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ABSTRACT. A unified approach to prove former connectivity
results of Tutte, Cunningham, Inukai and Weinberg, Oxley and
Wagner.

1 Introduction

We assume familiarity with elementary matroid theory and graph theory.
Graphs in this note are finite and have no isolated vertices. The terminology
used in this note for matroids and graphs will in general follow Oxley (5]
and Bondy and Murty [1], respectively. A cycle in a graph G is a 2-regular
connected graph. The term circuit is reserved for matroids.

This note considers the relationship between the n-connection of a ma-
troid on the edge set of a graph G and the n-connection of the graph G.
Such a problem was first studied by Tutte in [9], where Tutte characterized
graphs G with Tutte n-connected cycle matroid (to be defined in Section
2) in terms of partitions of the edge set E(G) with certain properties. Sim-
pler proof was later found by Cunningham [2]. Pursuing the relationship
between vertex connectivity of a graph G and the corresponding concept
in matroids, Cunningham [2], Inukai and Weinberg [3], and Oxley [6] in-
dependently discovered the notion of vertical connectivity of a matroid,
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as well as its dual concept (the cyclical connectivity), and characterized
graphs G whose cycle matroid M(G) is vertically n-connected (cyclically
n-connected, respectively), in a way similar to the Tutte’s characterization.

Following the same track, Wagner [10] studied the relationship between
the Tutte n-connection of the bicircular matroid (to be defined in Section
2) of a graph G and the Tutte n-connection of G, and found a similar
characterization.

The main purposes of this paper are: (1) to investigate properties that
are common in different types of n-connection in both the cycle matroid of a
nontrivial graph G and the bucircular matroid of G; and (2) to complete the
obviously undone job: characterizations of graphs whose bicircular matroids
are vertically n-connected and cyclically n-connected, respectively.

The definitions of various type of connections will be given in Section 2.
The exact statements of the abovementioned characterizations will be given
in Section 4. Some connectivity properties of the cycle matroid and the bi-
circular matroid of a graph G will be investigated in Section 3. In Section
4, we shall apply the results obtained in Section 3 to present alternative
proofs of the abovementioned characterizations, and to prove the charac-
terizations of graphs whose bicircular matroids are vertically n-connected
and cyclically n-connected, respectively.

2 Definitions

We will be concerned with partitions of E into two sets, X and F — X
thus both X and F — X are assumed non-empty. Let M be a matroid on
E = E(M) with rank function r. The connectivity function, k(-) of M is

EX)=r(X)+r(E-X)—7r(E), forany X CE.
Let I be an integer. A partition {X, E — X} is a Tutte l-separation of M if
k(X) <! and min{|X|,|E - X|} >, (1)
a vertical l-separation of M if
k(X) <! and min{r(X),r(E - X)} 21, (2)
and a cyclical l-separation of M if
k(X) <l and each of M|X and M|(E — X) has a circuit. 3)

An l-separation {X, E — X} is ezactif k(X)=1-1.
For a positive integer n, the matroid M is Tutte n-connected if for all
I, 1 €1 < n, M has no Tutte l-separation. We define a matroid M to
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be vertically n-connected and cyclically n-connected similarly. A Tutte 2-
connected matroid is also called a connected matroid.

Let G be a finite connected graph. The set of vertices of attachment of
the subgraph H in G, is

Ag(H) = V(H)nV(G[E(G) — E(H))).

Let I be an integer. A partition {X, E(G) — X} is a Tutte l-separation of
Gif

|AG(CIXD)| < ! and min{|X|, |E - X[} 21, )
a vertical l-separation of G if
[46(GIX])| < 1 and min{[V(GIX])|, V(GIE@) - XD} 2 1+1, (5)
and a cyclical l-separation of G if
|Ac(G[X])| < I and each of G[X] and G[E(G) — X] has a cycle. (6)

For a positive integer n, the graph G is Tutte n-connected if for all [,
1 < I < n, M has no Tutte l-separation. We define a graph G to be
vertically n-connected and cyclically n-connected similarly.

Let G be a graph with E(G) # 0. The cycle matroid of G, denoted
M(G), is the matroid on E(G) whose collection of circuits consists of all
the cycles of G.

Let G be a graph with E(G) # 0. Let D,(G) denote the set of vertices
of degree 1 in G. A bicycle of G is a connected subgraph H with |E(H)| =
|V(H)| + 1 and with D,(H) = @. The bicircular matroid of G, denoted
B(Q), is a matroid on E(G) whose collection of circuits consists of all
the bicycles of G. Bicircular matroids were first discovered by Simoes-
Pereira [7], and have been studied extensively. (See SimGes-Pereira (8] for
an overview.)

