ON 2-(v,3) STEINER TRADES OF SMALL VOLUMES #### G.B. KHOSROVSHAHI Institute for Studies in Theoretical Physics and Mathematics (IPM), and The University of Tehran, Iran. Email: rezagbk@zagros.ipm.ac.ir ### H.R. MAIMANI Institute for Studies in Theoretical Physics and Mathematics (IPM), and The University of Tehran, Iran. #### Abstract We consider all 2-(v, 3) trades in which every pair appears at most once in each part of the trade, and we call them Steiner Triple Trades STT(v). We completely classify STT(v) with $6 \le vol(T) \le 9$. # 1. Introduction and Background Materials For given v, k, and t, let $X = \{1, 2, \dots, v\}$ and let $P_i(X)$ denote the set of all *i*-subsets of $X, 2 \le i \le v$. The elements of $P_k(X)$ are called blocks. A t- (v, k, λ) design is a collection of blocks in which every element of $P_t(X)$ is contained in exactly λ blocks. A t-(v, k) trade $T = (T_1, T_2)$, consists of two disjoint collections of blocks T_1 and T_2 such that for every $B \in P_t(X)$, the number of blocks containing B in T_1 is the same as the number of blocks containing B in T_2 . The number of blocks in $T_1(T_2)$ is called the *volume* of the trade T, and is denoted by vol(T). Clearly a t-(v, k) trade is also an i-(v, k) trade for $0 \le i \le t$. Therefore, in a trade T, both T_1 and T_2 must be based on the same subset of the elements of X. This subset is called the *foundation* of the trade T, and is denoted by found(T). From here on, the set $\{x_1, x_2, \dots, x_i\} \in P_i(X)$ will be denoted by $x_1x_2 \cdots x_i$. We call a t-(v, k) trade T a minimal trade if $vol(T) = 2^t$, and |found(T)| = k + t + 1. Let $r_x = \text{number of occurrences of } x \in \text{found}(T) \text{ in } T_1(T_2).$ $$\lambda_{T_1(xy)} = \lambda_{T_2(xy)} = \lambda_{xy} = \text{number of occurrences of } xy \text{ in } T_1(T_2).$$ $$E(i) = \{x | x \in \text{found}(T), r_x = i\}.$$ Trades are very important and complicated combinatorial objects, and can be viewed as building blocks of t- (v, k, λ) designs. Their importance stems from the fact that the difference of any two t- (v, k, λ) designs is a trade [1,3]. If all the trades of all possible volumes could be catalogued, then the problem of existence of t-designs would become much more tractable [3,4]. It has been shown that for t=2, trades of volume equal to 1,2,3, and 5 do not exist [2]. Therefore, in this paper for k=3 and $\lambda_{xy}=1$, we study and classify all of these types of trades with volume ranging from 6 to 9. The reason for this particular study is the fact that most of combinatorial structures of small orders behave usually rather peculiarly. ### 2. Some Useful Lemmas Throughout, $T = (T_1, T_2)$ will be considered as a 2-(v, 3) trade, and for every pair xy, $\lambda_{xy} = 1$ or 0. In fact each part of this kind of a trade is a partial Steiner system. In this paper trades of this sort, T, with vol(T) = s, and |found(T)| = f will be denoted by TS(f, s). In this section we mention some simple lemmas which are used in the remaining parts of the paper. **Lemma 1.** For any $x \in \text{found}(T)$, $r_x > 2$. **Lemma 2.** Let $$T = (T_1, T_2)$$ be a $TS(f, s)$, then $\frac{2}{3}f \le s \le \frac{f(f-1)}{6}$. **Proof.** Since $2f \leq \sum_{x \in \text{found}(T)} r_x = 3s$, the left bound is attained. The right bound follows by counting the pairs of the set $\{(x, B) | x \in B, B \in T_1\}$ in two ways. \square From the above lemma we conclude that $$vol(T) = 6$$, $|found(T)| \in \{7, 8, 9\}$, $vol(T) = 7$, $|found(T)| \in \{7, 8, 9, 10\}$, $vol(T) = 8$, $|found(T)| \in \{8, 9, 10, 11, 12\}$, $vol(T) = 9$, $|found(T)| \in \{8, 9, 10, 11, 12, 13\}$. **Lemma 3.** If $xyz \in T_1$ such that r_x, r_y , and r_z are greater than 3, then $vol(T) \geq 7$. **Proof.** This follows from the fact that $\lambda_{xy} = \lambda_{xy} = \lambda_{yz} = 1$. \square **Lemma 4.** Let abc, $ade \in T_1$ and $r_a = r_b = r_d = r_e = 2$. Then, a minimal trade is embedded in the structure of T. **Proof.** Suppose that $r_a = r_b = r_d = r_e = 2$. Also let $$abc, ade, bdx, cey \in T_1, \quad abd, ace, bcx', dey' \in T_2,$$ where $x, y, x', y' \in \text{found}(T)$. Since $r_b = r_d = 2$, then x = x' = y', and since $r_e = 2$, then y' = y, and clearly there is a minimal trade in the structure of T. The other case can be established similarly. **Lemma 5.** If T and T' are two trades, then T - T' is also a trade. **Lemma 6.** If $T=(T_1,T_2)$ and $T'=(T_1',T_2')$ are two trades with volumes s, and s', respectively, such that $T'\subseteq T$ (i.e., $T_1'\subseteq T_1,T_2'\subseteq T_2$), then T-T' is a trade with volume s-s'. **Lemma 7.** Let $x \in \text{found}(T)$, and $r_x = m$, then $\text{vol}(T) \geq 2m$, and $|\text{found}(T)| \geq 2m + 1$. **Proof.** Let $C = \{y | \lambda_{xy} = 1\}$. Clearly $C = \bigcup_{x \in B \in T_1} B - \{x\}$ and $C \cup \{x\} \subseteq \text{found}(T)$. Consequently, we have $|C \cup \{x\}| \ge 2m + 1$. \square Let $x, y \in \text{found}(T)$, and $r_x = 3$, $r_y = 2$. We define $F_x = \{(x, z) | z \in E(2), \lambda_{xz} = 1\},$ and $D_y = \{(z, y) | z \in E(3), \lambda_{zy} = 1\}.