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ABSTRACT. A graph G is said to be embeddable in a set X
if there exists a mapping f from E(G) to the set P(X) of all
subsets of X such that if we define a mapping g from V(G)
to P(X) by letting g(z) be the union of f(e) as e ranges over
all edges incident with z, then g is injective. We show that
for each integer k > 2, every graph of order at most 2% all of
whose components have order at least 3 is embeddable in a set
of cardinality k.

1 Introduction

By a graph, we mean a finite simple undirected graph with no loops and no
multiple edges. For a finite set X, we let P(X) denote the set of all subsets
of X.

Let G be a graph. Let X be a finite set, and let g be an injective mapping
from the vertex set V(G) of G to P(X). If there exists a mapping f from
the edge set E(G) of G to P(X) such that

g9(z) = U f(e)

c€E(G)
c is incident with =

for all z € V(G), then we say that G is embeddable in X, and call g an
embedding of G into X. It follows that g is an embedding if and only if
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for all z € V(G).

(see [1; Lemma 2]). It is easy to see that if G is embeddable in a set of
cardinality k, then |V(G)| < 2%, G has no component of order 2, and G has
at most one component of order 1.

For an integer k > 2, let ¢(k) denote the maximum of those integers n
for which every graph G of order at most n such that all components of G
have order at least 3 is embeddable in a set of cardinality k. In [1], Aigner
and Triesch proved that ¢(k) > 25! for all k¥ > 2, and conjectured that
¢(k) = 2*. In this paper, we settle this conjecture affirmatively by proving:

Main Theorem: Let k be a nonnegative integer. Let G be a graph of
order at most 2*, and suppose that G has no component of order 2 and
that G has at most one component of order 1. Then G is embeddable in a
set of cardinality k.

We prove the Main Theorem by induction and, to make the induction
argument work, we modify the statement of the theorem. The modified
statement is somewhat technical, and will thus be stated in Section 2.

We conclude this section with related results. Let G be a graph, let X be
a finite set, and let g be an injective mapping from V(G) to P(X). Suppose
that there exists a mapping f from E(G) to P(X) such that

9@ =0 e, S

for all z € V(G), where © denotes symmetric difference. In this situation,
we say that G is realizable in X. For an integer k > 2, let ¥(k) denote the
maximum of those integers n for which every graph G of order at most n
such that all components of G have order at least 3 is realizable in a set
of cardinality k. It is proved in [1] that (k) > 2¥~2 for all k > 2, and it
is proved in [5] that lime_,oo ¥(k)/2% = 1, and the following theorem has
recently proved in [2] and [3] independently:

Theorem A. Let k > 2 be an integer. Let G be a graph with |V(G)| < 2F
and |V(G)| # 2* — 2, and suppose that every component of G has order at
least 3. Then G is realizable in a set of cardinality k.

2 Statement of Proposition

We start with definitions. Let G be a graph. For z € V(G), we let N(z)
denote the set of vertices adjacent to z in G, and let deg(x) denote the
degree of z; thus deg(z) = |[N(z)]. When G is a forest, a vertex z with
deg(x) <1 is called a leaf of G.

In view of (1), in proving the Main Theorem, we may assume that G is
edge-minimal under the condition that G satisfies the assumptions of the
theorem. Then it easily follows that each component T of G is a tree such
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that T has a vertex with the property that every component of T — u has
order at most 2. Following [1], we call such a tree an octopus.

Let T be an octopus, and let u be a vertex of T such that every component
of T — u has order at most 2. Let ¢ denote the number of components
of T — u having order 2, and let s denote the number of components of
T — w having order 1. Let A = {x € N(u) | deg(x) = 2}. Then |4| =
|[V(T) —{u} — N(u)| =t, and deg(u) =t +s. Let a,b € V(T), and suppose
that one of the following three conditions is satisfied:

t+s>2 a,be N(u), a#b, and [{a,b} N A |> min{2, t};

t4+5=1(so 2 < |V(T)| £ 3), and a = b is the unique vertex in N(u);
or

[V(T)| =1 (so a=b=u).

