2(3"2)) = 0. Then there
is a § C A(n,3) with |S] = 2(3*2), and ||S|ln-1,1 = 0. Identify S with
the subset Sy C A(n,3) defined by S = {(z;): z; = 0,(zi—;) € S for
2 < ¢ < k}. Consider the translates of Sp in A(n,3) defined by S; =
So + (1,0,...,0,1), and Sp = Sp + (2,0,...,0,2). Let S* = SgU S1 U Ss.
Then S* has cardinality 2(3"!), and we claim that S$* is 1-line free in
A(n,3).

Let {(z:), (), (z:)} be aline in S*. It is easy to see that if {(z:), (v:), (2:)}
is contained in Sp, S1, or Sz, then {(z;), (:), (z:)} is not a 1-line because Sy,
S1, and S, are all translates of a 1-line free set S. Therefore {(z;), (%:), (z:)}
must intersect each of the sets Sp, S1, and S3. Without loss of generality,
we assume (z;) € So, (¥:) € S1, and (z;) € S2. Then there are (3{), and (2})
in Sp for which () = (¥) + (1,0,...0,1) and () = (2}) + (2,0,...0,2).
Since {(z:), (v:), (%)} is a line, then either {(z:), (¥}), (2{)} is a line in So,
or (z:) = () = (&) I (z:) = () = (=) it is clear that {(z:), (), ()} is
a 2-line in A(n, 3). If {(z;), (¥}), (2})} is a line in Sp, then {(z;), (v}), ()} is
not a 1-line in Sy because Sy is 1-line free. It follows that (z;) and (y}) are
different in (at least) two indices, ¢; and 42, neither of which are equal to 1,
because z; = y] = 0. So x;, # y;, and z;, # y;,. Without loss of generality,
we can assume 2 < 4; < n —1. It now follows that {(z;), (¥:), (%)} is not a
1-line since z; # y; and z;, # y;,. |

It is interesting to note that although there are sets S C A(n,3) of
cardinality 2(3"!) that are 1-line or n-line free, the argument in the
proof of Corollary 2.1 actually shows that ay,1(2(3""!) + 1) > n and
ann(2(3"1) +1) > 271,

4 Lines and k-lines in A(2,3) and A(3,3)

From Proposition 3, we have that 751 = 752 = 7. Using Proposition 1, we
can generate Table 2. Observe that 7 = 5.
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a2(0) =0 w2(0)=0] a2(5)=1 (w(5)=2
ag(l) =0 wz(l) =0 (12(6) =2 w2(6) =3
02(2) =0 w2(2) =0 a2(7) =5 w2(7) =5
a2(3)=0 wy(3)=1 a2(8) =8 wy(8)=8
a2(4) =0 wa(d)=1] a2(9) =12 wy(9) =12

Table 2

Consider the figures below. Label each box using the row letter and
column number. Box a2 is marked with an x.

1 2 3
210 | 010 | 110
a| 211 %011 | 111
212 | 012 | 112
200 | 000 | 100
b|201] 001|101
202 { 002 | 102
220 | 020 | 120
c|221f 021|121
222 | 022 ] 122
Figure 3

If we have three non-zero vectors z, y, and z such y # 2z and z # 2z+2y,
then we can form Figure 4 .

1 2 3
z T4z 2r 4z
a| 2z4+y+=2 y+z zt+y+z
z+2y+2z | 224+ 2y+2 2y+z
000 x 2z
b 2z +y U} T+y
x+2 2z 4 2y 2y
2z z+ 2z 2z + 2z
c|2z+y+22 ¥+ 22 z+y+2z
z4+2y+2z |2+ 2y+22 | 2y+22

Figure 4

For each figure, it is straightforward to verify that: 1) every vector in
A(3, 3) appears exactly once, 2) every box contains a line in A(3, 3), and 3)
every column, row and diagonal is a plane in A(3,3). Moreover, if we take
any three boxes such that no two come from the same row or column, then
the nine vectors contained in those three boxes form a plane in A(3, 3).
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A plane in A(n,3) is a vector translate of 2-dimensional subspace. So
given any set S C A(3,3) of t vectors contained in a plane, then as(t) <
|Sll3 < w2(t) because a vector translate of a line is a line. We make use of
this observation below.