$ Then, clearly, $$\sum_{x \in E(3)} |F_x| = \sum_{y \in E(2)} |D_y|. \tag{1}$$ ## 3. Classifying TS(f,s) of Small Volumes In this section, we completely classify the TS(f, s) for $6 \le s \le 9$. Our argument is organized in 3 parts: nonexistence of some trades, uniqueness of some others, and finally existence of those trades which are not unique. **Lemma 8.** TS(8,7), TS(10,7), TS(12,9), TS(13,9), TS(9,6), and <math>TS(8,9) do not exist. **Proof.** In the cases TS(9,6), TS(12,9), TS(13,9), and TS(10,7), there are two blocks B_1 and B_2 such that $|B_1 \cap B_2| = 1$, and four elements of $B_1 \cup B_2$ are in E(2). So by Lemmas 4, and 5 we have a trade with volume 4 in the structure of these trades, and we obtain a contradiction by Lemma 6. In the case TS(8,9), we have $E(4) = \emptyset$, hence at most $8 \times 3 = 24$ elements can appear in this trade, but there are $9 \times 3 = 27$ spaces to be filled, therefore we have no trade in this case. Suppose there exists a TS(8,7). So we have |E(3)| = 5, and |E(2)| = 3. Clearly, there exists a block $xyz \in T_1$ such that $r_x = r_y = r_z = 3$. With no loss of generality, let that block be 123. So the trade T can possibly be of the following form: $$T = (T_1, T_2) = (\{123, 145, 167, 24x, 36y, 57z, uvw\}, \{124, 136, 157, 23x', 45y', 67z', u'v'w'\})$$ There is an element $s \in \{4, 5, 6, 7\}$ such that $r_s = 2$ (since |E(3)| = 5). Suppose that $r_4 = 2$. Since $r_2 = r_3 = 3$, we have z = 2, or z = 3. Let z = 2, then u = 3. Clearly $x = y' \in \{6, 8\}$. If x = y' = 6, then there exists a TS(8,6) in the structure of this trade, and we obtain a contradiction by Lemma 6. Hence, x = y' = 8. Since $\lambda_{T_2(58)} = 1$, then $\lambda_{T_1(58)} = 1$. Since, the only choice for this pair is vw, hence vw = 358. Since $\lambda_{T_1(28)} = \lambda_{T_2(38)} = 1$, then x' = 8, and this is a contradiction. For z = 3, with a similar argument, again we obtain a contradiction. Hence this case does not offer any trade. \square Now we discuss about trades which are unique. **Proposition 9.** Let T be a TS(8,6) and $x, y \in \text{found}(T)$. If $r_x = r_y = 3$, then $\lambda_{xy} = 0$. **Proof.** If $\lambda_{xy} = 1$, then there is a block $x'y'z' \in T_1$ such that $r_{x'} = r_{y'} = r_{z'} = 2$. Another block which contains x' (or y', or z') is x'xw (or yx'w) where $r_w = 2$. From Lemma 4, there is a minimal trade in the structure of this trade, and by Lemmas 5 and 6, there is a trade of volume 2, and this is a contradiction. \square **Lemma 10.** The TS(8,6), TS(7,6), TS(9,7), TS(7,7), TS(8,8), and TS(12,8) are unique up to isomorphism. **Proof.** TS(7,6). In this case |E(2)| = 3, and |E(3)| = 4. If $x \in \text{found}(T)$ and $r_x = 3$, then for each $y \in \text{found}(T)$, $\lambda_{xy} = 1$, and for each $x, y \in E(2)$, $\lambda_{xy} = 0$. Let $1 \in \text{found}(T)$, and $r_1 = 3$. This trade can be expressed as $$T = (T_1, T_2) = (\{123, 145, 167, 24x, 36y, 57z\}, \\ \{124, 136, 157, 23x', 45y', 67z'\}).$$ Each block contains only one element of E(2). Suppose these elements are 2, 5, and 6. Therefore, x = x' = 7, y = z' = 4, and z = y' = 3. Hence the trade is constructed. TS(8,6). By Proposition 9, we assume that $$T = (T_1, T_2) = (\{134, 156, 178, 35x, 47y, 68z\}, \{135, 147, 168, 34x', 56y', 78z'\}).$$ Since $\{3, 4, 5, 6, 7, 8\} \subseteq E(2)$, hence x = x' = y = y' = z = z' = 2. TS(7,7). In this case, |E(3)|=7, and for any $x,y\in \text{found}(T)$, $\lambda_{xy}=1$. We can assume that T_1 is of the following unique form $$T_1 = \{123, 145, 167, 246, 257, 356, 347\}.$$ But then T_2 can be of one of the followings: $$T_2 = \{124, 136, 157, 237, 256, 345, 467\}, \text{ or } T_2 = \{124, 136, 157, 235, 267, 347, 456\}.$$ So, these two trades are in fact isomorphic. ($\sigma = (24)(35)(67)$.) Hence we are left with only one trade. TS(9,7). Here we have |E(3)|=3, and |E(2)|=6. Let $r_1=3$. The blocks of a possible trade T can be arranged as follows: $$T = (T_1, T_2) = (\{123, 145, 167, 24x, 36y, 57z, uvw\}, \{124, 136, 157, 23x', 45y', 67z', u'v'w'\}).$$ One of the pairs 24, 36, and 57 is a subset of E(2). Suppose that $24 \subseteq E(2)$. So $r_2 = r_4 = 2$. Therefore, x = x' = y', and the only choices for these are 8, or 9. Let x = x' = y' = 8, then u' = z'. If y = 8, then $\lambda_{T_1(68)} = 1$ implies that $\lambda_{T_2(68)} = 1$. Therefore, u'w' = 68, and we conclude that the pair 69 appears in T_2 twice. This is a contradiction. Thus, $y \neq 8$. With a similar argument $z \neq 8$, hence we have uv = 35. So w = 8, y = z = 9, and v'w' = 35, and again we obtain a unique trade. TS(8,8). Here, |E(3)|=8. Suppose that the blocks of T are as follows: $$T = (T_1, T_2) = (\{123, 145, 167, 24x, 36y, 57z, uvw, rst\}, \\ \{124, 136, 157, 23x', 45y', 67z', u'v'w', r's't'\}).