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ABSTRACT. This paper deals with the existence of Z—cyclic
Room squares of order 2v (or of side 2v — 1) whenever 2v—~1 =
%, pf, (ps = 2™ b;+1 > 7 are distinct primes, b; odd, b; > 1,
and o; positive integers, i = 1,2, -- ,n), and includes some fur-
ther results involving Fermat primes.

1 Introduction
A Room square of order 2v (or of side 2v —1) is a (2v — 1) x (2v — 1) array
based on 2v distinct symbols such that

(i) each cell is empty or contains an unordered pair of distinct symbols;
(ii) each row and each column contains each symbol exactly once;

(iii) each of the v(2v — 1) unordered pairs of distinct symbols occurs in
precisely one cell of the array.

It is well-known (see [1] or [7]) that Room squares exist for all v > 4.

Definition 1.1. A Room square of order 2v is Z—cyclic if its symbols
are 0,0,1,--- ,2v — 2, and the top left diagonal cell contains {oo, 0}, and
whenever {a,b} occurs in the (i,j)th cell, {a +1,b+ 1} occurs in the (i+1,
J+1)th cell, arithmetic being (mod 2v — 1), with co+ 1 = o0.

Phelps and Vanstone [8] constructed Z-cyclic Room squares of order 2v,
whenever 2v — 1 = pq where p, ¢ are primes and whenever 2v — 1 = p"
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where p is a prime, n is any positive integer. I. Anderson and the author
[2] constructed Z—cyclic Room squares of order 2v, whenever 2v — 1 = p®,
(p prime, p = 3 (mod 4), p > 7) and whenever 2v — 1 = p®q (p, ¢ primes,
p=3 (mod 4), p > 7, ¢ > 7). In this paper, Z—cyclic Room squares of side
2v — 1 =[5, pi*, (pi not Fermat primes, p; >7) and 2v —-1=p-q (p, q
distinct Fermat primes), are constructed. Furthermore, all the squares that
are constructed will be skew, i.e. for all i # j, precisely one of the (i,j)th
and (j,i)th cell contains an unordered pair, the other being empty.

2 The starter-adder constructions

If G is an additive Abelian group with identity element 0, and G* = G'\
{0}, then a starter X for G is a partition of G* into 2-sets such that
{z —y;{z,y} € X} = G*. An adder A for X is an injection A4 : X — G*

such that
U {z+{z0Ay+ {zy}4} =G~
{z,y}eX

For any starter X, we can define the map A : X — G* by {z,y}A =
—(z +1y). If A is an adder for X, then we say that X is a strong starter.
For any strong starter X with adder A such that {z,y}A # —{z,y'}A for
all distinet {z,y} and {z’,3'} € X, we say that X is a skew strong starter.
In this paper we construct skew strong starters in Za,—1, thereby obtaining
skew Z—cyclic Room squares.

Lemma 2.1. If p is prime, p > 7, then there exists a skew strong starter
in Z,, and hence a skew Z-cyclic Room square of order p + 1.
Proof: See, for example, [1].

In the following, for a set A of positive integers and a positive integer a,
aA means {az : z € A}.

Lemma 2.2. Let m = p®n where p is an odd prime, « and n are positive
integers, and (n,p) = 1. Then

Zm =D U {Ud{z € Zmya: (x,m/d) = 1}}

din
Furthermore, these sets are pairwise disjoint.

Proof: Consider z € Z,,. If p | =z then z € pZ,,/,. If p { = then
(z,m) = (z,n), so x € Eq = { € Zm;(x,m) = d} for some d | n.
These sets partition Z,,. Finally we note that E4 can be represented as
d{z € Zmsa; (x,m/d)=1}.
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Example 2.1:

Zo3.g2.5 = 5Z93.32 U {z € Z93.32.5; (z, 23.32. 5)=1}
U23{z € Zaas; (,3%-5) = 1} U 2% {z € Zp.315;(,2-3%-5) = 1}
U 2{z € Zp2.32.5; (,2% - 32 . 5) = 1} U3%{z € Zpa5;(x, 23 -5) = 1}
U3{z € Zys.35;(x,2%-3-5) =1} U 23.3%{z € Z5;(z,5) = 1}
u2®.3{z € Zss;(x,3-5) =1} U 2. 32{3: € Z25;(z,2-5)=1}
u2?.3{z € Zo3s;(x,2-3-5) =1} U2-3%{z € Zp2.5; (2,22 - 5) = 1}
U2-3{z € Zp.35;(z,22-3-5) =1}

Theorem 2.1. If p = 2™-a+ 1, where a > 1 is odd, is a prime, p > 7,
« is a positive integer, then there exists a skew strong starter in Zya, and
hence a skew Z-cyclic Room square of order p® + 1.