8 Some Properties of M(G) and B(G)

Let G be a graph. A component H of G is acyclic if H is a tree; otherwise
H is cyclic. The number of components of G is w(G), and the number
of acyclic components of G is we(G). Note that for X C E(G), the rank
function r(-) in the cycle matroid M(G) and the bicircular matroid B(G)
can be expressed as follows:

[V(G[X])| - w(C[X if M = M(G)
r(X) = { |VEG{X}){ - wa(cg[)]f)l) if M = B(G).
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An edge e € E(G) is an end edge if e is incident with a vertex in Dy (G).
If {X, E(G) — X} is a partition of E(G), then define o(X) = w(G[X]) +
w(G[E(G) — X]). The main result of this section is Theorem 3.8, which
shows a property commonly shared by both the cycle matroid M(G) and
the bicircular matroid B(G) of a nontrivial graph G. First, we establish
some lemmas.

Lemma 3.1. Let M be a matroid with rank function r. Each of the
following holds:

(i) If k(X) = r(X) for some X C E(M), then E — X contains a basis of
M.

(i) If k(X) = |X| for some X C E(M), then X is independent and
E — X contains a basis of M.

Proof: (i) The definition of k(X) and the equality k(X) = r(X) give
r(E — X) = r(E). Therefore E — X contains a basis of M.

(i) If k(X) = »(X) + r(E - X) — r(E) = |X], then r(X) = |X| and
r(E — X) = r(E). Therefore X is independent and E — X contains a basis
of M. O

Lemma 3.2. Each of the following holds:

(i) (Proposition 4.1.4 of [5]) The matroid M is connected if and only if,
for every pair of distinct elements of E(M), there is a circuit in M
containing both.

(i) (Proposition 4.1.8 of [5]) Let G be a loopless graph without isolated
vertices and with |E(G)| > 3. Then M(G) is connected if and only if
G is 2-connected.

Lemma 3.3. (Proposition 4 of [4]) Let G be a graph with |E(G)| > 2
and without isolated vertices, and let B(G) be the bicircular matroid of G.
Then B(G) is connected if and only if each of the following holds:

(i) G is connected,
(ii) G is not a cycle, and

(iii) G has no vertices of degree 1.

Lemma 3.4. Let M be a matroid with rank function r, and let {X, E(M)—
X} be a partition of E(M). If there exist nonempty subsets X, X»,--- X,
of X such that r(X) =Y ;_, r(X;), then each of the following holds.
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() r(X)=r(X:)+r(X - X;), foreachi with1 <i<ec.
(i) k(X;) < k(X).

Proof: (i) is obvious. By the submodularity of the rank function, r(E —
X;) < r(E — X) + (X — X;). Therefore by (i),

kX)) = r(X:)+r(E-X;)—r(E)
< (X)) +1(X - X;) +r(E - X) —r(E) = k(X).

O

The following lemma is an immediate consequence of connectivity.

Lemma 8.5. Let G be a connected graph with E = E(G) and let {X, E —
X} be a partition of E with X # 0 and E — X # 0. If X; C X induces a
component G[X,] of G[X], then

V(GIX.]) N V(GIE - X]) # 0, and V(G[X — X1]) N V(G[E — X]) # 0.

Lemma 38.6. Let G be a connected graph with |[E(G)| > 3 and let M be
either the cycle matroid or the bicircular matroid of G. Let E = E(G) and
let {X,E — X} be a partition of E(G). Suppose that Xi, Xa,---,X. are
nonempty subsets of X such that X = U{_; X;, where c = w(G[X]), and
such that r(X) = Y_¢_, 7(X;). For a proper subset N C {1,2,---,c}, let
XN =Uien X;.

(i) Suppose that M is Tutte (vertically, resp.) n-connected, and that
{X,E — X} is a Tutte (vertical, resp.) n-separation of M. If ¢ > 2
and if for some N C {1,2,---,c}, (Xn) > n, then {Xn,E - XN}
is a Tutte (vertical, resp.) n-separation of M with o(Xn) < o(X).

(ii) Suppose that M is Tutte cyclically n-connected, and that {X, E —
X} is a cyclical n-separation of M. If ¢ > 2, if for some N C
{1,2,---,¢c}, 7(Xn) = n, and if X contains a circuit, then {Xn, E—
X} is a cyclical n-separation of M with o(Xn) < o(X).

