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Abstract

Let G be a graph. A function f : V(G) — {L1,2,...,k} is a
k-ranking for G if f(u) = f(v) implies that every u — v path P
contains a vertex w such that f(w) > f(u). A function f: V(G) =
{1,2,...,k} is a minimal k-ranking if f is a k-ranking and for
any z such that f(z) > 1 the function g(z) = f(2) for z # = and
1 < g(z) < f(z) is not a k-ranking. This paper establishes further
properties of minimal rankings, gives a procedure for constructing
minimal rankings, and determines, for some classes of graphs, the
minimum value and maximum value of k for which G has a minimal
k-ranking. In addition we establish tighter bounds for the minimum
value of k for which G has a k-ranking.

1. Introduction

For this paper we will assume we have a graph G = (V, E) with | V |= p.
The minimum and maximum degree of a vertex in G will be denoted by
6(G) and A(G), respectively. A function f : V(G) = {1,2,...,k} is a
proper vertex coloring (coloring) if f(u) = f(v) implies (u,v) ¢ E(G).
The chromatic number of G, denoted x(G), is the minimum value of k
for which G has a proper vertex coloring. A complete k-coloring is a
proper vertex coloring into classes C1, ..., Cy such that for every 7, j where
1 £ i < j £ k there exists a vertices v; € C; and v; € Cj such that
(vi,v;) € E. Note that every coloring of G using x(G) colors is necessarily
a x(G)-complete coloring. The achromatic number of G, denoted %(G),
is the maximum value of k for which G has a complete k-coloring [9].For
other concepts not explicitly defined here, see [8].

Given a graph, G = (V, E), a function f : V(G) = {L1,2,...,k} is a
k-ranking for G if f(u) = f(v) implies that every u — v path P contains a
vertex w such that f(w) > f(u). If we are not concerned about the actual
value of k then f is referred to as a ranking of G. The concept of a ranking
is studied, among other places, in [2] [5], [7].

From the definition of a ranking it is clear that every ranking is also a
proper vertex coloring. It is also easy to see that, for any graph, assigning
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the vertices with different labels produces a ranking. This being the case
it is natural to look at the minimum value of k for which a graph has a
k-ranking. The rank number of G, denoted x,(G), is defined as:

xr(G) = min{k: G has a k-ranking} (1)

Given a graph G = (V, E), a function f : V(G) = {1,2,...,k} is a
minimal k-ranking if the following two conditions hold:

1. f is a k-ranking

2. for all z € V(G) such that f(z) > 1 the function g : V(G) —
{1,2,...,k} defined by g(2) = f(z) for 2 # z and g(z) < f(z) is
not a ranking,.

Minimal rankings are introduced in [7]. As with rankings, we will often
refer to a minimal k-ranking as simply a minimal ranking when the value
of k is unimportant. Moreover, a (minimal) k-ranking of G will be called
a (minimal) x,(G)-ranking if k = x,(G). If there is no ambiguity
over the graph with a ranking then this can be shortened to a (minimal)
xr-ranking. For any vertex v, we refer to f(v) as the label of v. If
f(v) = f(w) implies v = w then f(v) is a distinct label. Otherwise f(v)
is a repeated label.

In [7] it is observed that:
Xr(G) = min{k: G has a minimal k-ranking} 2
The authors then define the arank number of G, as follows:
¥, (G) = maz{k: G has a minimal k-ranking}. 3)

The examples in Figure 1 which illustrate the difference between rank-
ings and minimal rankings are given in [7].

A ranking is given in (a) while (b) is an example of a x,-ranking which is
not minimal. Example (c) depicts a minimal x,-ranking while (d) illustrates
a minimal ranking which is not a x,-ranking.

The problem of finding the rank number of a graph has received a lot
of attention recently because of the growing number of applications such as
Cholesky factorizations of matrices in parallel [1], [6], [13], VLSI layout [12],
[15], and scheduling problems of assembly steps in manufacturing systems
[4], [11]). Although it is unknown if there are applications for the arank
number, the concept of minimal rankings is, as we shall soon see, a valuable
tool for studying the rank number of a graph.
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Figure 1: Different types of rankings

2. Background

Central to the idea of a ranking is the concept of a reduction. This is
introduced in [7) as follows: Given a graph G = (V, E) and a subset S C V
define a graph G* = (V—S, E*) where (u,v) € E*ifandonlyifu,v € V-5
and either (u,v) € E or there exists apathu—w; —w; —...~wp —vin G
where w; € S for 1 < i < m. We say that the graph G* = (V — S,E*) is
the reduction of G by S and denote this by the more compact notation
G%. An example of a reduction is given in Figure 2.

