More Z-Cyclic Room Squares

Y.S. Liaw*

Department of Mathematics University of Glasgow Glasgow G12 8QW Scotland

ABSTRACT. This paper deals with the existence of Z-cyclic Room squares of order 2v (or of side 2v-1) whenever $2v-1=\prod_{i=1}^n p_i^{\alpha_i}$, $(p_i=2^{m_i}b_i+1\geq 7$ are distinct primes, b_i odd, $b_i>1$, and α_i positive integers, $i=1,2,\cdots,n$), and includes some further results involving Fermat primes.

1 Introduction

A Room square of order 2v (or of side 2v-1) is a $(2v-1)\times(2v-1)$ array based on 2v distinct symbols such that

- (i) each cell is empty or contains an unordered pair of distinct symbols;
- (ii) each row and each column contains each symbol exactly once;
- (iii) each of the v(2v-1) unordered pairs of distinct symbols occurs in precisely one cell of the array.

It is well-known (see [1] or [7]) that Room squares exist for all $v \ge 4$.

Definition 1.1. A Room square of order 2v is Z-cyclic if its symbols are $\infty, 0, 1, \dots, 2v - 2$, and the top left diagonal cell contains $\{\infty, 0\}$, and whenever $\{a, b\}$ occurs in the (i,j)th cell, $\{a+1, b+1\}$ occurs in the (i+1, j+1)th cell, arithmetic being (mod 2v-1), with $\infty+1=\infty$.

Phelps and Vanstone [8] constructed Z-cyclic Room squares of order 2v, whenever 2v - 1 = pq where p, q are primes and whenever $2v - 1 = p^n$

^{*}current address: Department of Applied Mathematics, Tatung Institute of Technology, Taipei, Taiwan, email: ysliaw@math.ttit.edu.tw

where p is a prime, n is any positive integer. I. Anderson and the author [2] constructed Z-cyclic Room squares of order 2v, whenever $2v-1=p^{\alpha}$, $(p \text{ prime}, p \equiv 3 \pmod{4}, p \geq 7)$ and whenever $2v-1=p^{\alpha}q$ (p,q) primes, $p \equiv 3 \pmod{4}, p \geq 7, q \geq 7)$. In this paper, Z-cyclic Room squares of side $2v-1=\prod_{i=1}^{n}p_{i}^{\alpha_{i}}$, (p_{i}) not Fermat primes, $p_{i}\geq 7$ and $2v-1=p\cdot q$ (p,q) distinct Fermat primes), are constructed. Furthermore, all the squares that are constructed will be skew, i.e. for all $i\neq j$, precisely one of the (i,j)th and (j,i)th cell contains an unordered pair, the other being empty.

2 The starter-adder constructions

If G is an additive Abelian group with identity element 0, and $G^* = G \setminus \{0\}$, then a starter X for G is a partition of G^* into 2-sets such that $\{x-y; \{x,y\} \in X\} = G^*$. An adder A for X is an injection $A: X \mapsto G^*$ such that

$$\bigcup_{\{x,y\} \in X} \{x + \{x,y\}A, y + \{x,y\}A\} = G^{\star}.$$

For any starter X, we can define the map $A: X \mapsto G^*$ by $\{x,y\}A = -(x+y)$. If A is an adder for X, then we say that X is a *strong* starter. For any strong starter X with adder A such that $\{x,y\}A \neq -\{x',y'\}A$ for all distinct $\{x,y\}$ and $\{x',y'\} \in X$, we say that X is a *skew* strong starter. In this paper we construct skew strong starters in $Z_{2\nu-1}$, thereby obtaining skew Z-cyclic Room squares.

Lemma 2.1. If p is prime, $p \ge 7$, then there exists a skew strong starter in Z_p , and hence a skew Z-cyclic Room square of order p+1.

Proof: See, for example, [1].

In the following, for a set A of positive integers and a positive integer a, aA means $\{ax : x \in A\}$.

Lemma 2.2. Let $m = p^{\alpha}n$ where p is an odd prime, α and n are positive integers, and (n, p) = 1. Then

$$Z_m = pZ_{m/p} \cup \left\{ \bigcup_{d|n} d\{x \in Z_{m/d} : (x, m/d) = 1\} \right\}.$$

Furthermore, these sets are pairwise disjoint.