(iii) Suppose that M is Tutte (cyclically, resp.) n-connected, and that
{X, E — X} is a Tutte (cyclical, resp.) n-separation of M. If ¢ > 2
and if for some N C {1,2,---,¢c}, 7(Xn) < |Xn|, then {Xn,E —
Xn} is a Tutte (vertical, or cyclical, resp.) n-separation of M with
o(Xn) < o(X).

(iv) Suppose that M is vertically n-connected, and that {X,E — X} isa
vertical n-separation of M. If ¢ > 2 and if forsome N C {1,2,--- ,¢},
k(Xn) < r(XN)), then {Xn,E — Xn} is a vertical n-separation of
M with o(XN) < o(X).
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(v) Suppose that M is Tutte (vertically, resp.) n-connected, and that
{X,E — X} is an exact Tutte (vertical, resp.) n-separation of M.
If V(G) - (G[E - X]) # 0, then there is Tutte (vertical, resp.) n-
separation {X’, E — X'} of M such that o(X’) = 2.

(vi) Suppose that M is Tutte (vertically, resp.) n-connected, and that
{X,E — X} is an exact Tutte (vertical, resp.) n-separation of M.
If both X and E — X are independent in M, then there is a Tutte
(vertical, resp.) n-separation {X’, E— X'} of M such that o(X’) = 2.

Proof: (i) and (ii). Assume r(Xy) > n. Then |Xy| > r(Xn) > n. Note
that if {X, E — X} is a Tutte n-separation, then |E — Xy| > |E — X| > n;
if {X, E — X} is a vertical n-separation, then r(E — Xy) > r(E - X) > n;
if {X,E — X} is a cyclical n-separation, then M|(E — Xy), containing
M|(E — X) as a restriction, has a circuit. Thus (i) and (ii) follow by
Lemma 3.4.

(iii) and (iv). By (i) and (ii), for Tutte or cyclical connection, it suffices to
show that r(Xn) > n. If not, we assume that there is an X; with »(Xy) <
|X~|and #(Xn) < n. Note that 7(Xn) > k(Xy). By Lemma 3.4, k(X y) <
k(X) <n-1. Since |[E—Xn| 2 |E-X| 2 n > r(Xn) (since 7(Xn) < | Xn]|
implies that Xy contains a circuit, resp.), {Xn, E— Xn} would be a Tutte
(cyclical, resp.) r(Xn)-separation, contrary to the assumption that M is
Tutte (cyclical, resp.) n-connected. Thus r(Xy) > n, and so (ii) follows
from (i). For vertical connection, if there is some X; with k(X;) < r(X;),
then by (i), 7(Xi) < n, and so »(E — X;) > r(E - X) > n > r(X;).
Therefore {X;, E — X;} is a vertical 7(X;)-separation of M, contrary to the
assumption that M is vertically n-connected.

(v) and (vi). Assume w(G[E — X]) < w(G[X]) and ¢ > 2. Among all
Tutte (vertical, resp.) n-separations {X,E — X} such that V' = V(G) —
V(G[E — X]) # @ for (v), or such that both X and E — X] are independent
for (vi), choose one {X, E — X} such that o(X) is minimized.

By (i) - (iv), we may assume that r(Xx) = |Xn| < n (in the Tutte
connection case) and k(Xy) = r(Xy) (in the vertical connection case),
V0 #N C{1,2,---,c}. Therefore we observe:

(A)VYN with@# N C {1,2,---,¢c}, k(Xn) =r(XN) and 7(E - X§) =
r(E).

If k(Xn) < |XN| < n, then since |E — Xn| > |[E— X| > n > |Xn|,
{Xn,E — Xn} is a Tutte |Xn|-separation, contrary to the assumption
that M is n-connected. Therefore k(Xn) = |Xn|, and so (A) follows from
Lemma 3.1. This proves (A).

Assume (v). Pick v € V'. By (A) with N = {1,.--,c} —{i}, v €
V(G[X;]), for each i. Thus there exist distinct i and j such that v €
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V(G[X;])) N V(G[X;]), contrary to the assumption that G[X;]’s are the
components of G[X].