Proof: The case a = 1 follow from Lemma 2.1. To deal with the induction
step, let p*~1(p—1) = 2™ -t where t is odd, and let w be a primitive root of
p® and hence also of p. Let d = 2™~1. Then w,w?,--. ,w?¥ =1 constitute
a reduced set of residues (mod p®), w* = —1 (mod p*). Further, we have
w® # +1 (mod p); for otherwise w?® = 1 (mod p), contradicting the fact
that the order of w (mod p) is p — 1 = 2ad > 2d (since @ > 1). Write down
the elements of the reduced set of residues mod p® in pairs as follows.

{wHdHd DY 01,0t =1;5=0,1,--- ,d—1. (2.1.1)

The differences between each pair are xw?¥+i(w? —1),0<i<t—-1,0<
j <d—1. Now we can not have w?4ti(w? — 1) = w24+ (w? — 1) unless
i =1 and J = j, for cancelling by w® — 1 # 0 (mod p) gives w?dtJ =
w2t e w201 = ,J-J which due to the ranges of possible values
of ¢, I, j, J can only occur if « = I and 5 = J. Suppose next that
w2idti(yd —1) = —w?/4+J(w? —1). Then we would have w29+7 4 2a+7 =
0. If 2id + j < 2Id+ J then we would have w?4+3(1 4 w(2[-2)d+{(J-1)) = 0
so that (21 —2i)d+ J — j = dt. But J — j lies in the interval [-d+1,d —1]
and so, being a multiple of d, must be 0. So j = J. Thus 2] —2i = ¢
contradicting the oddness of £. Also their sums are distinct, by the same
argument with 1 4+ w? in place of w® — 1, where we note that w® 41 # 0

(mod p) as in the above and the skew property holds. Thus for a skew
strong starter for Zp= we take the pairs in (2.1.1) together with the pairs

{pai,pb;} where {a;,b;},i=1,2,---, Pa—-;;l, is a skew strong starter for
Z a—-1.
P

For later reference, we denote the pairs in (2.1.1) by PIRpy= (Pairs In
Reduced set mod p®).
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Lemma 2.3. For i = 1, 2,---,n, let p; be distinct primes, and ¢; be
positive integers. Let p; = 2™ -u - a; + 1 where u, a; are odd and h.c.f
{ai;i=1,2,--- ,n} = 1. Let £=maz{m;;i=1,2,--- ,n}, M =[], p*.
Then there exists a common primitive root w of pJ*, i =1,2,--- ,n, and a
positive integer t such that

(1) w¥t =1 (mod M), and H = {w';i=1,2,---,2%} is a multiplicative
abelian group of order 2%t;

(2) w2t =1 (mod M) if m; =a Yi=1,2,---,m;

(3) w? # —1 (mod M) Vj if m;, # my, for some 1 <i; # iz <ny

(4) if G = {z € Zum;(z, M) = 1} then G is a multiplicative abelian group

of order 2¢ - t - h for some positive integer h.

Proof: (1) The existence of a common primitive root w of pi* is assured

by the Chinese Remainder Theorem and (w, M) = 1 since (w,p;) =1 for
alli=1,2,.---,n. Now
l.c.m{p;""_l(p,- -1);i=1,2,---,n}
=lem{(2™ u-a; +1)%71-2™ .y q;; i=1,2,---,n}
=2¢.t.

for some odd t. Thus since, if 8 > 7,

wf = w? (mod M)
= w(WP7 =1) =0 (mod M)
< w#™7 -1 =0 (mod M) since (w, M) =1)
= w77 —1=0 (mod p{¥) forall i=1,2,---,n
— p® (p—1)|(B—7) foralli=1,2,--- ,n
(since w is a primitive root modulo pf*

= l.c.m{pf"'—l(Pe' - 1):7‘ =12, )n} | (ﬁ - ')')

therefore, the elements

4
w’wz’... ’wz t

are all distinct and w2t =w® =1 (mod M) and H = {w';i=1,2,---,2%}
is a multiplicative abelian group of order 2%t.