T T N
ot X

6 7

G and S={4, 5} Gs

Figure 2: An example of a reduction.

Domination is an important part of our study of the rank number and
arank number. If G = (V, E) is a graph, a set S C V is an independent
set if z,y € S implies (z,y) € E. A set S C V is a dominating set if
for each vertex y € V — S there exists a vertex = € S such that (z,y) € E.
If z € V then N(z) = {y : (z,y) € E} and N[z] = N(z) U {z}. A set
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S C V is an independent dominating set if S is an independent. set and
a dominating set. The independent domination number of G, denoted
i(G), is the minimum cardinality of an independent dominating set for G.
Finally, the independence number of G, denoted 3(G) is the maximum
cardinality of an independent set for G. An independent dominating set
containing i(G) elements is called an i(G)-set. Similarly for the other
parameters. Domination parameters are extensively studied, for example
[10].

Before we begin our study of rankings we present some background
that our paper will rely on. The following bounds for the rank number are
immediate, where x(G) is the chromatic number of G.

Lemma 1 For any graph G, x(G) < x»(G) <p-B(G) +1.

Our next Lemma is another immediate result which is cited in papers
on rankings [5], [7].

Lemma 2 IfG is a connected graph then there exists a unique verter with
largest label.

The following observation is made in [5].
Lemma 3 If H is a subgraph of G then x,.(H) < xr(G).
A cograph is defined recursively in [3] as follows:
1. A graph on a single vertex is a cograph.
2. If G4, Gs,...,Gy are cographs then so is their union G, UG> ...UG.
3. If G is a cograph, then so is its complement G.
In [3], the next result is established.
Theorem 1 [3] Let G = (V, E) be a graph. The following are equivalent.
1. G is a cograph.
2. G does not contain Py as an induced subgraph.
3. every connected subgraph of G has diameter less than or equal to two.

3. Properties of Rankings

Our work on minimal rankings will rely on many results that have al-
ready been proven. Some properties of rankings and reductions established
in [7) are given below.

1. If H is an induced subgraph of G then ¥,.(H) < ¥,(G).
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2. Y.(G)=pifand only if A(G)=p—1.
3. A minimal k-ranking is an onto function.

4. If f is a minimal k-ranking and S; = {z : f(z) =i} for 1 <i <k
then | Sy [>| Sz |> ... 2] Sk |.

5. In a ranking of G, the set R of vertices having a label that is repeated
is a dominating set for G.

6. Let G = (V, E) be a graph. For S C V, if A is an independent set of
vertices in G then A is an independent set of vertices in G.

7. Let G be a graph. Let f be a minimal y,-ranking of G; if S; = {z :
f(z) =1} then xr(G%,) = xr(G) - 1.

8. Let f be a minimal ¥,-ranking of G. If S; = {z : f(z) = 1} then
"l’r(Gé,) =9%.(G) - 1.

9. X+(G) 21+ 4(G) and ¥,(G) 2 1+ A(G).
When refering to result j on the list above we will cite Property 5.

One of the main results in [7] is that if G is a graph and f is a ranking
of G then, if S = {z : f(z) = 1}, the function g(z) = f(z) — 1 is a ranking
for G§,. Indeed, we are able to say more. If the original ranking, f, is
a (minimal) x,(G)-ranking then g will be a minimal Xr(G%, )-ranking. If
the original ranking is a minimal ¢, (G)-ranking, as illustrated in Figure 3
(2), then we can produce a minimal ¥,(G%, )-ranking by subtracting one
from each label of the remaining vertices. This process can be repeated, as
shown in (c), and is the essence of Property 7 and Property 8.
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4. Further Properties of Minimal Rankings

We now establish several more properties of rankings; the following
theorem presents a useful characterization of minimal rankings.
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Theorem 2 A k-ranking f is minimal if and only if for all u with f(u) =
i > 1, for each j such that 1 < j < i either

1. there exist vertices x and y with f(z) = f(y) > j and u is the only
vertez on some T — y path such that f(u) > f(y), or

2. there ezists a vertez w with f(w) = j < i and there exists a u — w
path such that every vertez = on the path has f(z) < f(w).