In this situation, (T';u;a,b) is called a rooted octopus of type (¢,s), u is
called the primary root, and a and b are called the secondary roots. By
abuse of terminology, we also say that T is a rooted octopus of type (¢, s).
Let X be a finite set. An injective mapping g from V(T) to P(X) is called
a strong embedding of T into X if it satisfies the following three conditions:

for each z € N(u), g(z) C g(u);
for each z € A, g(z) 2 g(z), where N(z) = {u, z}; and
ift + s > 2, then g(u) = g(a) U g(b)

(thus when |V(T)| = 1, any mapping from V(T) to P(X) is a strong
mapping). It follows from (1) that

if t + s > 2, every strong embedding of T is an embedding of T. (2)
Also it is obvious that

in the case where |V (T')| = 1, a strong embedding g
of T is an embedding of T if and only if g(u) = ¢. (3)

If G is a forest each of whose components is a rooted octopus, we call
G a rooted forest. When G is a rooted forest and X is a finite set, an
injective mapping g from V(G) to P(X) is called a strong embedding if the
restriction of g to each component of G is a strong embedding. In view of
(2) and (3), the Main Theorem follows from the following proposition:

Proposition. Let k be a nonnegative integer, and let X be a set of
cardinality k. Let G be a rooted forest of order 2%, and let ¢ be a leaf of
G. Let R be the component of G containing c, and let w be the primary
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root of R, and let a, b be the secondary roots of R. Suppose that G has
at most one component of type (1,0) and, if G has a component of type
(1,0), then R is the unique component of type (1,0). Suppose further that
one of the following five conditions is satisfied:

(i) R is of type (t,s) witht > 3, c € V(R) — {w} — N(w), and c ¢
N(a)UN(b);

(ii) R is of type (t,s) with1 <t <2, and c € V(R) — {w} — N(w);
(iii) R is of type (t,s) withs > 1 and t+ s > 3, c € N(w), and c # a, b;
(iv) [V(R)]=2,and c=a=b; or

v) V(R =1

Then there exists a strong embedding g of G into X such that g(c) = ¢.

3 Proof of Proposition

Let k, X, G, c be as in the proposition. We proceed by induction on the
lexicographic order of the pair (k, k), where h denotes the number of leaves
of G. The proposition clearly holds for k = 0. Thus we may assume k > 1.

Assume first that there exists a component T of G such that T is of type
(t,s) with s > 2 and ¢ + s > 3. Let u be the primary root of T, and write
Nr(u) = {a1,...,at+s}. At the cost of relabeling, we may assume that
deg(a;) =2 forall1 < i <t and deg{e;) =1forallt+1 << t+s,
and that a; and a; are the secondary roots of T. For each 1 < ¢ < ¢, write
N(a;) = {u,b;}. In the case where ¢ € V(T), we may assume we have
either ¢ # 0 and ¢ = b;, or ¢ = ay4,. Define a rooted forest H by letting
V(H)=V(G)and E(H) = (E(G)—{ua¢+s})U{ac+1at+s}, and letting each
component have the same primary and secondary roots in H as in G (note
that V(T') remains to be the vertex set of a component in H). Further, let
d = c or ay4s, according to whether c & V(T') or ¢ € V(T'). Then H and d
satisfy the assumptions of the proposition, and the number of leaves of H
is one less than that of G. Hence by the induction hypothesis, there exists
a strong embedding f of H into X such that f(d) = ¢. Define a mapping
g from V(G) to P(z) as follows: if ¢ # b, (so ¢ = a5 or ¢ € V(T)),
simply let g = f; if ¢ = by, let g(asts) = f(be) and g(by) = f(ai+s), and let
g(z) = f(z) for each z € V(G) — {@i+s,b:}. Then g is a strong embedding
of G with g(c) = ¢.

Thus we may assume each component of G is of type (¢,0), (¢, 1) or (0, 2).
Let p denote the number of components of even order, and let 2¢ denote
the number of components of odd order (note that |V(G)| = 2 is even).
Let Ti,...,T, be the components of even order, and let S,..., S be the
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components of odd order. We now proceed to define a rooted forest R of
order 2¥~! and a leaf d of H. For this purpose, we construct a rooted
octopus P; of order |V(T})|/2 for each 1 < 5 < p, and construct a rooted
octopus Q; of order (|V(S)| + V(Sq+s)])/2 for each 1 < j <.