Proposition 4. a3(11) = 3.

Proof: Suppose we have a set S of 11 vectors in A(3,3). We want to
show that ||S||a > 3. First, we show that S is not line free. As is Figure
4, there must be vectors = and y in S. If 2z + 2y is in S, then S is not
line free. Suppose 2z + 2y is not in S. Consider the following pairs of
boxes from Figure 4: {al, 3}, {a2,c2}, {b1,b3}, {a2,c2}. By the pigeon-
hole principle, there must be a pair whose union contains three of the nine
vectors in S — {z,y}. Without loss of generality, suppose three vectors are
contained in the union of al and ¢3. Then there are five vectors in the
union of al, b2, and ¢3. Since this union forms a plane, and az(5) = 1, we
must have a line in S. Since the translated set z+ S contains three lines if
and only if S does, then we can assume, without loss of generality, that S
contains a line of the form {z,y, 2z + 2y} as in Figure 4.

Now, if S contains less than three lines, we show below that there is no

way to distribute the remaining eight vectors in S — {z,y, 2z + 2y} among
the boxes in Figure 4. Since the box 2 is full, at most one more box can
be full; otherwise, S would contain three lines. We have two cases:
Case 1. One box other than b2 is full: Without loss of generality, we can
assume that al is full. Since five vectors remain to be distributed, and no
additional boxes can be full, there must be a box that contains only one
vector. Without loss of generality, we can assume that box a2 contains
exactly one vector from S. From here, it follows that boxes a3, ¢2, and
c3 must be empty; because, if any one of them contains a vector, then S
must contain three lines. Now there are four vectors left to be distributed
and three boxes in which to distribute them; so one box must contain two
vectors. Without loss of generality, we can assume that box bl contains
two vectors. Figure 5 depicts how the elements of S are distributed in the
boxes of Figure 4 thus far.

1 2 3
al3]1]0
b[2]3]7
c|{?]10]0

Figure 5

Now, no matter how the remaining two vectors are distributed, it follows
that S must contain at least three lines.
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Case 2. No box other than b2 is full: It is straightforward to verify that if
each of the remaining boxes contains one vector, then S must contain three
(indeed five) lines. So, without loss of generality, we can assume that al
contains exactly two vectors. From here it follows that ¢3 must be empty;
for if not, then S contains at least three lines. If each of the remaining
boxes contains one vector, then S must contain at least three (indeed four)
lines. This is because each of intersections S N {b1,52, b3}, SN {a2,b2, 2},
and S N {a3,b2, c1} must then contain exactly two lines. Figure 6 depicts
this distribution.

21111
1131
11110

Figure 6

Thus one of the remaining boxes must contain two vectors. Without loss
of generality , suppose it is a2. Then box ¢2 must be empty; because if not,
then S would contain three lines. The distribution of the elements thus far
is depicted in Figure 7.

2127
1[3]7
71010

Figure 7

From here, it is not hard to see that, no matter how the remaining three
vectors are distributed, S must contain three lines. Thus a3(11) > 3.

To finish the proof, we have to show that a3(11) < 3. Let|S| = 11. From
Proposition 1a, we have that [|S||3 + [|S"|ls = 29. If S’ is the set of vectors
in parenthesis in Figure 8 (which is a copy of Figure 3), then S’ contains
at least (indeed exactly) 26 lines. Thus ||S]|s < 3. Hence a3(11)=3. O

(210) [ 010 | 110
(211) | o11 | 1n
(212) | 012 | 112
(200) | (600) [ 100
(201) | oo1 | 101
(202) | 602 | 102
(220) [ (020) | (120)
(221) | (021) | (121)
(222) | (022) | (122)