Before proving this result we will first illustrate Theorem 2 with the
example shown below.

Figure 4: An illustration of Theorem 2.

To check whether the ranking above is minimal, one merely determines
whether changing an existing label to a smaller value still results in a rank-
ing. If the answer is no then the ranking is minimal. In this case, if any
label is made smaller, then at least one of the two conditions of Theorem
2 is violated. Suppose, for example, vertex ¢ in Figure 4 is assigned the
label 1 (or 2) then vertices b and d have label 2, which is greater than or
equal to 1 (or 2), and there is a path between them for which c is the only
vertex with a label greater than 2. This is the first condition. The second
condition implies that the vertex f cannot be labelled 1, 2, or 3 because
in all cases there exists a path from the newly labelled vertex to another
vertex with the same label through vertices with lower labels. Since we
can, by inspection, see that no label can be made smaller and still have a
ranking, the figure above is minimally ranked.

Proof: Suppose f is a minimal k-ranking of a graph G and let z € V(G)
such that f(z) > 1. Define a function g on G by g(z) = f(2) for z # =
and g(z) = j < f(z) = 4. Since f is a minimal ranking, g is not a ranking
and so there exist vertices 4 and v such that g(u) = g(v) and there exists
a u — v path P,, such that for all w € Py, g(w) < g(u). Now g(z) = f(2)
for z # z implies = € P,,; otherwise f is not a ranking.

There are two cases to consider:

Case 1 Suppose z is an endpoint of P,,; say = u. Since g(w) < g(z) =
g(v) for all w € P,, we have, by the way g is defined, that f(w) <
f(v) = g(z) < f(z). Hence Hence 2 holds.

Case 2 Suppose z is an interior point of P,y. Then P,, is a path where
f(u) = f(v) and since g(w) < g(u) = g(v) = f(u) = f(v), condition
1 holds.
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To prove the converse let f be any ranking of a graph G satisfying the
conditions 1 and 2. Let z € V such that f(z) > 1 and define g(2) = f(z)
for 2 # z and 1 < g(z) < f(z). Now g(z) < f(z) so, by hypothesis, one of
the following must hold.

Case 1 There exist distinct vertices u and v such that f(u) = f(v) > g(z)
and 7 is the only vertex on some u—v path, P, such that f(z) > f(u).
Then from the way g is defined, g(u) = g(v) and g(w) < g(u) for all
w € V(P); so g is not a ranking.

Case 2 There exists a vertex w with f(w) = g(z) and there exists a w -z
path such that every vertex z(# z) on the path has f(2) < f(w).
Since g(w) = f(w) and g(z) = f(w) it follows that for every vertex
on the w — z path, g(z) = f(2) < f(w) = g(w). Hence g is not a
ranking.

In all cases g is not a ranking so f is a minimal ranking. O

Lemma 4 Let G be a graph and let f be a minimal k-ranking of G. If
u € V(G) such that f(u) > 1 then there erists a w € N(z) such that

F(w) < f(z).

Proof: If £ = 1 then the result is vacuously true, so suppose k > 2.
Then there exists an z € V(G) such that f(z) > 1 and since f is a minimal
ranking, by Theorem 2 there are two cases to consider:

Case 1 There exist vertices z and y with f(z) = f(y) and u is the only
vertex on some z — y path such that f(u) > f(y). This implies that
the vertices adjacent to u on this  — y path have a label no bigger
than f(z) which is less than f(u).

Case 2 There exists a vertex w with f(w) = j and there exists a u — w
path such that for every vertex z on the path f(z) < f(w). Since
f(w) < f(u), the neighbor of u on the u — w path has label less than
f(w).

In both cases there exists a y € N(z) such that f(y) < f(z). O

Corollary 1 Let G be a graph and let f be a minimal k-ranking of G.
If z € V(G) such that f(z) = 2 then there exists a y € N(z) such that

fy) =1

Lemma 5 Let G be a graph and let f be a ranking of G. Suppose z and
y are two nonadjacent vertices such that f(z) = f(y) and P, P2,..., Py
are n internally disjoint x — y paths. Let m; = maz{f(z) : z € B;}. If
m; =m; theni=j.
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Proof: Suppose m; =mj andlet P, =2 —8; —82 —...— 8 —y and

P;= z—3;—8—...—3,—Y. Let s, and s; be the largest labelled vertices on
P; and P; respectively; i.e., f(sa) = m; and f(sp) = m;. Then G contains
thepath P=8,—...— 8 —2—8; -s;—...—s;. Since f(s,) =f(s;) and

f is a ranking there exists a v € P such that f(v) > f(s,), contradicting
the definition of s, or s,, unless ¢ = j. O

This allows us to generalize Lemma 2.