$$ Since $8 \in E(3)$, then one of the elements of $\{x, y, z\}$, and $\{x', y', z'\}$ is 8. Let x = 8, hence x' and $y' \neq 8$, and z' = 8. So uv = 68, rs = 78, u'v' = 28, r's' = 48. Clearly z = 2, y' = 6, y = 4, x' = 7, w' = 5, t' = 3, w = 5, and t = 3, hence only one trade can be obtained. TS(12,8). For any $x \in \text{found}(T)$, $r_x = 2$. So this trade is a difference of two minimal trades with disjoint foundation sets. \square From here on we will denote the elements 10, 11, and 12 by A, B, and C, respectively. Now we study T = TS(9, 8). **Proposition 11.** Suppose that there exists a TS(9,8), and $r_x \leq 3$ for any $x \in \text{found}(T)$. Then there exists at least one $x \in E(3)$ such that $|F_x| = 1$. **Proof.** Since |E(3)| = 6, so $|F_x| \ge 1$ for any $x \in E(3)$. Suppose that for any $x \in E(3)$, $|F_x| \ge 2$. Hence $\sum_{x \in E(3)} |F_x| \ge 12$. Since for any $y \in E(2)$, $|D_y| \le 4$, therefore, $|D_y| = 4$. Let $E(2) = \{7, 8, 9\}$, and $E(3) = \{1, 2, \dots, 6\}$. We can suppose that $D_7 = \{(1, 7), (2, 7), (3, 7), (4, 7)\}$, $D_8 = \{(1, 8), (2, 8), (5, 8), (6, 8)\}$, and $D_9 = \{(3, 9), (4, 9), (5, 9), (6, 9)\}$. Also we have $$127, 347, 158, 268, 359, 469 \in T_1$$ Thus, the two other blocks of T_1 are 245 and 136. Hence, we can not construct T_2 of $T.\Box$ **Lemma 12.** There is a unique TS(9,8) if for any $x \in \text{found}(T)$, $r_x \leq 3$. **Proof.** By Proposition 11, suppose that $1 \in E(3)$, and $F_1 = \{(1,7)\}$. So the blocks of a TS(9,8) can be expressed as follows: $$T = (T_1, T_2) = (\{123, 145, 167, 24x, 36y, 57z, rst, uvw\}, \{124, 136, 157, 23x', 45y', 67z', r's't', u'v'w'\}).$$ z = z' since $7 \in E(2)$. We have only three choices for z, namely 2, 8, and 9. If z=z'=2, then x=6, x'=5, and $y \in \{8,9\}$. We can assume that y=8. So r=u=9, and s=8. Since $\lambda_{T_2(35)}=1$, then vw=35, and then t=4. Therefore, y'=9, r's't'=389, and u'v'w'=468. Hence the trade is constructed. If z=z'=8, then $\lambda_{T_2(68)}=1$. So y=8 or rs=68. Since $5,6\in E(3)$, then $y,y'\neq 8$, so rs=68. Therefore, t=2, or 3 (since $2,3\in E(3)$). Let t=2. Since $\lambda_{T_1(26)}=\lambda_{T_1(28)}=1$, then x'=8, uv=38, and u'v'=26. Clearly we conclude that x=9, and hence w'=9, so y=9. But we have no choice for 9 in the blocks of T_2 , and we obtain a contradiction. Hence, we are left with only one trade. \square Suppose that there exists a TS(f, s), and for $x \in \text{found}(T)$, we have $r_x = 4$. Then the blocks of two parts of this trade which contain the element x have two nonisomorphic forms as follows: - (*) $xbc, xde, xfg, xhl \in T_1, xbd, xce, xfh, xgl \in T_2,$ - (**) $xbc, xde, xfg, xhl \in T_1, xbd, xcf, xeh, xgl \in T_2.$ **Lemma 13.** The existence of an element $x \in \text{found}(T)$, with $r_x = 4$ implies the existence of a unique TS(9,8). **Proof.** Let $r_1 = 4$, and the blocks of T which contain 1 are of the form (*). So we can show that the blocks of this trade are as follows: $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24x, 35y, 68z, 79w\}, \{124, 135, 168, 179, 23x', 45y', 67z', 89w'\}).$$ We assume that $r_2 = 2$. Hence $x = x' \in \{6, 7, 8, 9\}$. Suppose x = x' = 6. If y' = 6, then y = 6, and we have no choice for z. So $y, y' \neq 6$. Only choices for z are 3 and 5. If z = 3, then z' = w' = 3, and therefore w = 3. Hence y = y' = 6. If z = 5, then z' = w' = 3, and w = 5. Therefore, y = y' = 6. For both choices we reach a contradiction, and hence, no trade exists. Now, suppose that the blocks which contain 1 are of the form (**). So we express the blocks of this trade as follows: $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24x, 36y, 58z, 79w\}, \{124, 136, 158, 179, 23x', 45y', 67z', 89w'\}).$$ Let $2 \in E(2)$. Hence $x = x' \in \{7, 8, 9\}$. Suppose that x = x' = 7. We have $z \in \{3, 7\}$. If z = 3, then y' = w' = 3, and z' = 4, and we can express T = TS(9, 8) as follows: $$T = (T_1, T_2) = (\{123, 145, 167, 189, 247, 346, 358, 379\}, \{124, 136, 158, 179, 237, 345, 389, 467\}).$$ If z = 7, then w = 3, and therefore w' = 3, so we can express T' = TS(9, 8) as follows: $$T' = (T'_1, T'_2) = (\{123, 145, 167, 189, 247, 368, 379, 578\}, \{124, 136, 158, 179, 237, 389, 457, 678\}).$$ But the permutation (37)(29)(48) transforms T to T'. Hence they are isomorphic. When x = x' = 8, or 9, we obtain a trade which is isomorphic with this trade. \square We summerize the above results in the following lemma. **Lemma 14.** There are two nonisomorphic TS(9,8)'s. **Proposition 15.** If for any $x \in \text{found}(T)$ in a TS(10, 8), $r_x \leq 3$, then, there is no block $xyz \in T_1$ with $r_x = r_y = r_z = 2$. **Proof.