Proof: Consider $x \in Z_m$. If $p \mid x$ then $x \in pZ_{m/p}$. If $p \nmid x$ then (x, m) = (x, n), so $x \in E_d = \{x \in Z_m; (x, m) = d\}$ for some $d \mid n$. These sets partition Z_m . Finally we note that E_d can be represented as $d\{x \in Z_{m/d}; (x, m/d) = 1\}$.

Example 2.1:

$$\begin{split} Z_{2^3\cdot 3^2\cdot 5} &= 5Z_{2^3\cdot 3^2} \cup \{x \in Z_{2^3\cdot 3^2\cdot 5}; (x,2^3\cdot 3^2\cdot 5) = 1\} \\ & \cup 2^3 \{x \in Z_{3^2\cdot 5}; (x,3^2\cdot 5) = 1\} \cup 2^2 \{x \in Z_{2\cdot 3^2\cdot 5}; (x,2\cdot 3^2\cdot 5) = 1\} \\ & \cup 2\{x \in Z_{2^2\cdot 3^2\cdot 5}; (x,2^2\cdot 3^2\cdot 5) = 1\} \cup 3^2 \{x \in Z_{2^3\cdot 5}; (x,2^3\cdot 5) = 1\} \\ & \cup 3\{x \in Z_{2^3\cdot 3\cdot 5}; (x,2^3\cdot 3\cdot 5) = 1\} \cup 2^3\cdot 3^2 \{x \in Z_{5}; (x,5) = 1\} \\ & \cup 2^3\cdot 3\{x \in Z_{3\cdot 5}; (x,3\cdot 5) = 1\} \cup 2^2\cdot 3^2 \{x \in Z_{2\cdot 5}; (x,2\cdot 5) = 1\} \\ & \cup 2^2\cdot 3\{x \in Z_{2\cdot 3\cdot 5}; (x,2\cdot 3\cdot 5) = 1\} \cup 2\cdot 3^2 \{x \in Z_{2^2\cdot 5}; (z,2^2\cdot 5) = 1\} \\ & \cup 2\cdot 3\{x \in Z_{2^2\cdot 3\cdot 5}; (x,2^2\cdot 3\cdot 5) = 1\} \end{split}$$

Theorem 2.1. If $p = 2^m \cdot a + 1$, where a > 1 is odd, is a prime, $p \ge 7$, α is a positive integer, then there exists a skew strong starter in $Z_{p^{\alpha}}$, and hence a skew Z-cyclic Room square of order $p^{\alpha} + 1$.

Proof: The case $\alpha=1$ follow from Lemma 2.1. To deal with the induction step, let $p^{\alpha-1}(p-1)=2^m\cdot t$ where t is odd, and let ω be a primitive root of p^{α} and hence also of p. Let $d=2^{m-1}$. Then $\omega,\omega^2,\cdots,\omega^{2dt}\equiv 1$ constitute a reduced set of residues $\pmod{p^{\alpha}}$, $\omega^{dt}\equiv -1\pmod{p^{\alpha}}$. Further, we have $\omega^d\not\equiv \pm 1\pmod{p}$; for otherwise $\omega^{2d}\equiv 1\pmod{p}$, contradicting the fact that the order of $\omega\pmod{p}$ is p-1=2ad>2d (since a>1). Write down the elements of the reduced set of residues mod p^{α} in pairs as follows.

$$\{\omega^{2id+j}, \omega^{(2i+1)d+j}\}\ i = 0, 1, \dots, t-1; j = 0, 1, \dots, d-1.$$
 (2.1.1)