Now assume (vi). Label the components of G[X] so that | X;| > |X3| >
+es > | X,|. We further choose {X,E — X}, subject to minimizing o(X),
such that |X,| is maximized. We shall show that ¢ =1 and so (vi) follows
from (v) (with X in (vi) replacing E — X in (v)). Suppose ¢ > 2. By (A),
there is an edge ¢’ € X — X, such that r((E - X)U¢€)=7(FE - X) +1.
Since G is connected, there is an edge ¢’ € F — X incident with exactly
one vertex in G[X;]. Let X' = (X —¢€’)Ue”. Then r(X) = r(X’) = |X'|
and 7(E — X) = r(E - X') = |[E - X’|, and so {X',E — X'} is also an
n-separation with both X’ and E — X’ independent in M, contrary to the
choice of {X,E — X}. Hence c=1. o

Lemma 8.7. Let M = M(G) or M = B(G), and let {X,E — X} be a
Tutte (vertical, resp.) n-separation of M. Suppose that some component
of G[X] has an end edge e and that some component of G[E — X] has
a cut edge e’ such that in G, €’ is not incident with the isolate vertex in
G[X —¢]. Let X' = (X —e)Ue'. Then {X',E — X'} is a Tutte (vertical,
resp.) n'-separation of M such that n’ <n and V(G) — V(G[X']) # 0.
Proof: Note that r(X’) < r(X) and r(E — X’) < r(E — X), and so
k(X’) < k(X). Note also that the vertex of degree one incident with e in X
becomes an isolated vertex in G[X’]. Thus {X’, E— X'} is a Tutte (vertical,
resp.) n’-separation with n’ = k(X’)+1 < n and V(G) - V(G[X']) #0.0
Note that such a pair (e, e’) in Lemma 3.7 can always be found if both
G[X] and G[E — X] have a component which is a tree of at least 3 vertices.

Theorem 3.8. Let n > 1 be an integer, let G be a connected graph with
|E(G)| = 2, and let M be either the cycle matroid or the bicircular matroid
of G. Let E = E(G). If one of the following holds:

(i) M is Tutte n-connected and {X,E — X} is a Tutte n-separation of
M such that

o(X) = min{o(X’) : {X’, E — X'} is a Tutte n-separation of M}, or
™

(ii) M is vertically n-connected and {X, E— X} is a vertical n-separation
of M such that

o(X) = min{o(X’) : {X', E — X'} is a vertical n-separation of M}, or

(8)
(iii) M is cyclical n-connected and {X, E — X} is a cyclical n-separation
of M such that
o(X) = min{o(X’) : {X', E — X"} is a cyclical n-separation of M},
(9)

245



then both G[X] and G[E — X] are connected.

Proof:: We argue by contradiction. Assume that G is a counterexample.
‘We may assume that | E(G)| > 3 since otherwise Theorem 3.8 holds trivially.

We may also assume that n > 2. For if n = 1, then k(X) = 0 for some
X C E implies that G[X] is a union of blocks of G, and so Theorem 3.8
follows trivially.

We assume that there is an n-separation {X, E — X} of M(G) satisfying
one of the conditions of Theorem 3.8 but o(X) > 3. We may assume that
w(G[E - X]) € w(G[X]) and ¢ = w(G[X]) = 2. Let X, Xa,- -, X, are
nonempty subsets of X such that X = U¢_, X; and such that each G[X;] is a
component of G[X]. Let d= w(G[E XJ) and Y3,Y53,- - , Yy are nonempty
subsets of E — X such that £ — —1Y; and such tha.t each G[Yj] is a
component of G[E — X].

If {X,E — X} is an exact cyclical n-separation, then there must be an
X; with r(X;) < |X;|, and so by Lemma 3.6(iii), ¢ = 1, a contradiction.
This proves Theorem 3.8(iii).

Assume then that {X, E — X} is an exact Tutte n-separation. Apply
Lemma 3.6(iii) to both X and E — X, we may assume either w(G[E—X]) =
1, or both X and E — X are independent in M. Note that k(X)) =n —1
implies 7(E) > r(E — X). Hence by Lemma 3.6 (v) and (vi), and by
w(G[E - X]) = 1, we conclude that M = B(G) and G[E — X] is a spanning
tree of G. If G[X] has an acyclic component, then by Lemma 3.7, there is
an n-separation {X’, E — X'} with V(G) — V(G[X']) # 8, and so Theorem
3.8(i) follows from Lemma 3.6(v). Hence every component of G[X] is cyclic.
But then r(X) = Y;_, [V(G[Xi])| = [V(G)| = r(E), and son—1 = k(X) =
r(X)+r(E — X) — r(E) = r(E — X) > n, a contradiction. This proves
Theorem 3.8(i).