Corollary 2 If G is an n-connected graph and f is a ranking of G then
the n largest labels are distinct.

Lemma 6 Let G be a graph and suppose f is a minimal k-ranking of G.
IfS={z: f(z) > j} where1 < j <k and C is a connected component of
<V -8 >, the induced subgraph of V — S, then f¢, the restriction of f to
C, is a minimal ranking of C.

Proof: Suppose not; then there exists a maximal connected component
C of < V — 8 >, a ranking g¢ of C, and a w € V(C) such that go(w) <
fo(w) and for all z € V(C) — {w}, gc(z) = fo(z). Look at the function g
defined on G by g(z) = f(z) if ¢ # w and g(w) = gc(w) < fo(w) = f(z)-
Since f is a minimal ranking, g is not a ranking. Observe that g can be
described by g(z) = gc(z) if z € V(C) and g(z) = f(z) if z € V(C). Since
g is not a ranking there exists a u,v such that g(u) = g(v) and a path P
having the property that for all y € V(P), g(y) < g(u). Now g(z) = f(z)
if  # w and f a ranking implies w € V(P). From the alternate, but equal,
way g is defined, w € V(C) and gc(u) = gc(v) and gc(y) < ge(u) for all
y € V(P). Therefore gc is not a ranking. This contradiction establishes
the result. O

5. Constructing Minimal Rankings

The next theorem provides a useful procedure for constructing minimal
rankings for an arbitrary graph.

Theorem 3 Given a graph, G, a minimal ranking can be constructed by
the following procedure: Take an independent dominating set A, for G,
then find an independent dominating set Az for G, . Continue this process
until a set Ay of isolates is obtained, which is an independent dominating
set for ((G%,)2,) "~ Vs = G uasu. A, - Define the function f on G
by f(A;) =i for 1 <i < k. Then f is a minimal k-ranking of G.

Proof: Let u and v be vertices such that f(u) = f(v) =i > 1. Since
u and v are independent in G 4,0..u4;_,» there does not exist a path

188



between u and v with internal vertices entirely within 4; UA2U...UA4;_;.
Moreover, 4 and v are independent in G by Property 6, hence f is a ranking.

To show that f is minimal let z € V(G) such that f(z) > 1 and suppose
9(2) = f(2) [z # ] and 1 < g(z) = k < f(z). Look at G, ya,u. 0w
where A; = {v : f(v) = i}; since A; is an independent dominating set
for G%,,4,0.-ua,_, Ve know z is adjacent to some y of Ae. That is,
(z,y) € E(G%,4,0--0A,_,)- This implies (z,y) € E(G) or there exists a
path from z to y through A UAaU---U Ag—_;. Since g(z) = g(y) we have,
in either case, that g is not a ranking. O

Figure 5 illustrates the process of constructing a minimal ranking using
the theorem above.

e O o' O

N~ N

—

(a) ®) (@ )] (e)

Figure 5: A way to construct minimal rankings.

We start with the graph in (a), find an independent dominating set
(which has been blackened). This is our set A;. We then look at G,
which is the graph in (b), and find an independent dominating set A,. We
again blacken our set A2 and look at the graph (G% )7, given in (c) and
continue this process till we reach (d). At this point we now form a minimal
ranking of G by labelling the vertices of A; with the label 7, this is shown
in (e).

Not all minimal rankings are obtained by this process as Figure 6 illus-
trates, hence x, and 1, cannot necessarily be found utilizing the theorem.

6. Bounds on the Rank and Arank Numbers

For a graph G = (V, E) a subset F C E is a matching for G if no
two edges in F have a vertex in common. A strong matching in a graph
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Figure 6: A minimal ranking of a graph where A, is not a dominating set.

G = (V,E) is a matching in which no two edges are joined by an edge of
G, that is, a strong matching, M, is an induced subgraph whose connected
components are disjoint edges e;, ez,...,ex where k =| M |.