The differences between each pair are $\pm \omega^{2id+j}(\omega^d-1)$, $0 \le i \le t-1$, $0 \le j \le d-1$. Now we can not have $\omega^{2id+j}(\omega^d-1) \equiv \omega^{2Id+J}(\omega^d-1)$ unless i=I and J=j, for cancelling by $\omega^d-1 \not\equiv 0 \pmod p$ gives $\omega^{2id+j} \equiv \omega^{2Id+J}$. i.e. $\omega^{2d(i-I)} \equiv \omega^{J-j}$, which due to the ranges of possible values of i, i, i, i can only occur if i and i and i and i are i suppose next that $\omega^{2id+j}(\omega^d-1) \equiv -\omega^{2Id+J}(\omega^d-1)$. Then we would have $\omega^{2id+j}+\omega^{2Id+J} \equiv 0$. If 2id+j < 2Id+J then we would have $\omega^{2id+j}(1+\omega^{(2I-2i)d+(J-j)}) \equiv 0$ so that (2I-2i)d+J-j=dt. But J-j lies in the interval [-d+1,d-1] and so, being a multiple of i, must be i. So i and i such that i are contradicting the oddness of i. Also their sums are distinct, by the same argument with i and i in place of i and i have i in place of i and i in the above and the skew property holds. Thus for a skew strong starter for i are we take the pairs in i and i together with the pairs i and i and i and i in the above and the skew property holds. Thus for a skew strong starter for i and i

For later reference, we denote the pairs in (2.1.1) by $PIR_{p^{\alpha}}$ (Pairs In Reduced set mod p^{α}).

Lemma 2.3. For $i=1, 2, \dots, n$, let p_i be distinct primes, and α_i be positive integers. Let $p_i=2^{m_i}\cdot u\cdot a_i+1$ where u, a_i are odd and h.c.f $\{a_i; i=1,2,\dots,n\}=1$. Let $\ell=\max\{m_i; i=1,2,\dots,n\}$, $M=\prod_{i=1}^n p_i^{\alpha_i}$. Then there exists a common primitive root ω of $p_i^{\alpha_i}$, $i=1,2,\dots,n$, and a positive integer t such that

- (1) $\omega^{2\ell t} \equiv 1 \pmod{M}$, and $H = \{\omega^i; i = 1, 2, \dots, 2^{\ell t}\}$ is a multiplicative abelian group of order $2^{\ell t}$;
- (2) $\omega^{2^{\ell-1} \cdot t} \equiv -1 \pmod{M}$ if $m_i = a \quad \forall i = 1, 2, \dots, n$;
- (3) $\omega^j \not\equiv -1 \pmod{M} \quad \forall j \text{ if } m_{i_1} \not= m_{i_2} \text{ for some } 1 \leq i_1 \neq i_2 \leq n;$
- (4) if $G = \{x \in Z_M; (x, M) = 1\}$ then G is a multiplicative abelian group of order $2^{\ell} \cdot t \cdot h$ for some positive integer h.

Proof: (1) The existence of a common primitive root ω of $p_i^{\alpha_i}$ is assured by the Chinese Remainder Theorem and $(\omega, M) = 1$ since $(\omega, p_i) = 1$ for all $i = 1, 2, \dots, n$. Now

$$l.c.m\{p_i^{\alpha_i-1}(p_i-1); i=1,2,\cdots,n\}$$

$$= l.c.m\{(2^{m_i} \cdot u \cdot a_i + 1)^{\alpha_i-1} \cdot 2^{m_i} \cdot u \cdot a_i; i=1,2,\cdots,n\}$$

$$= 2^{\ell} \cdot t.$$

for some odd t. Thus since, if $\beta > \gamma$,

$$\omega^{\beta} \equiv \omega^{\gamma} \pmod{M}$$

$$\iff \omega^{\gamma}(\omega^{\beta-\gamma}-1) \equiv 0 \pmod{M}$$

$$\iff \omega^{\beta-\gamma}-1 \equiv 0 \pmod{M} \text{ since } (\omega,M)=1)$$

$$\iff \omega^{\beta-\gamma}-1 \equiv 0 \pmod{p_i^{\alpha_i}} \text{ for all } i=1,2,\cdots,n$$

$$\iff p_i^{\alpha_i-1}(p_i-1) \mid (\beta-\gamma) \text{ for all } i=1,2,\cdots,n$$
(since ω is a primitive root modulo $p_i^{\alpha_i}$

$$\iff l.c.m\{p_i^{\alpha_i-1}(p_i-1); i=1,2,\cdots,n\} \mid (\beta-\gamma)$$

therefore, the elements

$$\omega, \omega^2, \cdots, \omega^{2^{\ell}t}$$

are all distinct and $\omega^{2^{\ell}t} \equiv \omega^0 \equiv 1 \pmod{M}$ and $H = \{\omega^i; i = 1, 2, \dots, 2^{\ell}t\}$ is a multiplicative abelian group of order $2^{\ell}t$.