We first let 1 < j < p, and define P = P; as follows. For simplicity,
let T = T}, and let u be the primary root of 7. Let |V(T)| = 2t + 2, and
write N(u) = {a1,...,as,a:41}. We may assume that deg(a;) = 2 for all
1 < ¢ <t and deg(as41) = 1. In the case where ¢ > 1, we may further
assume that a, and a3 are the secondary roots of T'. Write N(a;) = {u, ¢;}
for each 1 < ¢ < ¢. In the case where ¢ € V(T'), we may assume we have
either ¢t # 0 and ¢ = ¢;, or ¢t # 1 and ¢ = a;y;. Assume first that ¢ < 1
or ¢ ¢ V(T). In this case, define P = P; by V(P) = {u,a,,...,a,} and
E(P) = {ua,...,ua.}, and let u be the primary root of P. If ¢t > 2, let P
have the same secondary roots as T; if t = 1, let a; be the secondary root
of P; if t = 0, let u be the secondary root of P. Further if ¢ € V(T) (so
t < 1), let d = ay or u, according to whether ¢t = 1 or t = 0. Assume now
that ¢ > 2 and c € V(T). In this case, define P by V(P) = {u,a1,...,a:}
and E(P) = {ua;,uay,...,ua;-1,a14:}, and let » be the primary root of
P. If t > 3, let P have the same secondary roots as T} if ¢t = 2, let a; be
the secondary root of P. Further let d = a;.

We now let 1 < j < g, and define Q = Q; as follows. Let T = S; and
S = Sg+;. Let w and v be the primary roots of T and S, respectively, and
let ¢ = deg(u) and s = deg(v). Write N(u) = {ay,...,a;}. In the case
where ¢ > 2, we may assume a; and a3 are the secondary roots of T. Write
N(v) = {bi,...,bs}. In the case where s > 2, we may assume b; and b, are
the secondary roots of S. We consider three cases separately.

Case 1. Neither T nor S is of type (0, 2).

We may assume ¢ > s and, if t = s and c € V(T)UV(S), we may further
assume ¢ € V(S). Write N(a;) = {u,c;} for each 1 < i < ¢. In the case
where c € V(T'), we have ¢ # 0 by the assumption we have just made, and
we may therefore assume ¢ = ¢;. Write N(b;) = {v,d;} for each 1 <i < s.
In the case where ¢ € V(S), we may assume we have either s % 0 and
c=ds, or s=0and c=v. Assume first that s > 1 or c¢ V(T)UV(S). In
this case, define Q = Q; by V(Q) = {u,ai,...,as,¢1,...,¢:} and E(Q) =
{uay, ..., uas,a1c4,.. ., a5}, and let @ have the same roots as 7. Assume
further that c € V(T) U V(S) (so s > 1). In this case, let d = a, or cs
according to whether ¢ = ¢, or d,. Note that if ¢ = s, then ¢ € V(S) (so
¢ = ds and d = ¢,) by the assumption we made at the beginning of Case 1.
Note also that if s = 1, then (¢ > 2 and) ¢ € V(S) (so ¢ = d; and d = ¢;)
by the assumption stated in the fourth sentence of the statement of the
proposition. Assume now that s = 0 and ¢ € V(T) U V(S). In this case,
let V(Q) = {u,a1,...,a:}. If t > 2, let B(Q) = {uay, ..., ua;_1,a1a:}; if
t=1,let E(Q) = {ua1};ift =0, let E(Q) = ¢. Let u be the primary root
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of Q. If t # 2, let @ have the same secondary roots as T if ¢ = 2, let a1
be the secondary root of Q. Further let d = a, or u, according to whether
t>1lort=0.

Case 2. Precisely one of T and S is of type (0, 2).

We may assume S is of type (0,2), and T is not. Then c ¢ V(S) by
the assumptions of the proposition. Let the ¢; be as in Case 1. Assume
first that ¢ > 1. In this case, let V(Q) = {u,a1,...,a¢ ¢1} and E(Q) =
{uay,...,ua,a1c1}, and let Q have the same roots as T'. Further if c €
V(T) (so ¢ = ct), let d = ¢;. Assume now that ¢ = 0. In this case, let
V(Q) = {,b1} and E(Q) = {vb;}, and let v and b, be the primary and
the secondary roots of Q, respectively. Further if ¢ € V(T') (so ¢ = u), let
d=0b.

Case 3. Both T and S are of type (0, 2).

In this case, simply let Q = T, and let Q have the same roots as T'.

Now with the P; (1 < j <p) and the @; (1 <j < ¢q) and d as above, let
H = (U1<j<pPj) U (U1<j<q@;). Then H and d satisfy the assumptions of
the proposition for k — 1. Fix r € X. By the induction hypothesis, there
exists a strong embedding f of H into X — {r} such that f(d) = ¢.