B*(G) = maz{k : G has a strong matching of k edges} 4)

b*(G) = min{k : G has a maximal strong matching of k edges}  (5)

If | E(G) |= 0 then 8*(G) =b*(G) = 0.

Let G be a graph and let f be any ranking of G. The set S; = {z :
f(z) = 1} is an independent set and so | S; |< B(G). If we restrict our
attention to minimal rankings we can obtain an upper bound on the number
of vertices labelled 2.

Lemma 7 Let G be a graph and let f be a minimal ranking of G. If
Sz = {z: f(z) =2} then | S: |< B*(G).

Proof: Let y1,¥2,-..,yx denote the vertices labelled 2. By Corollary 1,
each y; is adjacent to a vertex x; labelled 1. Also, two distinct vertices y;, y;
must be adjacent to two distinct nonadjacent vertices z; and z;, otherwise
this would imply a path with labels 2 — 1 — 2. Thus the set {(z;,3:)}%, is
a strong matching, hence | S; |< 8*(G). O

‘We will use the idea of matchings to establish many bounds for x, and
9. The following is an alternate upper bound for the rank number of a

graph.
Theorem 4 If G is a graph on p vertices then x,(G) < p —26*(G) + 2.

Proof: Label the vertices of each edge in a 8*(G)-set with labels 1 and
2, and label the rest of the remaining p — 26*(G) vertices with the labels
3 through p — 28*(G) + 2. If u,v € V such that f(u) = f(v) then either
f(u) =1 or f(u) = 2. Since the set of vertices labelled 1 and the set of
vertices labelled 2 are independent, the only way f can fail to be a ranking
is if there is a path with labels 2 — 1 — 2. This cannot happen because the
vertices labelled 1 and 2 occur in a strong matching. O

For a graph G, depending on how 3*(G) compares with 3(G), the upper
bound given above may or may not be better than the one in Lemma 1. An
example where p — 28*(G) + 2 provides a better bound than p — 8(G) +1
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is given by the graph G in Figure 7. In this graph we have p = 9, 8*(G) =
4,b*(G) = 1 and B(G) = 4. Thus p—28*(G) +2 =9 — 8+ 2 = 3 while
p—PB(G)+1=9-4+1=>5. This bound is sharp for Figure 7 since
3=x(G) < x-(G) <3.

1 2

Figure 7: A graph where x(G) < p—28*(G)+2 provides a better estimate
of the rank number than x,(G) < p — 8(G) + 1.

Using the idea of matchings we obtain the following result.

Theorem 5 If G is a graph on p vertices such that 8*(G) = 1 then
xr(G) =p—B(G) +1 and ¥,(G) =p—i(G) + 1.

Proof: Since 8*(G) = 1 and f is a minimal k-ranking we have by
Lemma 7 and Property 4 that | Sz |= ... =| Sk |= 1. Now use the fact that
p=| S1|+...+ | Sk | to conclude that p =| S; | +k — 1 or, equivalently,
k=p-1]S | +1. Now x,(G) = min{k : G has a minimal k-ranking}
implies x,(G) = min{p— | Sy | +1: f is a minimal ranking and S; = {z :
f(z) = 1}}. Since | S1 |< B(G) we have by Theorem 3 that x,(G) =
P — B(G) + 1. Likewise, 9,(G) = maz{k : G has a minimal k-ranking}
implies 9¥,(G) = maz{p— | S1 | +1 : f is a minimal ranking and S, =
{z : f(z) = 1}}. Observe that i{(G) = 1 implies A(G) = p — 1 and so by
Property 2, ¥,.(G) = p = p—i(G)+1. Moreover i(G) > 1 implies ,.(G) < p
and so | S; |> 1. Then S is the set of vertices whose labels are repeated,
hence S; is a dominating set by Property 5. Since S; is independent as
well, 2(G) <| S1 |- This implies 9,(G) < p—#(G) + 1 and then Theorem 3
allows us to conclude %,.(G) =p-i(G)+1. O

Note that if 8*(G) = 0 then G is a collection of isolates and the result
still holds. This will help establish the next corollary.