(2) If $m_i = a$ for all $i = 1, 2, \dots, n$ then $\ell = a$. This implies $2^{\ell-1}t = \frac{1}{2}v_i\phi(p_i^{\alpha_i})$ where each v_i is odd. Since ω is a common primitive root of $p_i^{\alpha_i}$ for $i = 1, 2, \dots, n$, we have $\omega^{\frac{1}{2}\phi(p_i^{\alpha_i})} \equiv -1 \pmod{p_i^{\alpha_i}}$. Thus $\omega^{2^{\ell-1}t} = (\omega^{\frac{1}{2}\phi(p_i^{\alpha_i})})^{v_i} \equiv -1 \pmod{p_i^{\alpha_i}}$ for each i. Therefore $\omega^{2^{\ell-1}t} \equiv -1 \pmod{M}$.

- - (4) Clearly G is a multiplicative Abelian group with order $\varphi(M)$ where

$$\varphi(M) = \prod_{i=1}^n p_i^{\alpha_i - 1}(p_i - 1) = 2^{\ell}th$$

for some positive integer h.

Lemma 2.4. If $p_i \geq 5$, $i = 1, 2, \dots, n$ and all symbols are as in Lemma 2.3 then the following holds.

(1) If $m_i = \ell$ and $u \cdot a_i > 1$ $\forall i = 1, 2, \dots, n$, set $d = 2^{\ell-1}$. Then H, having order $2^{\ell}t$, is a subgroup of G. G has $2^{(n-1)\ell}h$ disjoint cosets, say c_jH , $c_1 = 1$. In each coset c_jH , write down the elements of c_jH in pairs as follows:

$$\{c_j\omega^{2id+k}, c_j\omega^{(2i+1)d+k}\}\ i=0,1,\cdots,t-1;\ k=0,1,\cdots,d-1.$$
(2.4.1)

Their differences and sums satisfy the properties of a skew strong starter for G.

(2) If $m_{i_1} \neq m_{i_2}$ for some $1 \leq i_1 \neq i_2 \leq n$, set $H_1 = \{\omega^i, -\omega^i, i = 0, 1, \cdots, 2^{\ell}t - 1\}$, so that H_1 has order $2^{\ell+1}t$ and is a subgroup of G. G has $2^{\sum m_i - \ell - 1}h$ disjoint cosets c_jH . In each coset, form the pairs

$$\{c_j\omega^{2i}, c_j\omega^{2i+1}\}, \{-c_j\omega^{2i+1}, -c_j\omega^{2i+2}\}; i = 0, 1, \dots, 2^{\ell-1}t - 1.$$
(2.4.2)

Their differences and sums satisfy the properties of a skew strong starter for G.

Proof: (1) Use the same argument as in Theorem 2.1. Note $u \cdot a_i > 1 \ \forall i = 1, 2, \dots, n$.

(2) Since ω is a common primitive root of $p_i \, \forall i$ it follows that $\omega \pm 1 \not\equiv 0 \pmod{p_i} \, \forall i$. The differences between the pairs in (2.4.2) are

$$\pm c_j \omega^{2i}(\omega - 1)$$
 and $\pm c_j \omega^{2i+1}(\omega - 1)$ where $i = 0, 1, \dots, 2^{\ell-1}t - 1$.

i.e.
$$c_i(\omega - 1)$$
 times $\pm \omega^i$, $i = 0, 1, \dots, 2^{\ell-1}t - 1$.

Since $c_j \in G$, $\omega - 1 \not\equiv 0 \pmod{p_i}$ $\forall i$ and $\omega^j \not\equiv -1 \pmod{M}$ $\forall j$, the $\pm \omega^i$ are all distinct and $c_j(\omega - 1) \in G$, and so their differences are the elements of the coset $c_j(\omega - 1)H$ each once. Similarly their sums are $c_j(\omega + 1)$ times $\omega^{2i}, -\omega^{2i+1}$ where $i = 0, 1, \cdots, 2^{\ell-1}t - 1$. Since $\omega + 1 \not\equiv 0 \pmod{p_i}$ $\forall i$, so $c_j(\omega + 1) \in G$, and their sums are precisely half of the elements of the coset $c_j(\omega + 1)H$. Finally, since $\omega^j \not\equiv -1 \pmod{M}$, they have the skew property.