** Suppose $123 \in T_1$ such that $r_1 = r_2 = r_3 = 2$. Also, suppose that $E(2) = \{1, 2, \dots, 6\}$, and $E(3) = \{7, 8, 9, A\}$. So $12\alpha, 13\alpha'$, and $23\alpha''$ are three blocks of T_2 . Therefore, $\alpha, \alpha', \alpha'' \in E(3)$ and are distinct (for $r_x \leq 3$, and Lemma 5). Then $\{\alpha, \alpha', \alpha''\} = \{7, 8, 9\}$. Hence $178, 279, 389 \in T_1$. Notice that $789 \notin T_2$ (since $7, 8, 9 \in E(3)$.) Thus, $78m, 79n, 89p \in T_2$. Only one of the elements of $\{m, n, p\}$ could be A, and the other two should be chosen from $\{4, 5, 6\}$ (say, it is 6). So $\lambda_{6A} = 2$, and this is a contradiction. \square **Proposition 16.** By the same assumption as in Proposition 15, there are exactly four blocks of $T_1(T_2)$ containing four pairs of the elements of E(2), and if $E(2) = \{1, 2, \dots, 6\}$, then the pairs are 12, 23, 45, 46. **Proof.** There are 4 possible choices for these pairs: (i) 12, 23, 45, 46, (ii) 12, 13, 23, 45, (iii) 12, 13, 34, 45, (iv) 12, 13, 34, 56. If (ii) occurs, then $12\alpha, 13\alpha', 23\alpha'' \in T_1$, and therefore $\alpha = \alpha' = \alpha''$, and this is a contradiction. By similar arguments (iii), and (iv) can be ruled out. \square **Lemma 17.** By the same assumption as in Proposition 16, there exists a unique TS(10,8). **Proof.** Let $E(2) = \{1, 2, \dots, 6\}$, and $E(3) = \{7, 8, 9, A\}$. By Propositions 15 and 16, we conclude that $12\alpha, 13\alpha', 45\alpha'', 46\alpha''' \in T_1, \quad 13\alpha, 12\alpha', 45\alpha''', 46'' \in T_2.$ Hence $\{\alpha, \alpha', \alpha'', \alpha'''\} = \{7, 8, 9, A\}$. Therefore, we express the blocks of T as follows: $$T = (T_1, T_2) = (\{127, 138, 459, 46A, 37x, 28y, 5Az, 69w\}, \{137, 128, 45A, 469, 27x', 38y', 59z', 6Aw'\}).$$ Hence x' = y, x = y', z = z', and w = w'. So we can fill up the unoccupied spots in two ways by w = 8, or w = A. Therefore, two trades can be constructed. But these two trades are isomorphic $(\sigma = (56)(9A))$. \square **Lemma 18.** If for $x \in \text{found}(T)$, $x \in E(4)$, then there are 3 nonisomorphic TS(10, 8)'s. **Proof.** Let $1 \in E(4)$, and the blocks containing 1 are of the form (*). So we show that TS(10,8) is as follows: $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24x, 36y, 68z, 79w\}, \{124, 135, 168, 179, 23x', 45y', 67z', 89w'\}).$$ Clearly $A \in E(2)$ or E(4). If $A \in E(2)$, we have x = x' = y = y' = A (or w = z = w' = z' = A), and $z \in \{2, 4, 5, 6\}$. We can assume that z = 2. Therefore, a trade is constructed. If $A \in E(4)$, then all the unoccupied entries can be filled up with A. So we obtain two nonisomorphic trades. Now suppose that the blocks containing 1 are of the form (**), i.e., we have the following trade: $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24x, 36y, 58z, 79w\}, \{124, 136, 158, 179, 23x', 45y', 67z', 89w'\}).$$ Clearly $A \in E(4)$, so all the entries are A, and hence we are left with only one trade. \square **Lemma 19.** There are 4 nonisomorphic TS(10,8). **Lemma 20.** Let T = TS(11, 8). For any $x \in \text{found}(T)$, if $r_x \leq 3$, then there exists no TS(11, 8), otherwise a unique TS(11, 8) exists. **Proof.** In this case |E(3)| = 2, and |E(2)| = 9. Suppose $1 \in E(3)$. Then we can assume that $123, 145, 167, 24x, 36y, 57z \in T_1, 124, 136, 157, 23x', 45y', 67z' \in T_2.$ Since at least five elements of $\{2, 3, \dots, 7\}$ are in E(2), so x = y = z = x' = y' = z', and therefore, there must be a trade with volume 6 embedded in TS(11, 8), which is impossible. Hence, there is no TS(11, 8). Now suppose that for an $\alpha \in \text{found}(T)$, we have $r_{\alpha} = 4$. Let $\alpha = 1$. First, assume that the blocks containing 1 are of the form (*). We show that the blocks of a possible TS(11,8) are as follows: $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24x, 35y, 68z, 79w\}, \{124, 135, 168, 179, 23x', 45y', 67z', 89w'\}).$$ Since, each of the elements A, or B appear at least twice, hence the x = y = x' = y' = A, and z = w = z' = w' = B, and so a trade is constructed. Now suppose that the blocks containing 1 are of the form (**). Then T is as follows: $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24x, 36y, 58z, 79w\}, \{124, 136, 158, 179, 23x', 45y', 67z', 89w'\}).$$ If A occurs in one of the unoccupied spots, then it should occur in all of them, therefore B can not occur anywhere, which is impossible. \Box Now we study TS(f, 9) for $9 \le f \le 11$. **Definition.** Let $x, y, z \in \text{found}(T)$, and $\lambda_{xy} = \lambda_{xz} = 0$. We say that x has Property (P) if $\lambda_{yz} = 1$. Let T be a TS(9,9), and $r_x \leq 3$ for any $x \in \text{found}(T)$. It follows that for any $x \in \text{found}(T)$, there are two elements $z, y \in \text{found}(T)$ such that $\lambda_{xy} = \lambda_{xz} = 0$. First suppose that there exists $x \in \text{found}(T)$ with Property (P). Let x = 1, and $\lambda_{12} = \lambda_{13} = 0$, $\lambda_{23} = 1$. There exist $y, y' \in \text{found}(T)$ such that $\lambda_{2y} = \lambda_{3y'} = 0$. The following proposition is clear. **Proposition 21.** $y \neq y', 1yy' \notin T_1$, and if $23y'' \in T_1$, then $yy'y'' \in T_1$. **Lemma 22.