Corollary 3 If G is the complement of a Cy-free graph then x.(G) =
p—B(G) +1 and ¥,.(G) =p—i(G) + 1.
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Proof: It suffices to show that if G is the complement of a Cj-free
then 8*(G) < 1. We establish the contrapositive. Suppose 8*(G) > 1
and let (z1,4),(z2,72) be two edges in a strong matching. Therefore
(z1,%2), (x2,11), (z1,¥2), and (y1,y2) are not edges in G. This implies that
the complement of G contains an induced Cj, establishing the result. O

Corollary 4 follows because a chordal graph is Cy-free while Corollary
5 and Corollary 6 follow because these graphs have 8*(G) < 1.

Corollary 4 If G is the complement of a chordal graph then x,(G) =
p—B(G)+1 and ¥, (G) =p—i(G) + 1.

Corollary 5 [7] If G is a split graph on p vertices then x,(G) = p—B(G)+1
and ¥.(G) =p—i(G) + 1.

Corollary 6 [7] If G is a complete multipartite graph on p vertices then
x+(G) =p—B(G) +1 and ¢ (G) =p—i(G) + 1.

One should refer to the much longer proofs of Corollaries 5 and 6 in (7]
to appreciate the connection between rankings and matchings.

We now establish many more bounds on x, and ,. The following is a
well known result/exercise in coloring theory. A proof of this result can be
found in [8].

Theorem 6 For any graph G, 3{55 <x(G)<p-B(G)+1

The idea for the next several theorems as well as their proofs comes
from the proof of the lower bound for x in Theorem 6.

Theorem 7 For any graph G having at least one edge, x-(G) > E.a c? +1.

Proof: Since G has an edge, 8*(G) > 0. Now use the fact that
xr(G) = min{k : G has a minimal k-ranking} and look at any minimal
Xr(G)-ranking of G. By combining Lemma 7 and Property 4 we have that
B*(G) 2| S21=2...2| Sy, |- Nowp=| 81 | +...+]| Sy, | and so it follows
that p— | S1 |< (xr(G) —1)B*(G). Since | S; |< B(G) we can conclude that
x(G) 2l +1> 258 +1. 0

Notice that Theorem 7 and Lemma 1 combine to prove part of Theorem
5; i.e., if B*(G) = 1 then x,(G) = p— B(G) + 1. It is easy to improve on
the lower bound if the connectivity of the graph is known.

Theorem 8 If G is an n-connected graph on p vertices then x,(G) >

”—"5”:((%?+(n+ 1).
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Proof: Since x,(G) = min{k : G has a minimal k-ranking} it suffices
to look at any minimal x,(G)-ranking of G. Weknow | Sy | +...+ | Sx,—n |
+ | Sxo—n+1 | +...+ | Sy, |= p and by Corollary 2, | Sy,—n+1 |= ... =|
Sx. |= 1. Combining these we get | S1 | +...+ | Sx,—n |= p—n. Therefore
p-n < (xr(G)—n) | S1 | which can be simplified down to x-(G) = n+75}-
Since = 2 > 0 and x, is an integer it must be that x, > n + 1 or, equiva-
lently, x» — n + 1 > 2. Thus in an n-connected graph the n largest labels
are each grea,ter than one. This allows us to write p— | Sy | — | Sy,.—n+1 |
—e.— | S, |I=l S2 | +...4+ | Sx.-n | which, when combined with
7(G) 2| S [>... 2] Sy, | gives p— | 81 | —n < B*(G)(xr(G) —n —2+1).
This can be simplified to x,(G) = Llﬂ.%;l—r+n+l > % +n+1,
establishing the result. O

For ¥.(G), the following lower bounds are obtained.
Theorem 9 For any graph G, 7(%7 < ¥(G).

Proof: Let f be a minimal k-ranking where S; is an i(G)-set; this is
possible by Theorem 3. By Property 4 we have i(G) =| S$1 |> ... 2| Sk |,
hence p=| Sy | +...+ | Sk |< k(i(G)). Therefore %,(G) 2 k 2 -

Theorem 10 For any graph G containing at least one edge, ¥,.(G) 2>
—t G
+1.

Proof: By Theorem 3 there exists a minimal k-ranking, f, of a graph
G for which | S |=| {z: f(z) =1} |=i(G). Nowp— | S1 |=| Sz | +...+ |
Sk | and B*(G) 2| S2 |> ... 2| Sk | implies that p — i(G) < B*(G)(k —1).
Therefore ¥, (G) 2 k > H%% +1.0

Theorem 11 For any n-connected graph G containing at least one edge,
¥r(G) 2 B + (n+1).