For later reference we denote the pairs in (2.4.1) and (2.4.2) by $PICH_M^{(1)}$ and $PICH_M^{(2)}$ (Pairs In Cosets of H) respectively. We also use the following notation

$$\chi(p_i; i = 1, 2, \cdots, n) = \begin{cases} 1, & \text{if } m_i = \ell \text{ for all } i = 1, 2, \cdots, n \\ 2, & \text{if } m_{i_1} \neq m_{i_2} \text{ for some } 1 \leq i_1 \neq i_2 \leq n. \end{cases}$$

Theorem 2.2. If $p = 2^n \cdot a + 1 \ge 7$, $q = 2^m \cdot b + 1 \ge 7$, are distinct primes, and a, b > 1 are odd, $M = p^{\alpha}q^{\beta}$ where α , β are positive integers then there exists a skew strong starter in Z_M and hence a Z-cyclic Room square of order M + 1.

Proof: Let α be fixed and proceed by induction on β . For the case $\beta = 1$, we have

$$Z_{p^{\alpha}q} = qZ_{p^{\alpha}} \cup \left\{ \bigcup_{p^{\alpha} \neq d \mid p^{\alpha}} d\{x \in Z_{M/d}; (x, M/d) = 1\} \right\} \cup p^{\alpha}Z_{q}.$$

By Lemma 2.1 and Theorem 2.1 skew strong starters in Z_q , $Z_{p^{\alpha}}$ exist, say $\{c_i,d_i\}$, $\{a_i,b_i\}$ respectively. Use Lemma 2.4 for the set $\{x\in Z_{M/d}; (x,M/d)=1\}$ for all $p^{\alpha}\neq d\mid p^{\alpha}$; the pairs $PICH_{M/d}^{\chi(p,q)}$ for all $p^{\alpha}\neq d\mid p^{\alpha}$, have the required properties. So the required pairs for a skew strong starter in $Z_{p^{\alpha}q}$ are

$$\{qa_i,qb_i\}, \ \{p^{\alpha}c_i,p^{\alpha}d_i\} \text{ and } dPICH_{M/d}^{\chi(p,q)} \text{ for all } p^{\alpha}\neq d\mid p^{\alpha}.$$

Now deal with the induction step. Suppose a skew strong starter in $Z_{p^{\alpha}q^{\beta-1}}$ exists, say $\{a_i, b_i\}$. Again by Lemma 2.2.

$$Z_{p^{\alpha}q^{\beta}} = qZ_{p^{\alpha}q^{\beta-1}} \cup \left\{ \bigcup_{d|p^{\alpha}} d\{x \in Z_{M/d}; (x, M/d) = 1\} \right\}$$

For the set $\{x \in Z_{M/d}; (x, m/d) = 1, d \neq p^{\alpha}\}$, by Lemma 2.4 the pairs $PICH_{M/d}^{\chi(p,q)}$ have the required properties; and for the set $\{x \in Z_{q^{\beta}}; (x, q^{\beta}) = 1, d \neq p^{\alpha}\}$

1), by Theorem 2.1 the pairs $PIR_{q\beta}$ have the required properties. Therefore the required pairs for a skew strong starter are

$$\{qa_i, qb_i\}, dPICH_{M/d}^{\chi(p,q)} \text{ for all } p^{\alpha} \neq d \mid p^{\alpha} \text{ and } p^{\alpha}PIR_{q^{\beta}}.$$

Theorem 2.3. If $p = 2^n \cdot a + 1 \ge 7$, $q = 2^m \cdot b + 1 \ge 7$, $m \ne n$ are primes, a, b are odd, then there exists a skew strong starter in Z_{pq} and hence a Z-cyclic Room square of order pq + 1.

Proof: By Lemma 2.2, $Z_{pq} = qZ_p \cup \{x \in Z_{pq}; p \nmid x, q \nmid x\} \cup pZ_q$. Since $m \neq n$, it follows by Lemma 2.4(2) that the pairs $PICH_{pq}^{(2)}$ have the required properties, so the required pairs for a skew strong starter are the following:

$$qSST_p$$
, $PICH_{pq}^{(2)}$ and $pSST_q$.

where SST_p , SST_q are skew strong starters in Z_p , Z_q given in Lemma 2.2.