Hence we assume that {X, F — X} is an exact vertical n-separation. By
Lemma 3.6, we observe:

(A) r(Xn) < n, VN with @ # N C {1,2,--- ,c}; and r(Yn) < n, VN
with @ # N c {1,2,--- ,d}.

(B) k(Xn) = r(Xn) and r(E — Xn) = r(E), VN with 0 #NC
{1,2,--- ,c}; and k(Yn) = r(Yn) and r(E — Yx) = r(E), VN with 0 #
Nc{1,2,-.-,d}.

(C) V(G) = V(GIE - X]) = V(GIX)).

Suppose M = B(G). By (A), (B), and Lemma 3.7, either G has a pair of
parallel edges {e;, ez} such that Yy = {e;} and X;» = {e2} for some #,3",
whence M has a vertical (n—l) -separation {X —eg, E—(X —e2)}, contrary
to the assumption that M is vertically n-conncted; or We may assume
that every G[Y;] is cyclic, whence by (C), r(E — X) = Z 1 IV(GY:))| =
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[V(G)| = r(E), and so n—1 = k(X) = r(X)+r(E- X)—r(E) = r(X) > n,
a contradiction. This proves Theorem 3.8(ii) when M = B(G).
Suppose M = B(G). For vertices u,v € V(G), define

x(u,v) = maximum number of internly disjoint (u,v)-paths in G,

and let k = min{x(u,v) : u,v € V(G)}. Since M has a vertical n-
separation, G is not spanned by a complete subgraph. Hence one can
find nonadjacent u,» € V(G) such that x(u,v) = k. By Menger’s The-
orem, there is a subset V' C V(G) — {u,v} such that G has connected
subgraphs G; and G with G = G, U G2, with u € V(G;) and v € V(G?)
and with |[V(G1) N V(G2)| = k. Therefore, {E(G1), E(G2)} is a vertically
k-separation of M with o(E(G,)) = 2. Clearly k > n.

To complete the proof of Theorem 3.8(ii) when M = M(G), it suffices to
show that k = n. However, this is proved by Cunningham in [2]. o

4 Connectivity in cycle matroids and bicircular matroids

Throughout this section, G denotes a nontrivial connected graph. If H is
a subgraph of G, then H = G[E(G) — E(H)).

Proposition 4.1. (Cunningham, Proposition 1 of [2]) If X C E(G), then
in M(G), k(X) < |Ac(G[X])| — 1, where equality holds if and only if both
G[X] and G[E(G) — X] are connected.

Theorem 4.2. (Tutte, Theorem 3.5 of [9]) Let G be a nontrivial connected
graph. Then M(G) is Tutte n-connected if and only if G is Tutte n-
connected.

Theorem 4.3. (Cunningham, Theorem 2 of [2]) Let G be a nontrivial
connected graph. Then M(QG) is cyclically n-connected if and only if G is
cyclically n-connected.

Theorem 4.4. (Cunningham, Theorem 1 of [2], Inukai and Weinberg,
Theorems 1 and 2 of [3], and Oxley, Theorem 2 of [6]) Let G be a nontrivial
connected graph. Then M(QG) is vertically n-connected if and only if G is
vertically n-connected.

Proofs of Theorems 4.2 and 4.3: Let E = E(G). Assume that M(G) is
Tutte n-connected but G is not Tutte n-connected. Then G has a Tutte I-
separation {X, E— X}, for some 1 <! < n. By Proposition 4.1, {X, E- X}
is a Tutte I-separation of M(G), contrary to the assumption that M(G) is
Tutte n-connected. Hence G must be Tutte n-connected.

Assume that G is Tutte n-connected but M(G) is not Tutte I-connected.
Let I be an integer with 1 < | < n such that M(G) is Tutte I-connected
but not Tutte (I + 1)-connected. Then by Theorem 3.8(i), there is a Tutte
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l-separation {X, E— X} of M(G) such that both G[X] and G[E(G)— X are
connected. It follows by Proposition 4.1 that -1 > k(X) = |Ac(G[X])|-1.
Thus | > |Ac(G[X])|, and so by (4), {X, F — X} is a Tutte l-separation of
G. Therefore G is not Tutte n-connected. This proves Theorem 4.2.

The proof for Theorems 4.3 is similar, using Theorem 3.8(iii) in place of
Theorem 3.8(i) in the argument.