** If there exists $\alpha \in \text{found}(T)$ with Property (P), and $r_{\alpha} \leq 3$ for any $\alpha \in \text{found}(T)$, then there is a unique TS(9,9). **Proof.** Let $\alpha = 1$, and $\lambda_{12} = \lambda_{13} = \lambda_{24} = \lambda_{37} = 0$. By the Proposition 21, we can express TS(9,9) as follows: $$T = (T_1, T_2) = (\{145, 167, 189, 23t, 27x, 2yz, 34w, 3uv, 47t\}, \\ \{146, 158, 179, 23t', 27x', 2y'z', 34w', 3u'v', 47t'\}).$$ So $t \in \{8,9\}$. If t=8, then $\lambda_{T_2(58)}=1$, and hence $\lambda_{T_1(58)}=1$, but this pair can not appear in T_1 , so t=9. By a similar argument we have t'=5. Now we can fill all the unoccupied entries uniquely, and obtain the following trade. $$T = (T_1, T_2) = (\{145, 167, 189, 239, 257, 268, 346, 358, 479\}, \{146, 158, 179, 235, 267, 289, 349, 368, 457\}).$$ **Lemma 23.** If $r_x \leq 3$ for any $x \in \text{found}(T)$, and if there exists no element in found(T) with Property (P), then there exists a unique TS(9,9). **Proof.** The pairs from the sets $\{1,2,3\},\{4,5,6\},\{7,8,9\}$ can not appear in T, and we can show that the possible T can be constructed as follows: $$T = (T_1, T_2) = (\{146, 158, 179, 2-, 2-, 2-, 3-, 3-, 3-\}, \{148, 159, 167, 2-, 2-, 2-, 3-, 3-, 3-\}).$$ Now the blanks can be easily filled up as follows: $$T = (T_1, T_2) = (\{147, 158, 169, 248, 259, 267, 349, 357, 368\}, \{148, 159, 167, 249, 257, 268, 347, 358, 369\}). \square$$ Let T be a TS(9,9), having an element $\alpha \in \text{found}(T)$ such that $r_{\alpha} = 4$, and the blocks containing α are of the form (*). Let $\alpha = 1$, then T should be of the following form: $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24x, 35y, 68w, 79v, rst\}, \\ \{124, 135, 168, 179, 23m, 45n, 67p, 89q, abc\}).$$ **Proposition 24.** By the above assumption, |E(4)| > 1. **Proof.** Suppose that |E(4)| = 1. Let $2 \in E(2)$, then x = m. Clearly $x \in \{6,7,8,9\}$. Let x = m = 6. Since $6 \in E(3)$, then w = 3, and p = 4. Therefore, $y \in \{7,9\}$. If y = 7, then $378 \in T_2$. Since $\lambda_{T_2(78)} = 1$, hence, v=8. Therefore, $\lambda_{T_1(89)}=2$, and this is a contradiction. If y=9, then q=3, and hence a trade with volume 8 is embedded in T which is clearly a contradiction. Therefore $|E(4)| \geq 2$. \square **Lemma 25.** By the assumption of Proposition 24, there is no TS(9,9). **Proof.** We know that $|E(4)| \geq 2$, and $1,2 \in E(4)$. So for any $x \in \text{found}(T)$, $\lambda_{1x} = \lambda_{2x} = 1$. Since $\lambda_{25} = 1$, then rs = ab = 25. One of the elements v or w is 2. Let v = 2. Then $\{t, x\} = \{6, 8\}$. We can suppose that t = 6, and x = 8. Likewise one of the elements v' or w' is 2. In both cases we obtain a contradiction. By a similar argument the case, w = 3 is ruled out. So, we are left with no trade. Now suppose that for any $\alpha \in \text{found}(T)$, such that $r_{\alpha} = 4$, the blocks containing α are of the form (**). So we have $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24x, 36y, 38z, 79w, rst\}, \\ \{124, 135, 158, 179, 23m, 45n, 67p, 89q, abc\}).$$ By a similar argument as in Proposition 24, we conclude that $|E(4)| \ge 2$. Clearly we have $|E(4)| \le 3$. **Proposition 26.** Let |E(4)| = 3 and $x, y, z \in E(4)$. Then - $xyz \notin T_1(T_2)$, - $\lambda_{xy} = \lambda_{xz} = \lambda_{yz} = 1,$ - if $xyv, xyv', yzv'' \in T_1$, then $v, v', v'' \in E(2)$. **Lemma 27.** By the assumptions as in Proposition 26, there is a unique TS(9,9). **Proof.** We assume that $1, 2, 4 \in E(4)$, and by the Proposition 26, the blocks of a trade T are as follows: $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24x, 2yz, 2vw, 4xy, 4ab\}, \{125, 136, 148, 179, 24m, 2np, 2ql, 4ij, 4kh\}).$$ By Proposition 26, 3,5,8 \in E(2). Therefore, x=8, and m=3. We conclude that 289, 267 \in T_2 . From the other hand, since $3 \in E(2)$, we conclude that 346, 479 $\in T_1$, and hence y=i=5. Also, since $5 \in E(2)$, we have $j=z \in \{6,7,9\}$. If j=z=6, then $279 \in T_1$, and $\lambda_{T_1(79)}=2$, and this is a contradiction. By a similar argument in the case j=z=9, we obtain a contradiction. So j=z=7, and finally we conclude that uv=kh=69, and hence, a trade is constructed. \square Now suppose |E(4)| = 2, and $1, 2 \in E(4)$. Then the blocks of T can have the following form: $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24x, 36y, 58z, 79w, rst\}, \\ \{124, 136, 158, 179, 23m, 45n, 67p, 89q, abc\}).$$ To replace the letters, we need the following proposition. Proposition 28. $3,4 \notin E(2)$. **Proof.** Suppose that $3 \in E(2)$. Hence m = y, and $m \in \{5, 8, 9\}$. If m = 5, since $5 \in E(3)$, we deduce that z = 2, and n = 6. Since $\lambda_{T_2(46)} = 1$, then x = 6 or rs = 46. In both cases we conclude that w = 2, and therefore x = 6. So a trade with volume 8 is embedded in this trade, and this is a contradiction, so $m \neq 5$. If m = 8, again by noting that $8 \in E(3)$, we deduce that z = 2, and q = 6. Since 2 appears twice, we conclude that p = 2, and abc = 259. Clearly n = 7. Since $\lambda_{T_1(57)} = \lambda_{T_1(59)} = 1$, then 579 $\in T_1$. Hence w = x = 2, and we have $\lambda_{T_1(47)} = 0$, but $\lambda_{T_2(47)} = 1$. By a similar argument $4 \notin E(2)$. \square **Lemma 29.