(2 If m; = aforalli=1,2---,n then ¢ = a. This implies 2¢~1¢ =
1vid(p{*) where each v; is odd. Since w is a common primitive root of
pf for i =1,2,--- ,n, we have wi¥®) = —1 (mod p@). Thus w2t =
(w3 = 1 (mod p) for each i. Therefore w2t = —1 (mod M).
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(3) If my, # m,, for some 1 < 4; # iy < n we claim that w? % —1
(mod M) for all j. Suppose that there exists some jp such that w’® = —1
. . Piy —

(mod M). Then cg’“ls -1 (mod p;,),w?”® = —1 (mod p;, ), wE = -1

(mod p;,) and w=7— = —1 (mod p;,). Thus jo = ﬂ%‘ (mod p;, — 1) =

ﬂ?.;—l (mod p;, — 1). It follows that 2™4 ™44, (2k+ 1) = a;,(2g + 1) for

some k and g, which is imposible, since a;,, ai,, 2k+1, 2g+1 are odd and
my, # My

(4) Clearly G is a multiplicative Abelian group with order (M) where

o(M) = [ 22~ (o = 1) = 2th

i=1
for some positive integer k.

Lemma 2.4. If p; > 5,1 = 1,2,--- ,n and all symbols are as in Lemma
2.3 then the following holds.

(1) Ifm;=¢Candu-a; >1 Vi=12,---,n, setd=2¢"1, Then H,
having order 2%, is a subgroup of G. G has 2(*~1¢h, disjoint cosets,
say cjH, c; = 1. In each coset c;H, write down the elements of c;H
in pairs as follows:.

{cjwidtk ciuwBHtky 4 01,... 1 —1; k=0,1,---,d— 1.
(2.4.1)

Their differences and sums satisfy the properties of a skew strong
starter for G.

(2) If my; # my, for some 1 < iy # i < n, set Hy = {u', —wt, i =

0,1,---,2¢ —1}, so that Hy has order 2¢+1¢ and is a subgroup of G.

G has 22 ™—¢-1p, disjoint cosets c;H. In each coset, form the pairs
{Cjw2i, cjwzi"l'l}, {_cjw2i+1’ _cjw2i+2}; i = 0’ 1, .ee 2!—1t —1.

(2.4.2)

Their differences and sums satisfy the properties of a skew strong starter
for G.

Proof: (1) Use the same argument as in Theorem 2.1. Note u-a; > 1V i =
1,2,--- ,n.
(2) Since w is a common primitive root of p; Vi it follows that w £1 0
(mod p;) Vi. The differences between the pairs in (2.4.2) are

*cjw?(w - 1) and + cjw?t(w — 1) where i = 0,1,--- , 2671 — 1.
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ie. ¢j(w—1) times +w', i=0,1,.--,257 1t — 1.

Since ¢; € G, w—1 % 0 (mod p;) Vi and w/ # —1(mod M) V j, the +w'
are all distinct and c¢j(w — 1) € G, and so their differences are the elements
of the coset c;(w —1)H each once. Similarly their sums are c;(w + 1) times
w?, —w#+! where i = 0,1,---,2¢"'¢ — 1. Since w+1 % 0 (mod p;) Vi, so
¢j(w+1) € G, and their sums are precisely half of the elements of the coset
cj(w+1)H. Finally, since w? # —1 (mod M), they have the skew property.

For later reference we denote the pairs in (2.4.1) and (2.4.2) by PI C’Hﬁ)

and PI CHg) (Pairs In Cosets of H) respectively. We also use the following
notation :

1, ifm;=£Lforalli=1,2,.--,n
2, if m;, # my, forsome 1 <4 #ix < n.

x(pi;i=1,2,--- ,n)={

Theorem 2.2. If p=2*-a+12>7 g=2™-b+41 > 7, are distinct
primes, and a, b > 1 are odd, M = p®q® where o, B are positive integers
then there exists a skew strong starter in Zps and hence a Z-cyclic Room
square of order M + 1.