Let again 1 < j < p. We define a mapping f; from V(Tj;) to P(X)
as follows. Let T, t, u, a;, b; be as in the definition of P;. If ¢ < 1 or
¢ ¢ V(T), let f;u) = f(u)U {r} and fi(acs1) = f(u), and let f(as) =
fla;)U {r} and f;(c;) = f(a;) foreach 1 < i < t. If ¢ > 2 and c € V(T),
let f;(u) = f(u) U {r}, fy(a1) = f(u), filer) = £ar), fy(ae) = Far) U{r},
filce) = f(ae) or f(a) U {r} according to whether ¢ = c; or ¢ = a¢41, and
filaer1) = fla) L {r} or f(a;) according to whether ¢ = ¢; or ¢ = a¢1,
and let f;(a;) = f(a;) U {r} and f;(c;) = f(a:) foreach 2 < i < ¢ -1
Then f; is a strong embedding of T' and, in the case where ¢ € T, we have
file)=¢.

Let now 1 < j < q. We define a mapping g; from V(Tj) to P(X) and
a mapping h; from V(Tjq) to P(X) as follows. We again consider three
cases separately. In each case, we let T, S, t, s, u, v, a;, b;, ¢, d; be as in
the definition of @Q;.

Case 1. Neither T nor S is of type (0, 2).

Ifs>1ort<1lorcdg V(T)UV(S), let gj(u) = f(u)U {r} and
hi(v) = f(u), let gj(a:) = flas) U {r}, gj(c:) = f(a)U {r}, hj(b:) = f(as)
and hj(d;) = f(c:) for each 1 < ¢ < s, and let gj(a;) = f(ai) U {r} and
gj(ei) = flai) foreach s+1< i<t Ifs=0,t>2and ce V(T)UV(S),
let gj(u) = f(w)U{r}, gj(a1) = f(u), gi{c1) = f(ar), gj(a) = fa) U{r},
gi(ct) = flae) or f(a) U {r}, according to whether ¢ = ¢, or ¢ = v, and
hj(v) = f(a.) U {r} or f(a;) according to whether ¢ = ¢, or ¢ = v, and let
gi(a;) = f(a:)u{r} and g;(c;) = f(a;) foreach 2 < i < ¢—1. Then g; and h;
are strong embeddings of T and S and, in the case where c € V(T)UV(S),
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we have g;(c) = ¢ or h;j{c) = ¢, according to whether c € V(T) or c € V(S).
Case 2. S is of type (0, 2), but T is not.

Assume first that ¢ > 1. In this case, let h;j(v) = f(a1) U {r}, h;j(b1) =
f(a1), hj(b2) = f(c1) U{r}, gj(u) = f(u) U{r} and g;(a1) = f(u), and let
gj(a;) = f(a;) U {r} for each 2 < i < ¢. Furtherif ¢t =1 (so ¢ = ¢, € V(T))
or ¢ & V(T)U V(S), let gj(c1) = f(c1), and let g;(c;) = f(a:) for each
2<igift>2andc e V(TYUV(S) (so c € V(T) and ¢ = ¢),
let g;(c1) = f(a¢) and g;(c;) = f(c1), and let g;j(c;) = f(a;) for each
2 <i<t—1. Assume now that ¢t = 0. In this case, let h;(v) = f(v)U {r},
hj(bl) = f(’U), h_,(bg) = f(bl) U {7‘} and gj('u.) = f(bl) In either case, g;
and h; are strong embeddings of T and S and, in the case where ¢ € V(T),
we have g;(c) = ¢.

Case 3. Both T and S are of type (0, 2).

Let g;(u) = f(u) U {r}, gj(a1) = f(a1) U {r}, gj(az) = fla2) U {r},
hj(v) = f(u), hj(bi) = f(a1) and hj(b2) = f(az). Then g; and h; are
strong embeddings of T" and S.

Now we define a mapping g from V(G) to P(X) by putting together all
fj» g; and hj; that is to say, define g to be the mapping such that the
restriction to V(T;) coincides with f; for each 1 < 5 < p, and such that
the restrictions to V(S;) and V(S,..;) coincides with g; and h; for each
1 <j <gq. Then g is a strong embedding of G with g(c) = ¢.
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