Proof: By Theorem 3 there exists a minimal k-ranking, f, on V(G) for
which | $; |=| {= : f(:z:) = 1} |= i(G). As in the proof of Theorem 8 we
havep— | S1| = | Sk—nt1 | —-oc— | Sk |=| S2 | +...4 | Sk=n |- Since G

is n-connected and 8*(G) >| 32 | . | Sk | it follows that p —i(G) — n <
B*(G)(k — n — 2 +1). This simplifies to & > %fizal'r" + n + 1 and since

9,(G) =maz{k : G has a minimal k-ranking}, ,(G) > 5T +(n+1).
m]
This idea is also useful in obtaining a similar lower bound.

Theorem 12 For any graph, G, having at least one edge, ¥.(G) > ”'B ¢
1.
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Proof: Consider any b*(G)-set, F', of edges and label the vertices of
each edge 1 and 2. Now complete the labelling of G in any way such
that the resulting ranking is a minimal k-ranking. By Property 4 we have
| S2 |= b*(G) 2| S; | for i > 2. As in the previous theorems this means
p— | 51 |< b*(G)(k — 1) which simplifies to k > 242l +1 > 228(0) 4 1,
Hence ¥,(G) > ",,'.BGG +1.0

We can use the idea of a strong matching to obtain an even stronger
bound on the chromatic number.

Theorem 13 For any graph, G, x(G) <p- B(G) - 8*(G) +2.

Proof: If G contains no edges then 8*(G) = 0 and the result is obviously
true by Lemma 1. Therefore we suppose G contains at least one edge, hence
B8*(G) > 1. Let S; be any B(G)-set and label the vertices of S; with 1.
Consider any strong matching, F', containing §*(G) edges. Since S is an
independent set each edge of G has at most one vertex in S;. From each
edge of F, therefore, we can label one vertex not in S; with the label 2;
call this set labelled 2 S;. It is easy to see that S, is independent and
| S2 |= B*(G). Now label the remaining p — 8(G) — B*(G) vertices with 3
through p — 8(G) - 8*(G) +2. O

We note that Figure 7 is also an example where this upper bound im-
proves upon the previous bound of p — 8(G) + 1.

7. Y.-rankings of cographs

It is known how to determine the rank number of a cograph in linear
time [14). We will determine a formula for the arank number of a cograph
with the help of the next theorem.

Theorem 14 If S is an independent dominating set for a graph G and
NscsN(s) # 0 then ¢ (G) 2 p— | S | +1.

Proof: We will construct a minimal (p— | S | +1)-ranking from which
the result follows immediately. Let i =| N,esN(s) |> 0. Label the vertices
in S with 1 and the vertices in N,esN(s) with the labels 2 through ¢ + 1,
where w is the vertex labelled 2. Finally, label the remaining (p— | S | —¢)
vertices with ¢ + 2 through (p— | S| —¢) + (¢ + 1) =p— | S| +1. Since 1
is the only repeated label and S is an independent set we have a ranking.
Thus we need only show that the ranking is minimal. Let = be any vertex
which is not labelled 1. Now S is an independent dominating set so  cannot
be reassigned the label 1 and still be a ranking. If z is assigned the label 2
then z is adjacent to some vertex 2z in S. In this case, * — z — w is a path
labelled 2 — 1 — 2, which cannot happen in a ranking. Finally, suppose z is
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assigned a smaller label which is greater than 2; then there exists another
vertex y with the same label. Since S is a dominating set there exists an
s; € S and an s; € S such that z is adjacent to s; and y is adjacent to
8. Then under this new ranking g, the path z — 8; — w — s — y has the
property that g(z) = g(y) and since g(s1) = g(s2) = 1 and g(w) = 2 we
have that g is not a ranking. Since this z was arbitrary, the constructed
ranking is minimal. Therefore x-(G) <p—| S| +1 < ¢(G). O

A graph, G, is cobipartite if the complement of G is bipartite.

Corollary 7 IfG is a connected cobipartite graph then ¥, (G) = p if i(G) =
1 and ¥.(G) =p-1ifi(G) > 1.

Proof: For any graph G, if i{(G) = 1 then A(G) = p — 1 hence, by
Property 2, ¥,(G) = p. Therefore let G be a connected cobipartite graph
with i(G) > 1. It is easy to see that G contains an independent dominating
set {z,y} with the property that N(z) N N(y) # 0. By Theorem 14,
¥(G) > p — 2 + 1. Thus, by Property 2, ¥.(G) =p—-1. O

Figure 6 shows a minimal ranking of P; in which S is not a dominating
set. However, the following theorem asserts that if a graph is Ps-free then
S: is an independent dominating set for the minimal ranking.