Figure 8
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Corollary 4.1.
a) a3(10) =
b) 3 =10.
c) a3(12) =
d) e3(13) =

Proof: a) Suppose a3(10) < 1. Then there is a set of vectors S in A(3,3)
with |S| = 10 and ||S|ls < 1. Let z € S’ and consider S U {z}. By
Proposition 4, it follows that |SU {z}||s > 3. We have two cases:
Case 1. ||S||s = 0: It follows that z must be on at least three lines
contained in S U {x}. Since this must be true for every z € §’, it follows
that there are 3|S’| = 51 distinct lines in A(3,3) that contain a pair of
vectors from S. This is a contradiction because every pair of vectors in
A(3, 3) defines a unique line, but S only has 45 distinct pairs.
Case 2. ||S]|s = 1: Let £ be the one line contained in S. It follows that z
must be on at least two lines contained in (S — €) U {z}. Since this must
be true for every z € ', it follows that there are 2|S’| = 34 distinct lines
that contain a pair of points from (S — £). This is a contradiction because
any pair of vectors defines a unique line and (S — ) only has 21 pairs. O

b) It is easy to construct a line free collection of nine vectors in A(3,3).0

c) Since a3(11) = 3, it follows that a3(12) > 4. If not, there is an S
with |S] = 12 and ||S||s = 3. Let £ be one of the lines contained in S and
let z € £. Then |S — {z}| = 11 and ||S — {z}||3 < 2. This contradicts
a3(11) = 3.

Also a3(12) < 4. Let S’ be the set of vectors in parenthesis in Figure 9.
Then ||S’||]s = 23. From Proposition 1a, we have that [ISlls + 19]ls = 27
Therefore |S| = 12 and ||S}|s = 4. Hence a3(12) =

(210) | 010 | 110
(211) | o11 | m
(212) | 012 | 112
(200) | 000 | 100
(201) | c01 | 101
(202) | 002 | 102
(220) | (020) | (120)
(221) | (021) | (121)
(222) | (022) | (122)

Figure 9
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d) By an argument similar to that in c), it is easy to see that a3(13) > 5.
Let |S| = 13. If &’ is the set of vectors in parenthesis in Figure 10, then
[IS’lls = 19. By Proposition 1la, it follows that a3(13) < 7. We now show
that either a3(13) = 5 or as(13) = 6 leads to a contradiction.

210 | 010 [ 110
(211) [ o11 | 1
(212) | 012 | 112
(200) [ 000 | 100
(201) | 001 | 101
(202) [ 002 | 102
(220) | (020) | (120)
(221) | (021) | (121)
(222) | (022) | (122)

Figure 10

If a3(13) = 5, then there is an S C A(3, 3) with |S| = 13 and ||9||s = 5.
Then there must be an z € S that is contained in two of the five lines in
S. Thus ||S — {z}||s < 3. This contradicts a3(12) = 4.

If a3(13) = 6, then there is an S with |S| = 13 and ||S||3s = 6. Then
there must be two vectors z,y € S that are contained in the union of four
of the six lines in S. It follows that ||S — {z,y}||s < 2. This contradicts
a3(11) = 3. ]

Table 5 gives the values of af3(t) and ws(t) for all ¢ with 0 < ¢ < 27.
The values can be obtained using Propositions 1 and 4, and Corollary 4.1.

tos@ Jws@ [ t [as@®) [ws@® [ ¢ [as®) [wal®) [ ¢ [eal®) [wst)
o o 0 71 0 5 ||14| 10 | 19 [[21| 51 | 54
1| o 0 8| 0 8 ||i15| 13 | 23 [[22| 60 | 62
2] 0 0 9| o 12 ||[16| 16 | 26 {[23| 70 | 71
3 o 1 [[10] 2 12 [[17| 20 | 30 (24 80 | 81
4 o 1 |11 3 13 [[18] 24 | 36 [[25[ 92 | 92
5| 0 2 2T 2 14 ||19] 33 | 41 [[26] 104 | 104
6] 0 3 |13 7 16 [[20] 42 | 47 |27 117 | 117

Table 5

Proposition 5. 735 = 14.