** By the assumption |E(4)| = 2, there is a unique TS(9,9). **Proof.** Clearly $5, 6 \notin E(2)$, otherwise we have n = z, and since $\lambda_{25} = 1$, then n = z = 2, and therefore $\lambda_{T_2(24)} = 2$. Now we construct a trade. Two elements of each of the sets $\{z, w, r\}$ and $\{p, q, a\}$ are 2, and the third elements are 3, and 4, respectively. If z = 3, then y = 4, w = 2, x = 8, and rs = 56, and similarly p = q = 2, n = 6, abc = 348, and m = 5. Hence, we construct a trade. If r = 3, by a similar argument as above, we construct a trade which turns out to be isomorphic to the above trade. If w = 3, then y = 4, z = 2, and rst = 256. This is a contradiction, to the fact that the pair 25 appears twice. \Box Note. By Lemmas 23,24,28, and 30, we have 4 nonisomorphic TS(9,9). Now, we discuss the case of TS(10, 9). **Lemma 30.** If for any $x \in \text{found}(T)$, $r_x \leq 3$, then there is a unique TS(10,9). **Proof.** In this case |E(3)| = 7, and |E(2)| = 3. By (1), there is an element $\alpha \in E(3)$, such that $0 \le |F_{\alpha}| \le 1$. Let $\alpha = 1$. We can express the blocks of a possible trade T as follows: $$T = (T_1, T_2) = (\{123, 145, 167, 24x, 36y, 57z, uvw, rst, opq\}$$ $$\{124, 136, 157, 23x', 45y', 67z', u'v'w', r's't', o'p'q'\}).$$ First, suppose that $|F_1|=0$. At least one of the elements of $\{x,y,z\}$ belongs to $\{2,3,\cdots,7\}$. Let x be such an element, and x=6. Since every element of $\{2,3,\cdots,7\}$ belongs to E(3), then $x',y'\neq 6$. We can assume that z'=2, so uv=27, and u'v'=46. Hence $y=w'\in\{8,9,A\}$. Let y=8, hence, rs=48, and r's'=38. Therefore, $y'=t=t'\in\{9,A\}$. Suppose y'=9. Since $5\in E(3)$, so we have opq=359. A must appear in T_1 twice, so $\lambda_{T_1(7A)}=2$, and this is a contradiction, and so $|F_1|=1$. Let $2 \in E(2)$. Hence $x = x' \in \{7, 8, 9, A\}$. If x = x' = 7, then z' = 4, and z = 3. Therefore, uv = 46, and u'v' = 35. Let $8 \in E(3)$. Since $9, A \in E(2)$, then $\lambda_{T_1(8A)} = 2$, or $\lambda_{T_2(89)} = 2$, and this is a contradiction. So $x \neq 7$. Let x = x' = 8, and we have uv = 38, and u'v' = 48. Notice that $y \in \{4, 5, 9, A\}$. If y = 4, then w' = 6, rs = 68, y' = 3, and w = 5. Hence r's' = 58, and rs = 68. Since $9, A \in E(2)$, then with no loss of generality, we assume that z = 9, z' = A, t = A, and t' = 9. Clearly we can not fill the other blanks of this trade. So $y \neq 4$. If y = 5, then r's' = 35, and y' = 6. Hence rs = 46, therefore, t = w, and z = w = t'. Assume that z = 9, then all the blanks can be filled uniquely, and we obtain the following trade, $$T = (T_1, T_2) = (\{123, 145, 167, 248, 369, 378, 49A, 579, 68A\}, \{124, 136, 157, 238, 397, 48A, 459, 678, 69A\}).$$ If y = 9, then clearly we obtain a trade which is isomorphic with the above trade. \Box Now suppose that there exists $\alpha \in \text{found}(T)$ such that $r_{\alpha} = 4$. Also suppose that blocks containing α are of the form (*). Let $\alpha = 1$. We show that the trade T could be of the following form: $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24x, 35y, 68z, 79w, uvs\}$$ $$\{124, 135, 168, 179, 23x', 45y', 67z', 89w', u'v's'\}).$$ To replace the blanks we need the following proposition. Proposition 31. $A \in E(2)$. **Proof.** Suppose to the contrary, and let $A \in E(3)$ or $A \in E(4)$. If $A \in E(4)$, then x = y = z = w = x' = y' = z' = w' = A, and a trade with volume 8 is embedded in this trade. So $A \notin E(4)$. If $A \in E(3)$, then at least two elements of $\{x, y, z, w\}$ are A. We have two choices for these elements, (i) $$x = y = A$$, (ii) $x = z = A$. If (i) occurs, then clearly x' = y' = A, and there is a minimal trade embedded in this trade. So (i) is ruled out. If x = z = A, then x', or y' is equal A, and likewise z', or w' is equal A. With no loss of generality, suppose that x' = z' = A, then u'v's' = 48A, and uvs = 37A. Since $\lambda_{T_1(3A)} = 1$, then $\lambda_{T_2(3A)} = 1$, but we have no block to contain the pair 3A. \square Now we fill the blanks of the above TS(10, 9). **Lemma 32.** By the above assumption, there exists a unique TS(10,9). **Proof.** By the Proposition 31, $A \in E(2)$. Hence, exactly one of the elements of $\{x, y, z, w\}$ is A. Let x = A. So x', or y' is A. Suppose x' = A. Therefore r'v' = 4A, uv = 3A, and $y \in \{6, 7, 8, 9\}$. Let y = 6. So z' = 3, y' = 6, and hence z = 4. We have two choices: (i) w = 3, and (ii) s = s' = 7. If w = 3, then w' = 3, and we have s = s' = 8. If s = s' = 7, then w = w' = 4. So we obtain the following trades: $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24A, 356, 468, 479, 37A\}$$ $$\{124, 135, 168, 179, 23A, 456, 367, 489, 47A\}),$$ and $$T' = (T'_1, T'_2) = (\{123, 145, 167, 189, 24A, 356, 468, 379, 38A\}$$ $\{124, 135, 168, 179, 23A, 456, 367, 389, 48A\}).