Corollary 2.3.1. Let $p = 2^n a + 1$ be a prime, where a > 1 odd, and $n \neq 2$. If there exists a skew strong starter in Z_{5p} then there is also one in Z_{5pa} .

Proof: By hypothesis a skew strong starter exists in Z_{5p} so the case $\alpha = 1$ is true. Deal with the induction step. By Lemma 2.2

$$Z_{5p^{\alpha}} = pZ_{5p^{\alpha-1}} \cup \{x \in Z_{5p^{\alpha}}; (x, 5p^{\alpha}) = 1\} \cup 5\{x \in Z_{p^{\alpha}}; (x, p^{\alpha}) = 1\}.$$

By (2.1.1) and Lemma 2.4(2) the pairs $PIR_{p^{\alpha}}$ and $PICH_{5p^{\alpha}}^{(2)}$ have the required properties and by the induction hypothesis a skew strong starter in $Z_{5p^{\alpha-1}}$ exists, say $\{a_i, b_i\}$. Then for the required pairs for a skew strong starter we take

$$\{pa_i, pb_i\}, PICH_{5p^{\alpha}}^{(2)}, 5PIR_{p^{\alpha}}.$$

Example 2.2: There exists a skew strong starter in $Z_{5.72}$, since $\{1, 2\}$, $\{3, 5\}$, $\{4, 7\}$, $\{6, 10\}$, $\{12, 17\}$, $\{21, 27\}$, $\{15, 22\}$, $\{24, 32\}$, $\{19, 28\}$, $\{20, 30\}$, $\{33, 9\}$, $\{14, 26\}$, $\{16, 29\}$, $\{11, 25\}$, $\{8, 23\}$, $\{18, 34\}$, $\{31, 13\}$ is a skew strong starter in Z_{35} .

Corollary 2.3.2. Let p, q be primes, $p = 2^n a + 1 \ge 7, a > 1$ odd, $q = 2^m + 1 \ge 7, m \ne n, \alpha$ be a positive integer. Then there exists a skew strong starter in $Z_{p^{\alpha}q}$ and hence a Z-cyclic Room square of order $p^{\alpha}q + 1$.

Proof: Same as Corollary 2.3.1 with 5 replaced by q.

Example 2.3: There exists a skew strong starter in $Z_{7^2.17}$ and $Z_{11^2.17}$.

Theorem 2.4. If, for $i = 1, 2, \dots, n$, $p_i = 2^{n_i} u a_i + 1$ are distinct primes, u, a_i , are odd, $u a_i > 1$, α_i are positive integers, $M = \prod_{i=1}^{n} p_i^{\alpha_i}$, then there

exists a skew strong starter in Z_M , and hence a Z-cyclic Room square of order M+1.

Proof: Proceed by induction on n. The case n=1 follows from Theorem 2.1 and the case n=2 follows from Theorem 2.2. Now deal with the induction step, suppose that there exists a skew strong starter in Z_N where $N = \prod_{i=1}^{n-1} p_i^{\alpha_i}$. We want to show that there exists a skew strong starter in Z_M . We deal with this by induction on α_n . For the case $\alpha_n = 1$, let ω be a common primitive root of $p_i^{\alpha_i}$ $i = 1, 2, \dots, n-1$ and p_n . By Lemma 2.2

$$Z_{Np_n} = p_n Z_N \cup \left\{ \bigcup_{N \neq d \mid N} d\{x \in Z_{M/d}; (x, M/d) = 1\} \right\} \cup NZ_{p_n}$$

By the induction hypothesis there exists a skew strong starter in Z_N , say $\{a_i, b_i\}$, by hypothesis of p_n there exists a skew strong starter in Z_{p_n} say $\{c_j, d_j\}$, and by Lemma 2.4 the pairs $PICH_{M/d}^{\chi(p_i)}$, where $N \neq d \mid N$, have the required properties, so the required pairs for a skew strong starter in Z_M are

$$\{p_n a_i, p_n b_i\}, N\{c_j, d_j\}$$
 and $dPICH_{M/d}^{\chi(p_i)}$ where $N \neq d \mid N$.