Proof: Let a be fixed and proceed by induction on 8. For the case 8 =1,
we have

Zpag = qZpa U { U d{z € Zpyq; (z, M/d) = 1}} Up*Z,.
p#d|p=
By Lemma 2.1 and Theorem 2.1 skew strong starters in Z,;, Zp= exist,
say {ci,d;}, {ai,b;} respectively. Use Lemma 2.4 for the set {z € Zps/q;
(2, M/d) = 1} for all p* 5 d | p™ ; the pairs PICHXF:? for all p* # d | p*,
have the required properties. So the required pairs for a skew strong starter
in Zpa, are

{gas, b}, {pci,p*d:} and dPICHNT for all p # d | p°.

Now deal with the induction step. Suppose a skew strong starter in Z,ag4s-1
exists, say {ai,b;}. Again by Lemma 2.2.
Zpaqﬂ = qZ aqﬁ—-l U { U d{I (S ZM/d; (:z:, M/d) = 1}}

d|p™

For the set {z € Zpyq4;(z,m/d) = 1,d # p®}, by Lemma 2.4 the pairs
PICH ,’f};’j’) have the required properties; and for the set {z € Z,s; (z, ¢°) =
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1}, by Theorem 2.1 the pairs PI R,s have the required properties. Therefore
the required pairs for a skew strong starter are

{40:, gbi}, dPICH TP for all p™ # d | p* and p*PIRs.

Theorem 2.3. If p=2".a4+1>7, ¢q=2™-b+1 > 7, m # n are primes,
a,b are odd, then there exists a skew strong starter in Zp, and hence a
Z-cyclic Room square of order pq + 1.

Proof: By Lemma 2.2, Z,, = ¢Z,U{z € Zpq;p 1z, g1 z}UpZ,. Since m #
n, it follows by Lemma 2.4(2) that the pairs PJ CH,(,?,) have the required
properties, so the required pairs for a skew strong starter are the following:

qSST,, PICH and pSST,.
where SST,, SST, are skew strong starters in Z,, Z; given in Lemma 2.2.

Corollary 2.3.1. Let p = 2"a+1 be a prime, where a > 1 odd, and n # 2.
If there exists a skew strong starter in Zsy, then there is also one in Zgpa.

Proof: By hypothesis a skew strong starter exists in Zs, so the case o =1
is true. Deal with the induction step. By Lemma 2.2

Zspe = pZgpa-1 U {Z € Zspa; (z,5p%) = 1} US{x € Zp=;(x,p%) = 1}.

By (2.1.1) and Lemma 2.4(2) the pairs PIRy~ and PICHS(?,?, have the
required properties and by the induction hypothesis a skew strong starter
in Zgpa—1 exists, say {a;, b;}. Then for the required pairs for a skew strong
starter we take

{pa;, pbi}, PICHE), 5PIRpa.

Example 2.2: There exists a skew strong starter in Zs.72, since {1,2},
(3,5}, {4,7},{6,10}, {12,17}, {21, 27}, {15, 22}, {24, 32}, {19, 28}, {20, 30},
(33,9}, {14, 26}, {16,29}, {11, 25}, {8, 23}, {18, 34}, {31, 13} is a skew strong
starter in Zas. '

Corollary 2.3.2. Let p,q be primes, p = 2"%a+1 > 7,a > 1 odd, ¢ =
2™ 41 > 7, m # n, a be a positive integer. Then there exists a skew strong
starter in Zpaq and hence a Z-cyclic Room square of order p*q + 1.

Proof: Same as Corollary 2.3.1 with 5 replaced by gq.
Example 2.3: There exists a skew strong starter in Zz2.;7 and Zyj2.17.

Theorem 2.4. If, for i = 1,2,--- ,n, p; = 2™ua; + 1 are distinct primes,

u, aj, are odd, ua; > 1, are positive integers, M = [, p{*, then there
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exists a skew strong starter in Z)s, and hence a Z-cyclic Room square of
order M + 1.

Proof: Proceed by induction on n. The case n =1 follows from Theorem
2.1 and the case n = 2 follows from Theorem 2.2. Now deal with the
induction step, suppose that there exists a skew strong starter in Zy where
N= 1'[,_1 p:*. We want to show that there exists a skew strong starter in
Zps. We deal with this by induction on a,. For the case a,, = 1, let w be a
common primitive root of pJ* i{=1,2,---,n~1 and p,. By Lemma 2.2

ZNp, =PnZN U{ U dl= € Zmya; (z, M/d) = 1}} UNZp,
N#d|N

By the induction hypothesis there exists a skew strong starter in Zy, say
{ai, b;}, by hypothesis of p, there exists a skew strong starter in Z, say

{cj,d;}, and by Lemma 2.4 the pairs PICH,’C,% , where N # d | N, have
the required properties, so the required pairs for a skew strong starter in
Zy are

{Pnas,prbi}, N{cj,ds} and dPICHY, where N # d | N.

