An Optimal Algorithm for Finding
All Convex Subsets in Tournaments *

Marty J. Wolf David J. Haglin

s

Computer and Information Sciences Department
Mankato State University
Mankato, MN 56002

June 26, 1997

Abstract

A tournament is a complete directed graph. A convex subset is a
vertex subset with the property that every two-path beginning and
ending inside the convex subset is contained completely within the
subset. This paper shows a relationship between convex subsets and
transitive closures which leads to an optimal O(n®)-time algorithm
for finding all convex subsets in a tournament.

1 Introduction

A tournament is a directed graph on n vertices that is obtained by directing
all of the edges in a complete undirected graph. A conver subset is a subset
of the vertices such that any vertex not in the subset either dominates or
is dominated by all of the vertices in the convex subset. Alternatively, a
subset C C V is convex if and only if every two path u - w — v, where
u,v € C implies w € C.

*This research was supported in part by a Mankato State University Academic Affairs
Research Fund grant.

ARS COMBINATORIA 52(1999), pp. 173-179



Although it is known that a single convex subset can be found in O(n®)
time [2), our algorithm enumerates all of them (potentially ©(n?) [8]) in
O(n®) time. We present an interesting series of reductions that leads to
finding all convex subsets in a tournament in O(n?) time. Because each of
the potential ©(n2) convex subsets has ©(n) elements we have an algorithm
that is optimal to within a constant in the worst case. This improves upon
our previous algorithm which finds all convex subsets in O(n*) time [6]. We
also reduce the processor requirement from our previous O(log? n) time,
O(n*) processor parallel algorithm [6] to requiring O(nM(n)/logn) pro-
cessors, where M (n) is the sequential time required to multiply to boolean
matrices. Currently, the best known bound for M(n) is O(n?37).

Finally, our algorithm (in both the parallel and sequential versions) can
be easily modified to provide solutions to variations of the convex subsets
problem, including finding all of the convex subsets that contain a given
vertex and finding all of the convex subsets that are supersets of a given
set with two or more elements.

1.1 Background

Cunningham gives an O(n?) time algorithm [5], later improved by Bouchet
to O(n®) [2], for finding a split of a digraph if one exists. Finding a split
in a tournament leads to one convex subset. Astie-Vidal and Matteo were
the first to give an algorithm that enumerates all of the convex subsets of
a tournament [1]. However, their algorithm applies only to regular tour-
naments (tournaments where the outdegree of each vertex is equal to its
in-degree). They claim that the number of “elementary operations” for
their algorithm is O(n®). However, they include operations such as set
intersection and subtraction as elementary operations. In this paper, we
view those operations (as well as related operations) as taking O(n) time.
Their algorithm has an O(n*) time bound with this interpretation. Our
algorithm computes all convex subsets of any tournament (not only the
regular tournaments) in O(n®) time.

1.2 Definitions

Let T = (V, E) be a tournament on n vertices. Assumethat V' = {1,...,n}.
For vertices v,w € V, we say that v dominates w (denoted v — w) if the
edge between v and w is directed from v to w. A convez subsetin T is a
set C C V such that for any v € V — C either v dominates every vertex in
C or every vertex in C dominates v. This notion is illustrated in Figure 1.
Since every subset of V of size 0, 1, and n is convex, these convex subsets
are called trivial. This paper deals only with finding the nontrivial convex

174



subsets and, henceforth, we use the term convez to mean nontrivial convez.
We call sets A, B, and C strongly incomparable if AZ BUC,BZ AUC,
and C € AUB.

a) Tournament b) Winners, Losers, and
Convex Subset

Figure 1: Example Tournament with a Convex Subset

Let S C V be a set of vertices within a tournament. S partitions the
remaining vertices into three sets: winners, losers, and mediocre players.
The winners are the vertices that dominate all of the vertices in S. The
losers are the vertices dominated by all of the vertices in S. The remaining
vertices, those that dominate some of the vertices in S and are dominated
by others, are the mediocre players. Let M(S) = {ve V- S|3z,y € S
where z = v and v — y } be the set of mediocre players relative to S.

Since a nontrivial convex subset contains at least two vertices, we use
every two element subset of V' as a starting point for computing all of the
convex subsets. For i,j € V,i # j, let C; (k) be defined inductively as
follows:

C;,;(0)
Ci,i(k)

{i,j}
Ci ik -1)U M(C; j(k—1))for k>0

We can stop computing each C;,;j(k) when k = n —1 or when C; (k) =
Cij(k — 1). Let C;; denote the resulting set. This definition immedi-
ately suggests an obvious O(n®) time inductive algorithm. Haglin and Wolf
showed that this algorithm finds all convex subsets.