Now deal with the induction step. Suppose there is a skew strong starter in $Z_{Np_n^{2n-1}}$. Then by Lemma 2.2 again,

$$Z_M = p_n Z_{M/p_n} \cup \left\{ \bigcup_{d \mid N} d\{x \in Z_{M/d}; (x, M/d) = 1\} \right\}$$

and by the same argument, the required pairs for a skew strong starter in \mathbb{Z}_M are

$$\{p_n a_i, p_n b_i\}$$
, $NPIR_{p_n^{\alpha_n}}$ and $dPICH_{M/d}^{\chi(p_i)}$ where $N \neq d \mid N$,

where $\{a_i, b_i\}$ is a skew strong starter for $Z_{Np_n^{\alpha_n-1}}$.

Corollary 2.4.1. Let p_1, \dots, p_n be distinct primes. Let $p_i = 2^{m_i}a_i + 1 \ge 7$, where a_i are odd, α_i are positive integers satisfying the following two conditions;

- (1) $\alpha_j = 1$ whenever $a_j = 1$
- (2) $a_{i_1} \geq 3 \quad \forall \ j = 1, 2, \dots, k$; whenever $m_{i_1} = m_{i_2} = \dots = m_{i_k}$

then there exists a skew strong starter in $Z_{\prod_{i=1}^n p_i^{\alpha_i}}$ and hence a Z-cyclic Room square of order $(\prod_{i=1}^n p_i^{\alpha_i}) + 1$.

Example 2.4: There exists a skew strong starter in $\mathbb{Z}_{7^2 \cdot 11 \cdot 17 \cdot 257}$. Since

$$\begin{split} Z_{7^2\cdot 11\cdot 17\cdot 257} &= 257Z_{7^2\cdot 11\cdot 17} \cup \{x \in Z_{7^2\cdot 11\cdot 17\cdot 257}; (x,7^2\cdot 11\cdot 17\cdot 257) = 1\} \\ & \cup 17\{x \in Z_{7^2\cdot 11\cdot 257}; (x,7^2\cdot 11\cdot 257) = 1\} \\ & \cup 11\{x \in Z_{7^2\cdot 17\cdot 257}; (x,7^2\cdot 17\cdot 257) = 1\} \\ & \cup 7\{x \in Z_{7\cdot 11\cdot 17\cdot 257}; (x,7\cdot 11\cdot 17\cdot 257) = 1\} \\ & \cup 7^2\{x \in Z_{11\cdot 17\cdot 257}; (x,11\cdot 17\cdot 257) = 1\} \\ & \cup 11\cdot 17\{x \in Z_{7^2\cdot 257}; (x,7^2\cdot 257) = 1\} \\ & \cup 7\cdot 11\{x \in Z_{7\cdot 17\cdot 257}; (x,7\cdot 17\cdot 257) = 1\} \\ & \cup 7^2\cdot 11\{x \in Z_{17\cdot 257}; (x,17\cdot 257) = 1\} \\ & \cup 7\cdot 17\{x \in Z_{7\cdot 11\cdot 257}; (x,17\cdot 257) = 1\} \\ & \cup 7^2\cdot 17\{x \in Z_{11\cdot 257}; (x,11\cdot 257) = 1\} \\ & \cup 7\cdot 11\cdot 17\{x \in Z_{7\cdot 257}; (x,7\cdot 257) = 1\} \cup 7^2\cdot 11\cdot 17Z_{257}. \end{split}$$

Here
$$7 = 2 \cdot 3 + 1$$
, $11 = 2 \cdot 5 + 1$, $17 = 2^4 + 1$, $257 = 2^8 + 1$.

Corollary 2.4.2. Let p_1, \dots, p_n are distinct primes. Let $p_i = 2^{m_i} \cdot a_i + 1 \ge 7$, a_i odd, a_i positive integers satisfying the following conditions.

- (1) $\alpha_i = 1$ whenever $a_i = 1$,
- (2) $a_{i_j} > 1$ for j = 1, 2 whenever $m_{i_1} = m_{i_2}$ where $i_1 \neq i_2$,
- (3) $m_i \neq 2 \ (i = 1, 2, \dots, n),$
- (4) there exists a (skew) strong starter in Z_{5,p_i} for all $i=1,2,\cdots,n$.