$ But T and T' are isomorphic ($\sigma = (34)(78)$). \square Now Suppose that $r_1 = 4$, and the blocks containing 1 are of the form (**), then we can assume that: $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24x, 36y, 58z, 79w, uvs\}, \{124, 136, 158, 179, 23x', 45y', 67z', 89w', u'v's'\}).$$ **Lemma 33.** By the assumption as above, we have 3 nonisomorphic TS(10,9)'s. **Proof.** Either $A \in E(2)$, or $A \in E(3)$. If $A \in E(2)$, then at least an element of $\{x, y, z, w\}$ is A. First, assume that only one element of $\{x, y, z, w\}$ is A. Let x = A. So, x' = A, or y' = A. With no loss of generality, suppose that x' = A, therefore uv = 3A, u'v' = 4A, and $s = s' \in \{7, 8, 9\}$. Clearly s = 8 or 7 can be ruled out. Hence s = s' = 9. So w = 4, and w' = 3. We have two choices, y = 8, or z = 3. With these choices, we can construct the following two trades: $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24A, 368, 39A, 578, 479\}$$ $\{124, 136, 158, 179, 23A, 389, 457, 49A, 678\}),$ and $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24A, 346, 39A, 358, 479\}$$ $$\{124, 136, 158, 179, 23A, 345, 389, 467, 49A\}).$$ Clearly, the above two trades are nonisomorphic, because the cardinality of E(4) in these trades are not the same. Now suppose that two elements of $\{x, y, z, w\}$ are A. Hence since at least one of the elements of $\{x', y', z', w'\}$ is A, with no loss of generality, let x=y=x'=A. Thus u'v's'=46A, uv=46, and $w\in\{8,9\}$. Clearly s=8, then $\lambda_{T_2(48)}=\lambda_{T_2(68)}=1$, and we have two choices, w'=6, or w'=4. If w'=6, then w=6, and $\lambda_{T_1(67)}=2$, and this is a contradiction. Hence w'=4, and w=4, and we deduce that x=7, z=7, and y'=8. Thus we have the following trade. $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24A, 36A, 468, 479, 578\}, \{124, 136, 158, 179, 23A, 457, 678, 489, 46A\}).$$ Now Suppose that $A \in E(3)$. If three elements of $\{x, y, z, w\}$ are A, we easily obtain a trade isomorphic to the trade of Lemma 32. If only two elements of $\{x, y, z, w\}$ are A, clearly we obtain a contradiction. \square Now we construct TS(11, 9). **Lemma 34.** Let T be a TS(11,9). If for any $x \in \text{found } (T), r_x \leq 3$, then there exists a unique TS(11,9). **Proof.** By (1) we conclude that there is an element $\alpha \in E(3)$, such that $3 \leq |F_{\alpha}| \leq 4$. Suppose that $\alpha = 1$. The blocks of $T = (T_1, T_2)$ containing the element 1 can be expressed as $$123, 145, 167 \in T_1, \quad 124, 136, 157 \in T_2.$$ First assume that $|F_1| = 4$. Four elements of E(2) which appear in the above blocks could be of the following forms: - (i) $\{2,3,4,6\} \subseteq E(2)$, - (ii) $\{2, 3, 4, 7\} \subseteq E(2)$, - (iii) $\{2,3,5,7\} \subseteq E(2)$. (i) and (ii) can easily be ruled out. So we are left only with (iii). We can express T as follows: $$T = (T_1, T_2) = (\{123, 145, 167, 24x, 36x, 57y, -, -, -\}$$ $$\{124, 136, 157, 23x, 45y, 67y, -, -, -\}).$$ Clearly x = 8, and y = 9. If $9 \in E(2)$, then 469 is a block of T_1 , and the pair AB appears in the remaining blocks, and hence $\lambda_{T_1(AB)} = 2$, and this is a contradiction. So, $9 \in E(3)$. Similarly $8 \in E(3)$. Thus we can easily construct a trade. $$49A, 69B, 8AB \in T_1, 9AB, 68B, 48A \in T_2.$$ Now suppose that for any $x \in \text{found}(T)$ such that $x \in E(3), |F_x| \leq 3$. Let $1 \in E(3)$, and $|F_1| = 3$. We consider the following cases, - (i) $\{2,5,6\} \subseteq E(2)$, - (ii) $\{2,4,6\} \subseteq E(2)$, - (iii) $\{2,3,4\} \subseteq E(2)$. (i) leads us to the previous trade, and we do not obtain any new trade. (ii) and (iii) can be easily ruled out too. \Box **Lemma 35.** Suppose that for at least one $\alpha \in \text{found}(T)$, $r_{\alpha} = 4$. Then there exists only one TS(11, 9). **Proof.** Let $r_1 = 4$. Suppose that the blocks containing 1 are of the form (*), then we assume that $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24x, 35y, 68z, 79w, rst\}$$ $$\{124, 135, 168, 179, 23x', 45y', 67z', 89w', r's't'\}).$$ Since $|E(2)| \ge 7$, at least 3 elements of $\{2,3,4,5\}$, or $\{7,8,9,A\}$ are in E(2). Suppose that at least three elements of $\{2,3,4,5\}$ are in E(2). So x = y = x' = y', and then a minimal trade is embedded in this trade and this is a contradiction. So, we have no trade. Now suppose that the blocks containing 1 are of the form (**), then we can show the blocks of TS(11,9) are as follows: $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24x, 36y, 58z, 79w, rst\}$$ $$\{124, 136, 158, 179, 23x', 45y', 67z', 89w', r's't'\}).