Lemma 1.1 [6] Every convez subset in T is some C;,;.

175



Let r; j(v) denote the round of induction when vertex v is brought into
C; ;- Thus if v € C; j(k) and v ¢ C; j(k — 1) then r; ;(v) = k. We define
73,5(8) = 1i,;(§) = 0. If a vertex v ¢ C; ; then r; ;(v) = oo.

Note that each vertex v € C;; — {%,7 } has at least one “predecessor”
vertex, w. We define a function P;; : (Ci; — {4,5}) = V such that
P, j(v) = w where w is the lowest numbered vertex satisfying r; ;(w) =
r;;(v) — 1 and either w v > iori > v—w.

2 Finding All Convex Subsets

Our new approach to finding all of the convex subsets in a tournament
begins by focusing on finding all of the convex subsets that contain a par-
ticular vertex. To do this, we develop an auxiliary graph called an inclusion
graph and then compute its transitive closure using standard algorithms.
We show that this process meets our efficiency requirements by proving
that there are O(n) edges in the transitive reduct, the least graph with the
same transitive closure as the strongly connected components graph of the
inclusion graph. This computation can be invoked on each of the vertices
of the tournament to generate all of the convex subsets of the tournament.

Let T = (V,E) be an n-tournament. For i € V, let V; = V — {i}. Let
G; = (Vi, E;) be the inclusion graph where E; = {(z, )| either (4,y), (v,z) €
E or (z,9),(y,i) € E}. Essentially an edge (z,¥) in G; indicates that if
both z and ¢ are in a convex subset then y must be in the convex subset as
well, since y does not share the same relationship with both of the vertices.
Essentially, y is mediocre with respect to z and i.

In Lemma 2.1 we show a relationship between the transitive closure of G;
and convex subsets of T. The following notation facilitates the presentation
of this relationship. The transitive closure of a graph G = (V, E), is the
graph CI(G) = (V, E¢), where (z,y) € Ec if and only if there is a path
from z to y in G. The transitive reduct of a graph G = (V, E), is an acyclic
graph R = (V, Eg), where R is the least graph with CI(R) = CI(G). Let
Ig(u) = {v|(u,v) is an edge in G}. In the following lemma C represents
all of those vertices reachable from j in G;.

Lemma 2.1 Let C =Tgyg;)(7) U{i}. Then C = C;;.
Proof: By the definition of G; any vertex reachable from j € G; must be
in C;,;. Hence C C C; ;. Suppose C;,; — C is nonempty. Pick k€ C;; = C

such that r; (k) is minimized. Observe that P;;(k) € C. By definition,
edge (P j(k),k) € E;. Using this argument inductively shows C;; C C.
|

176



A straightforward computation of the transitive closure leads to an
O(n*) implementation. We speed up the transitive closure computation
of G; by using a two-phase process. The first phase consists of computing
the strongly connected component graph, S;, of G;. This can be easily
done in O(n?) time with a modified version of depth first search. (See [3]
for example.) Thus, each vertex of S; represents potentially many vertices
of G;. Note that the transitive closure of S; translates naturally into the
transitive closure of G;. In the second phase, we compute the transitive
reduct, R;, of S;. By definition, CI(R;) = CI(S;). The computation of R;
can be completed in O(n - ereq) time, where e,.q4 is the number of edges in
R; [4].

The following lemma is straightforward to prove and appears in Haglin
and Wolf. In Theorem 2.3 we use it to prove that each vertex in R; has
indegree at most two. This, in turn, implies that e..q € O(n).

Lemma 2.2 [6] For any vertez i € V, there do not exist three strongly
incomparable convez subsets X,Y, and Z such thati € X NY N Z.

The proof of this fact relies on the restricted ways convex subsets can
intersect. Namely, Varlet has shown that if the intersection of two convex
subsets is nonempty then the union of those convex subsets is also convex

8).

Theorem 2.3 Let T,G;, S;, and R; be as defined above. Each verter in R;
has indegree of at most two.