Then there exists a (skew) strong starter in $Z_{5 \cdot \prod_{i=1}^{n} p_i^{\alpha_i}}$ and hence a Z-cyclic Room square of order $5 \cdot \left(\prod_{i=1}^{n} p_i^{\alpha_i} \right) + 1$.

Example 2.5: There exists a skew strong starter in $\mathbb{Z}_{5\cdot7^2\cdot11}$, since

$$Z_{5\cdot 7^2\cdot 11} = 11Z_{5\cdot 7^2} \cup 7\{x \in Z_{5\cdot 7\cdot 11}; (x, 5\cdot 7\cdot 11) = 1\} \cup$$

$$7^2\{x \in Z_{5\cdot 11}; (x, 5\cdot 11) = 1\} \cup 5\{x \in Z_{7^2\cdot 11}; (x, 7^2\cdot 11) = 1\} \cup$$

$$5\cdot 7\{x \in Z_{7\cdot 11}; (x, 7\cdot 11) = 1\} \cup 5\cdot 7^2Z_{11}$$

and

$$Z_{5\cdot7^2} = 7Z_{5\cdot7} \cup \{x \in Z_{5\cdot7^2}; (x,5\cdot7^2) = 1\} \cup 5\{x \in Z_{7^2}; (x,7^2) = 1\}.$$

3 Patterned starters

Let G be an additive abelian group of order 2v+1. The set $P = \{\{x_i, -x_i\}; i = 1, 2, \dots, v\}$ is a starter, called a patterned starter. Let $S = \{\{x_i, y_i\}; i = 1, 2, \dots, v\}$ and $T = \{\{u_i, v_i\}; i = 1, 2, \dots, v\}$ be two starters, then, for each i, there is a unique j such that $x_i - y_i = \pm (u_j - v_j)$. Without loss of generality, we can suppose that $x_i - y_i = u_j - v_j$. Let $d_i = u_j - x_i = v_j - y_i$. Then if the d_i are all distinct and nonzero we say that S and T are orthogonal starters.

Theorem 3.1. [5] If there exists a strong starter S in an additive abelian group of odd order 2v + 1, then the starters S, -S and P are pairwise orthogonal.

We therefore have the following theorem.

Theorem 3.2. There exists a patterned skew Z-cyclic Room square of order 2v whenever $2v - 1 = \prod_{i=1}^{n} p_i^{\alpha_i}$ (where p_i are as in Corollary 2.4.1 or 2.4.2).

Acknowledgements. I would like to thank my supervisor, Dr. Ian Anderson, for his advice and the Tatung Institute of Technology for its financial support. I would also like to thank the referee for his valued suggestions on the representation of this paper.

References

- [1] I. Anderson, Combinatorial designs, Ellis Horwood, Chichester, 1990.
- [2] I. Anderson and Y.S. Liaw, Z-cyclic Room squares, Bull. Inst. Combinatorics and Applications 5 (1992), 51-57.
- [3] K. Byleen, On Stanton and Mullin's construction of Room squares, Ann. Math. Statist. 11 (1970), 1122-1125.
- [4] J.H. Dinitz and D.R. Stinson, Contemporary design theory: A collection of surveys, John Wiley and Sons, 1992.
- [5] J.D. Horton, Room designs and one-factorizations, Aeq. Math. 22 (1981), 56-63.
- [6] F.K. Hwang, Strong starters, balanced starters and partitionable starters, Bull. Inst. Math. Academia Sinica 11 (1983), 561-572.
- [7] R.C. Mullin and W.D. Wallis, The existence of Room squares, Aeq. Math. 13 (1975), 1-7.
- [8] K.T. Phelps and S.A. Vanstone, Isomorphism of strong starters in cyclic groups, J. Combinatorial Theory, Series A 57 (1991), 287-293.

- [9] R.C. Mullin and E. Nemeth, An existence theorem for Room squares, Canad. Math. Bull. 12 (1969), 493-497.
- [10] R.G. Stanton and R.C. Mullin, Construction of Room squares, Ann. Math. Statist. 39 (1968), 1540-1548.