Theorem 4.4 can also be proved by a similar argument using Theorem
3.8(ii). However, as our proof for Theorem 3.8(ii) when M = M(G) uses
the same idea in Cunningham’s proof for Theorem 4.4, this should not be
regarded as a different proof.

Let I > 1 be an integer. Define F(l;G) to be the collection of partitions
{E(H), E(G) — E(H)}, where H is a subgraph of G such that both H and
H are connected, and such that

-1 fwe(H)=ws(H)=0
|Ac(H)| = { l if wa(H) + wa(H) =1 or wa(G) =1
I+1 fw,(H)=ws(H)=1and w,(G)=0

Let G be a connected graph and let £ = E(G). Let X C F with
{X,E — X} € F(I;G). The partition {X, E — X} is a l-biseparation if

min{|X|, |E - X[} 2,
a vertical l-biseparation if
min{|V(G[X])| — wa(G[X]), [V(G[E — X])| - wa(G[E — X])} 2 1,
and a cyclical l-biseparation if
both G[X] and G[E — X] have a bicycle.

The graph G is n-biconnected if G has no I-biseparation for any 1 < I <
n. We define a graph G to be wvertically n-biconnected and cyclically n-
biconnected similarly.

Examples: Fix i € {1,2}. Let H; be the graph with V(H;) = {v} : 1<
j <4} and B(H;) = {vjv}, : 1 <j <j’ <4} - {vjvi}. (Thatis, H;
is isomorphic to K4 minus an edge.) Let G be obtained from the disjoint
union from H,; and H» by adding four more edges {v}v? : 1 <j < 4}.
Let X, C E(G) be the three edges incident with a vertex of degree 3 in G;
let X, = E(H;). Then it can be seen that {X,, E(G) — X} is a vertical
3-biseparation, and that {Xs, E(G) — X»} is both a 5-biseparation and a
cyclical 5-biseparation of G. It can be verified that G is 5-biconnected,
vertically 3-biconnected, and cyclically 5-biconnected.
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Proposition 4.5. Let G be a nontrivial connected graph. If X C E(G),
and if H = G(X], then in B(G),

0 ifwg(H)=wa(H)=0 B

1 if min{wa(H),wa(H)} = 0 and {wa(H),wa(H)} 2 1,
or if we(G) =1

2 if min{wa(H),ws(H)} > 1 and we(G) =0

where equality holds when both G[X|] and G[E(G) — X] are connected.

Proof: Let E = E(G), and let r denote the rank function of B(G). By
the definition of bicircular matroids, for any X C E, r(X) = |V(G[X])| —
wa(G[X]), and so
KX) = »(X)+r(E-X)-r(E)
IV(E)| + [V(H)| - [V(G)| — wa(H) - wa(H) + wa(G)
= |Ag(H)| — wa(H) — wa(H) + wa(G).
This completes the proof. a

Theorem 4.8. (Wagner, [10]) Let G be a connected graph. Then B(G) is
Tutte n-connected if and only if G is n-biconnected.

The proof for Theorem 4.6 will be similar to that for Theorem 4.7, and
so it will be omitted.

Theorem 4.7. Let G be a connected graph. Each of the following holds.

k(X) < [Ac([X])|-

(i) B(G) is vertically n-connected if and only if G is vertically n-biconnected.
(if) B(G) is cyclically n-connected if and only if G is cyclically n-biconnected.

Proof: Let E = E(G). Suppose that B(G) is vertically (cyclically, resp.)
n-connected but G is not vertically (cyclically, resp.) n-connected. Then
G has a vertical (cyclical, resp.) I-biseparation {X,F — X} with 1 <1 <
n. Then by Proposition 4.5, {X, E — X} is a vertical (cyclical, resp.) I-
separation of B(G), contrary to the assumption that B(G) is not vertical
(cyclical, resp.) n-connected.

Suppose that G is vertically (cyclically, resp.) n-connected but B(G) is
not vertically (cyclically, resp.) m-connected. Then there is an integer I,
1 <! < n, such that B(G) is vertically (cyclically, resp.) I-connected, but
not vertically (cyclically, resp.) (I+ 1)-connected. Then by Theorem 3.8(ii)
and (iii), there is a vertical (cyclical, resp.) l-separation {X,E — X} of
B(G) such that both G[X] and G[E — X] are connected. By Proposition
4.5, {X,E— X} € F(I;G), and so {X, E— X} is a vertical (cyclical, resp.)
l-biseparation, contrary to the assumption that G is vertically (cyclically,
resp.) n-biconnected. This proves Theorem 4.7. o
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