Now deal with the induction step. Suppose there is a skew strong starter
in Z Npan—1- Then by Lemma 2.2 again,

Zm =pnZm/p, Y {U d{z € Zmy4;(z, M/d) = 1}}
dN

and by the same argument, the required pairs for a skew strong starter in
Zm are

i, Pnbi}, NPIR an and dPICHX®) where N # d | N,
Pn M/d

where {a;,b;} is a skew strong starter for Z Npan-1.

Corollary 2.4.1. Let py,--- ,pn be distinct primes. Let p; = 2™ia; +1 >
7, where a; are odd, «; are positive integers satisfying the following two
conditions;

(1) aj =1 whenevera; =1
(2) a;; 23 Vji=1,2,..- ,k; whenever m;, =m;, =-.. =my,

then there exists a skew strong starter in ZH p2é and hence a Z-cyclic
i=1

Room square of order ([T;_, p{*) +1.
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Example 2.4: There exists a skew strong starter in Z72.11.17.257. Since

Zpra1a7.087 = 2572721117 U {Z € Zr2.11.17.087; (2, 72 - 11 .17 - 257) = 1}
U17{x € Z72.11.957; (x, 7% - 11 .257) = 1}
U 11{z € Zra.17.057; (2,72 - 17-257) = 1}
U7{z € Zr.11.17.287; (x,7 - 11 - 17 - 257) = 1}
U7{z € Zy1.17.257; (2,11 - 17 - 257) = 1}
U11-17{z € Zsa.057; (z, 7% - 257) = 1}
U7-11{z € Zr.17.57; (2,7 17 - 257) = 1}
U72.11{z € Z17.257; (x,17- 257) = 1}
U7-17{z € Z7.11.257; (¢, 7-11-257) = 1}
U72.17{x € Zy1.057; (2,11 - 257) = 1}
UT-11-17{x € Z7.957;(x,7-257) = 1} U 7% - 11 - 17 Zas7.

Here 7=2-3+1,11=2-54+1,17=2441,257=2% 4 1.
Corollary 2.4.2. Let p1,- - ,pn are distinct primes. Let p; = 2™ -a;+1 >
7, a; odd, a; positive integers satisfying the following conditions.

(1) @j =1 whenever a; =1,

(2) ai; > 1 for j = 1,2 whenever m;, = m;, where i1 # i,

(B mi#£2(i=1,2,---,n),

(4) there exists a (skew) strong starter in Zs.p, forall i =1,2,.-. ,n.

Then there exists a (skew) strong starter in Zg yy» = and hence a Z-cyclic
i=1 %%

Room square of order 5 - ([Tr, %) + 1.

3

Example 2.5: There exists a skew strong starter in Zs.72.1;, since

Zgqaq1 = 11252 VU T{x € Z5.7.11; (,5-7-11) =1} U
72 {z € Zs11;(2,5-11) = 1}US{z € Zpa.13; (z,7? - 11) = 1}U
5.7{x € Z7.11;(z,7-11) =1} U5 . 722,
and
Zsq2 = TZs7U {z € Zs.2; (2,5 - 72) = 1} U B{z € Zp;(z, 7%) = 1}.
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8 Patterned starters

Let G be an additive abelian group of order 2v+1. The set P = {{z;, —z;};
i=1,2,--- ,v}is a starter, called a patterned starter. Let S = {{z;,y:};i =
1,2,---,v} and T = {{u;,v;};i = 1,2, -- ,v} be two starters, then, for
each i, there is a unique j such that z; — 3 = *(u; — v;). Without loss
of generality, we can suppose that z; —y; = u; —v;. Let d; = u; —x; =
v; — ;. Then if the d; are all distinct and nonzero we say that S and T are
orthogonal starters.

Theorem 3.1. [5] If there exists a strong starter S in an additive abelian
group of odd order 2v + 1, then the starters S, —S and P are pairwise
orthogonal.

We therefore have the following theorem.

Theorem 3.2. There exists a patterned skew Z-cyclic Room square of
order 2v whenever 2v — 1 = []._, pi* (wWhere p; are as in Corollary 2.4.1
or 24.2).
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