Proof (sketch): Consider the set of 13 vectors in parenthesis in Figure
12. Since it is 2-line free, then 732 > 14.
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221 | (121) | (021)
(202) | 102 | (002)
(210) | (110) | 010

160 | (000) | (200)
(111) | o1l | 211
(122) | (022) | (222)

012 | 212 | 112

020 | 220 | 120
(001) | o022 | 101

Figure 12

To see that 732 < 14, we need to show that every set of 14 vectors in
A(3,3) contains a 2-line. By discussing a series of technical claims, we
outline the main ideas. It is left to the reader to use the claims to construct
the final argument.

Claim 1. If S is a set of at least 13 vectors in A(3,3), then S contains
either a 1-line or a 2-line.

Proof: By the pigeon-hole principle, we can assume, without loss of gener-
ality, that five of the vectors in S have their first coordinate equal to zero.
Since 3 = 5, it follows that there must be either a 1-line or a 2-line of
A(3,3) among those five vectors. u}

Claim 2. If S is a set of at least 14 vectors in A(3,3) and S contains a
1-line ¢, then there is a plane P in A(3,3) that contains a subset T of S
with |[T|=7and £C T.

Proof: Since the translate of a k-line is a k-line, we can assume, without
loss of generality, that £ = {z,y,2z + 2y} as in Figure 4. It is easy to
see that no matter how the remaining 11 vectors in S are distributed, that
there must be plane P that satisfies the claim. (]

Claim 8. If seven vectors are contained in a plane P in A(3,3) and for
some i, the ith entry every of vector in P is the same, (e.g., the second
entry of every vector in P is 1) , then those seven vectors contain a 2-line.

Proof: This follows from 732 = 7. 0

Claim 4. If seven vectors are contained in a plane P in A(3,3) and there is
a 1-line contained in those seven vectors, then there is also a 2-line contained
in those seven vectors.

Proof: If for some i, the ith entry of every vector in P is the same, then
apply Claim 3. If not, then for each i, the number of vectors in P that
have a 0 as their ith entry, and the number of vectors in P that have a 1
as their ith entry, and the number of vectors in P that have 2 as their ith
entry, are all exactly three.
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Let {z1,z2,z3} be a 1-line in P and let {y1,y2,y3} and {21, 22,23} be
distinct lines in P which are parallel to {z;,z5,z3}. Then {y1,¥2,¥s3}
and {z;,z22,23} are also parallel. Moreover, since the (affine) planes in
A(3,3) have the Euclidean property, it follows that both {y1,y2,%3} and
{21,272, 23} are translates of {z1,z3,23}. Thus {y1,y2,33} and {21, 22, 23}
are also 1-lines. Consider the plane translate P’ = P + 2z;. Then P’ =
{0,2,2z'} U {y}, 95, ¥4} U {z}, 25, z3} (where O is the vector 000). It follows
that {0,z’, 2z}, {¥!,v5, ¥3}, and {2{, 23, 23} are 1-lines and that P contains
a 2-line if and only if P’ does.

Now since {0, 2, 2z} is a 1-line, it must be either {000, 001, 0602}, {000, 010,
020}, or {000, 100,200}. Suppose it is {600, 001, 002}. Since, as for P, the
number of vectors in P’ that have a 0 (or a 1, or a 2) as their ith entry
is exactly three, it follows that P’ = {000, 001,002} U {120,121,122} U
{210, 211,212} or P’ = {000,001,002} U {110,111, 112} U {220, 221, 222}.
One can verify directly, that any seven points in one of these latter two
planes must contain a 2-line. Like {000, 001,002}, each of the other two
possible values for {0,z’,2z'} gives two possible outcomes for P’. One can
argue these cases by symmetry. a
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