Theorem 15 If G is Ps-free and f is a minimal ranking of G then S =
{z : f(z) = 1} is an independent dominating set for G.

Proof: The proof is by induction on x;. If x-(G) = 1 then the result
is clearly true so suppose the claim is true for all graphs where x, < n.
Let G be any graph where x(G) = n +1 and let f be a minimal x,(G)-
ranking. Let S,, = {z : f(z) = x-}; since G is not necessarily connected
the cardinality of S, is at least one. Now H =< V(G) — Sy, > is a Ps-free
graph and fy, the restriction of f to H, is a minimal x,(G) — 1-ranking by
Lemma 6. By the inductive hypothesis the set of vertices labelled 1 under
fu is a dominating set for H. Since the set of vertices labelled 1 under
fu is equal to Sy = {z : f(z) = 1} the set S) necessarily dominates all
the vertices of G with the possible exception of vertices in S,,. Take any
vertex u € Sy,, since f is a minimal ranking of G, u cannot be reassigned
the label 1 and still be a ranking. This implies, by the second condition of
Theorem 2, that either u is adjacent to a vertex labelled 1, in which case
there is nothing to prove, or the first condition of Theorem 2 holds. In this
case there exist vertices z,y € V(G) with f(z) = f(y) and u is the only
vertex on some z — y path such that f(u) > f(y). Thus there is a path
having labels 1 — f(z) — f(u) — f(y) — 1. Since G is Ps-free and f is a
ranking, the only possible edges must be from a vertex labelled 1 to the
vertex u. O
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Corollary 8 IfG is a cograph and f is a minimal ranking of G then S; =
{z : f(z) =1} is an independent dominating set for G.

Theorem 16 If G is a connected cograph and S is an independent domi-
nating set then NyesN(s) # 0.

Proof: We proceed by induction on the cardinality of S. If | S |= 1 then
the result is vacuously true. If | S |= 2 then, since connected cographs
have diameter less than or equal to 2, the two vertices must share a com-
mon neighbor. Now suppose the result is true for all connected cographs
with | § |< n. Look at any G for which 3 <| S |= n+ 1. Label
the elements of S by {s1,82,...,3n41}. Let Hy =< UZ N(s;) >, since
N(si) N N(s;) #0if i # j, H is a connected cograph and {s,,ss,... »8n}
is an independent dominating set for H, containing n elements. Likewise
H, =< URH N(s;) > is a connected cograph and S—{s, } is an independent
dominating set for H; containing n elements. By the inductive hypothe-
sis there exists a z € NI N(s;). Since G is connected we have that
81 — 21 — 82 — z2 is a path. Now G is P, free and 3, and s are independent
vertices so either (s1,22) € E(G) or (21,22) € E(G). If (s1,22) € E(G)
then 2; € NI N(s;) and the theorem is true; so suppose (21, 2;) € E(G).
Then s; — 23 — 23 — 8p41 i8 a path in G different from the previous one since
| S |2 3. By an argument similar to the one above either (z1, 8,+1) € E(G)
or (s1,22) € E(G). This implies either z; € NZH!N(s;) or 22 € NEEIN(s;).
In either case, N2 ! N(s;) #0. O

Corollary 9 If G is a connected cograph then ¥,.(G) =p —i(G) + 1.

Proof: By Corollary 8, S; must be an independent dominating set for
G. Therefore | S) |> i(G) and so %,(G) < p—i(G) + 1. By Theorems 16
and 14, ¥,.(G) 2 p — i(G) + 1, hence the result. O

8. Conclusion and Open Problems

We have seen that there is an analog between coloring theory and rank-
ings. We have also established a connection between strong matchings and
minimal rankings. The following are some open problems:

1. Is there an upper bound on ¥,(G) involving 8*(G) so that when
B*(G) = 1,r(G) = p—i(G) +17

2. We know that for any graph G, x.(G) > x(G). If G is connected, is
¥r(G) > ¥(G)?

3. Any algorithmic results for 1, (G); especially trees and chordal graphs.

Acknowledgement: The authors wish to thank an anonymous referee
for many helpful comments and corrections.
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