Proof: First note that the vertex set of R; is the same as the vertex set
of S;. Then assume the theorem does not hold. Let v be a vertex in R;
violating the claim. Let the indegree of v be k > 3. Label with vy, vs, ..., vk
those vertices with an edge to v. Let C denote the convex subset of T
defined by v (i.e., Cy,i) and let C1,Cs,...Ck be the convex subsets of T
defined by vy, vs,...,v (i.e., Cy,iy..-Cy, k). Because of the way G; is
built, C C Cj for 1 < j < k. Since R; is a transitive reduct, no v; is on a
path from some v; to v, j # 4. Thus, C; N C; = C for all i # j. Since any
triple from C},C>,...C}, is strongly incomparable Lemma 2.2 is violated,
giving the desired result. [l

Thus, the transitive closure of G; can be computed in O(n?) time, lead-
ing to the following result.

Theorem 2.4 All of the convex subsets of a given n-tournament T =
(V, E) can be computed in O(n®) time.

177



Proof: By Theorem 2.3 each vertex in R; has indegree at most two, and
using the algorithm developed in [4], the transitive closure of S; can be
computed in O(n?) time. From the transitive closure of S; the computation
of the transitive closure of G; in O(n?) time is straightforward. By Lemma
2.1 we can determine all of the convex subsets of the form C;; in O(n?)
time. Lemma 1.1 ensures that by repeating this process for all n vertices,
we find all convex subsets in O(n3) time. |}

Since there are tournaments with Q(n2) convex subsets, each with Q(n)
vertices [8] our algorithm is optimal to within a constant. For example,
in the transitive tournament every pair of vertices defines a convex subset
containing all the vertices between the pair in the transitive ordering of the
vertices.

3 Finding Convex Subsets in Parallel

In this section we describe a straightforward parallel algorithm that finds all
convex subsets in O(log? n) time using O(nM (n)) processors on a CREW-
PRAM.

The obvious parallelization of the sequential algorithm given in Section
2 is to assign O(M(n)) processors to each vertex in the tournament. The
algorithm is described in the following theorem.

Theorem 3.1 Given a tournament T = (V, E) we can compute all of its
convez subsets in O(log?n) time using O(nM(n)/logn) CREW-PRAM
Processors.

Proof: This algorithm proceeds similar to the serial algorithm. We describe
the processing associated with a vertex ¢ € V. The inclusion graph G; can
be computed in O(1) time using O(n?) processors, one processor for each
vertex pair z,y € V — {i}. We omit from the serial algorithm the step of
finding the strongly connected component graph S;, since the best known
parallel algorithm for finding S; has the same resource bounds as finding the
transitive closure directly in G;, namely O(log? n) time and O(M (n)/ logn)
processors [7].

178



4 Summary

We have proven properties about the relationships between convex sub-
sets in tournaments and the transitive closure problem that provide a basis
for sequential and parallel algorithms for finding convex subsets in tourna-
ments. Because of these properties, our algorithm can be easily modified to
an O(n?) time algorithm to determine all of the convex subsets that contain
a given vertex. Our algorithm can also be modified to compute all of the
convex subsets that contain any given subset in O(n?) time. Finally, note
that the parallel version of our algorithm will solve both of the variations
mentioned above in O(log® n) time using O(M (n)/logn) processors.

References

[1] A. Astie-Vidal and A. Matteo. “Non-simple tournaments: theoretical
properties and a polynomial algorithm”, Proceedings of the Fifth Ap-
plied Algebra, Algebraic Algorithms and Error-Correcting Codes Inter-
national Conference, 5 (1989), pp. 1-15.

[2] A. Bouchet. “Digraph decompositions and Eulerian systems”, SIAM J.
Alg. Disc. Meth., 8 (1987), pp. 323-337.

(3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. New York: McGraw-Hill, 1990.

[4] A. Goralcikovd and V. Koubek. “A Reduct-and-Closure Algorithm for
Graphs”, in J. BeévéF, ed., Proc. Conf. on Mathematical Foundations
of Computer Science, Lecture Notes in Computer Science, 74 (1979),
pp. 301-307.

[5] W. H. Cunningham. “Decomposition of directed graphs”, SIAM J. Alg.
Disc. Meth., 3 (1982), pp. 214-228.

[6] D. J. Haglin and M. J. Wolf. “On Convex Subsets in Tournaments”,
SIAM J. Disc. Math, 9, 1, (February 1996), pp. 63-70.

[7] D. S. Hirschberg. “Parallel Algorithms for the Transitive Closure and
the Connected Components Problems”, in Proceedings of the Eighth
Annual ACM Symposium on the Theory of Computing, 8 (1976), pp.
556-87.

[8] J. C. Varlet. “Convexity in Tournaments”, Bulletin de la Société Royale
des Sciences de Liége, 45 (1976), pp. 570-586.

179