$$ By the above argument, at least 3 elements of $\{2, 3, 4, 5\}$ are in E(2). Concerning the structure of this trade we consider two cases for the elements of $\{2, 3, 4, 5\}$ which are in E(2), (i) $$\{2,3,4\} \subseteq E(2)$$, (ii) $\{2,3,5\} \subseteq E(2)$. If (i) occurs, then $x = x' = y' = y \in \{9, A, B\}$. The case y = 9 can be easily ruled out. So x = x' = y = y' = A. One of the elements z, or w is B. If z = B, then w' = B, r's' = 5B, and we conclude that z' = A, and $\lambda_{T_2(AB)} = 0$, so w = A. Since $\lambda_{T_1(9A)} = 1$, hence $\lambda_{T_2(9A)} = 1$, but we have no choice for this pair in the blocks of T_2 . So w = B. By the same argument w' = B. Therefore, rs = 8B, r's' = 7B, and t = t'. Clearly we conclude that z = A. Since $\lambda_{T_1(8A)} = 1$, then $\lambda_{T_2(8A)} = 1$, but we have no choice for this pair in the blocks of T_2 . So (i) can be ruled out. If (ii) occurs, then x = y = x', and y' = z. Also $y \neq y'$ (otherwise $\{2,3,4\} \subseteq E(2)$, and (i) will occur). Clearly x = y = x' = A, and y' = z = B. Therefore w' = A, r's' = 4A, and rs = 4B. We conclude that w = B or t = 9. Choosing each of these elements, we obtain the following two trades: $$T = (T_1, T_2) = (\{123, 145, 167, 189, 24A, 36A, 49B, 58B, 79A\}$$ $$\{124, 136, 158, 179, 23A, 45B, 49A, 67A, 89B\}),$$ and $$T' = (T'_1, T'_2) = (\{123, 145, 167, 189, 24A, 36A, 46B, 58B, 79B\}$$ $\{124, 136, 158, 179, 23A, 45B, 4A6, 67B, 89B\}).$ But the above trades are isomorphic ($\sigma = (38)(25)(69)(A\ B)$). \square Note. By the Lemmas 34, and 35, there are 2 nonisomorphic TS(11,9). ### 4. The Summary of Results We summarize the results of Section 3, in Tables 1 and 2. |found(T)|12 7 8 9 Α 11 vol(T)1 1 1 2 4 1 4 2 Table 1. Numbers of nonisomorphic trades. Table 2. A complete list of trades $T = (T_1, T_2)$ for $6 \le vol(T) \le 9$. | found(T) | 7 | 8 | 7 | 9 | 8 | 9 | 9 | 10 | 10 | 10 | 10 | 11 | |----------|-----|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | | 123 | 123 | 123 | 123 | 123 | 123 | 123 | 127 | 123 | 123 | 123 | 123 | | | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 138 | 145 | 145 | 145 | 145 | | İ | 167 | 167 | 167 | 167 | 167 | 167 | 167 | 28A | 167 | 167 | 167 | 167 | | T_1 | 247 | 248 | 246 | 248 | 248 | 246 | 189 | 379 | 189 | 189 | 189 | 189 | | | 346 | 368 | 257 | 358 | 257 | 257 | 247 | 459 | 24A | 24A | 24A | 24A | | | 357 | 578 | 356 | 369 | 346 | 359 | 346 | 46A | 268 | 35A | 36A | 68B | | | | l , | 347 | 579 | 378 | 368 | 358 | 57A | 279 | 68A | 58A | 79B | | | | | | | 568 | 489 | 379 | 689 | 35A | 79A | 79A | 35A | | | 124 | 124 | 124 | 124 | 124 | 124 | 124 | 128 | 124 | 124 | 124 | 124 | | | 136 | 136 | 136 | 136 | 136 | 136 | 136 | 137 | 135 | 135 | 136 | 135 | | | 157 | 157 | 157 | 157 | 157 | 157 | 158 | 27A | 168 | 168 | 158 | 168 | | T_2 | 237 | 238 | 237 | 238 | 237 | 235 | 179 | 389 | 179 | 179 | 179 | 179 | | | 345 | 458 | 256 | 359 | 258 | 267 | 237 | 45A | 23A | 23A | 23A | 23A | | | 467 | 678 | 345 | 458 | 348 | 389 | 345 | 469 | 267 | 45A | 45A | 45A | | | | | 467 | 679 | 456 | 459 | 389 | 579 | 289 | 67A | 67A | 67B | | | | | | | 678 | 468 | 467 | 68A | 45A | 89A | 89A | 89B | | found(T) | 12 | 9 | 9 | 9 | 9 | 10 | 10 | 10 | 10 | 10 | 11 | 11 | |----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | T_1 | 123 | 145 | 147 | 123 | 123 | 123 | 123 | 123 | 123 | 123 | 123 | 123 | | | 145 | 167 | 158 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | | | 24A | 189 | 169 | 167 | 167 | 167 | 167 | 167 | 167 | 167 | 167 | 167 | | | 35A | 239 | 248 | 189 | 189 | 248 | 189 | 189 | 189 | 189 | 248 | 189 | | | 678 | 257 | 259 | 248 | 248 | 369 | 24A | 24A | 24A | 24A | 368 | 24A | | | 69B | 268 | 267 | 257 | 256 | 378 | 356 | 368 | 346 | 36A | 49A | 36A | | | 79C | 346 | 349 | 269 | 279 | 49A | 37A | 39A | 358 | 468 | 579 | 49B | | | 8BC | 358 | 357 | 346 | 346 | 579 | 468 | 479 | 39A | 479 | 69B | 58B | | | | 479 | 368 | 479 | 358 | 68A | 479 | 578 | 479 | 578 | 8AB | 79A | | T_2 | 124 | 146 | 148 | 125 | 124 | 124 | 124 | 124 | 124 | 124 | 124 | 124 | | | 135 | 158 | 159 | 136 | 136 | 136 | 135 | 136 | 136 | 136 | 136 | 136 | | | 23A | 179 | 167 | 148 | 158 | 157 | 168 | 158 | 158 | 158 | 157 | 158 | | | 45A | 235 | 249 | 179 | 179 | 238 | 179 | 179 | 179 | 179 | 238 | 179 | | | 67A | 267 | 257 | 234 | 235 | 379 | 23A | 23A | 23A | 23A | 459 | 23A | | | 68B | 289 | 268 | 267 | 267 | 459 | 367 | 389 | 345 | 457 | 679 | 45B | | | 78C | 349 | 347 | 289 | 289 | 489 | 456 | 457 | 389 | 46A | 48A | 67A | | | 9BC | 368 | 358 | 457 | 348 | 678 | 489 | 49A | 467 | 489 | 68B | 89B | | | | 457 | 369 | 469 | 456 | 69A | 47A | 678 | 49A | 678 | 9AB | 49A | A=10, B=11, C=12. ### References - A. S. Hedayat, The theory of trade-off for t-designs, in: Coding Theory and Design Theory, Part II, Design Theory, IMA vol. Math. Appl. 21 (D. Ray-Chaudhuri, ed.), Springer, New York, 1990, pp. 101-126. - 2. H.L. Hwang, On the structure of (v, k, t)-trades, J. Statist. Plann. Inference 13(1986),179-191. - 3. G.B. Khosrovshahi and S. Ajoodani-Namini, A new basis for trades, SIAM J. Discrete Math. 3(1990),364-372. - 4. ____, CH. Maysoori, On the bases for trades, Linear Alg. Appl. 226-228 (1995), 731-748.