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Abstract

Three new characterizations of matroids are presented.
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1. Introduction
Let E be a nonempty finite set and let Z be a nonempty set of subsets of F.
Then the system ) = (E,Z) is an independence system (IS for short) if it
satisfies the conditions (a) ¢ € Z, (b) if F; € T and F, C F, then F; € T.
In the sequel, we use the symbol ) to represent an IS ) = (E,Z). A set
in the family 7 is called independent and a maximal independent set in 7
is called a base. We will denote the collection of all bases of 3 by B. We
define rank of aset SC EinanlIS ) asr(S)=max {|T|: T €Z,T C S}.
Rank of an IS is the cardinality of the largest base. A subset of E is called
dependent if it is not independent, and a minimal dependent set is called
a circuit. An IS } is called a matroid if it satisfies (c) for all I,J € Z, if
|J| > [I], then there exists an element e € J — I such that JU {e} € Z.
Given an IS )" = (E,Z) where E = {ej,¢€3,...,¢€,}, and a cost function
C : E — R, we define the combinatorial optimization problem P(C) as
follows:

P(C) Maximize  C(F) := Z Cle) (1)
eelF
Subject to F €ZI. 2

With the problem P(C) we can associate the following integer linear pro-
gramming problem ILP(C):

Maximize (8).4 3)
Subject to AX <r 4)
X220 (5)
X binary (6)
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where X € R*, C € R" as in P(C) and A(n_yyxn is a (0, 1) matrix whose
rows are the characteristic vectors of the 2" — 1 nonempty subsets of E so
that each inequality of (4) is of the form ) ¢ X, < 7(S). ILP(C) can be
transformed to the following form by adding 2" — 1 slack variables.

ILP(C)~ Maximize cX (7
Subject to AX+IY =r (8)

X>0Y>0 9)

X binary (10)

Let B be any basis for (8) with B~'r > 0 (i.e. a feasible basis) and in the
corresponding solution, let the variables belonging to X be binary. Let

Ko(B) = {C € R : B is optimal for ILP(C)~}. (11)

Recall that a subset S C R™ is a convex set if for any z!,22,...,z € S,
ZL] a;z' € S, whenever o; € R, and Ef=1 o; =1 Sisaconeifx €8
implies az € S Vo € Ry. It is well known that, if } is a matroid then
all extreme points of {X € R* : X > 0, AX < r} have integer components
and are in one-to-one correspondence with the characteristic vectors of the
independent subsets of the matroid (Edmonds [70]). Hence ILP(C) can be
considered as a linear programming problem by dropping constraints (6),
whenever Y is a matroid. From the theory of linear programming (Dantzig
[63]) it follows that K,(B) is a covex cone for each basis B or, equivalently,
for each independent set B € Z, whenever ) is a matroid. We are intrested
in the converse statement i.e., "given an IS Y, suppose K,(B) is a convex
cone for each feasible basis B of the corresponding ILP(C)~, then can we
say that )_ is a matroid?" While attempting to answer this question we
got new characterizations of matroids, which we present in this paper.

There are several well-known characterizations of matroids (Rado [42]
and Mac Lane [38] etc.). In particular, characterization of matroids in
terms of greedy algorithm is due to Gale [68], Edmonds [71], Kruskal [56],
Rado [57] and Welsh [68]. For a brief survey of matroids we refer to Kung
[86] and Welsh [76]. In this paper we provide three new characterizations
of matroids in terms of convex sets.

Before we give our characterizations let us recall some of the characteri-
zations of matroids which we shall use in our work and whose proofs can be
found in Lawler (76}, Nemhauser [88] and Welsh [68]. Let {e;, ez,...,€,} bea
permutation of E such that ¢ < j = C(e;) > C(e;). Let E; = {e1,€3,..., €}
for 1 <i < n. Asubset F C E is called a greedy solution of P(C) if, for
1 <i £ n,FnNE;is a maximal independent subset of E;. It is easy to see
by induction that a greedy solution is just a set F yielded by the following
greedy algorithm.
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Greedy Algorithm
begin
order the elements of E such that C(e;) > C(ez) > ... > C(en);
F:=¢;
fori:=1tondo
if FU {e;} €T then F := F U {¢;};
end. /* of Greedy Algorithm */

For an IS Y, a greedy solution for P(C) is called a greedy optimal
solution if it is an optimal solution for P(C).

Theorem 1 An IS Y, is a matroid iff every greedy solution is an
optimal solution for P(C) for all C € RY.

Theorem 2 A nonempty collection B of subsets of E is the set of
bases of a matroid on E iff it satisfies the base exchange aziom: if
B1,B; € B and ey € By — By, there exists e € By — By such that
(B] Uez) —e €B.

Theorem 3 An IS ) is e matroid iff, for any nonnegative cost of the
elements in E, a levicographically mazimum set in T has mazimum
cost.

Theorem 4 An ISY is a matroid iff, whenever F €T and FUe ¢ I,
the set FU e contains exactly one circuit.

Corollary 4.1 If }_ is a nonmatroid IS, then there exists a base B and
e € E— B such that (BUe)—¢ ¢ 7T for all ¢ € B.
Proof: Follows from Theorems 2 and 4. [ ]

2. New characterizations

Let ) = (E,7) be an IS and let B be a base. Define the sets X,(B) and
K(B) as:

K(B) ={C € R% : B is greedy optimal for P(C)} (12)
Ko(B) ={C € R" : B is optimal for P(C)} (13)

Clearly K(B) and K,(B) are cones and K,(B) is a convex cone.

Lemma 1 If the IS ) is a matroid then K(B) is convex for all bases
B.
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Proof: Let B be any base. We provr the lemma by showing X(B) = K,(B).
Obviously K(B) C K,(B). If possible, let C € K,(B) and C ¢ K(B), i.e. B
is optimal for P(C) but not a greedy base. Thus there exists another base
B; which is greedy with respect to the cost vector C. Since ), is a matroid,
all greedy bases are lexicographically maximum with respect to the cost
ordering C of the elements of E and of maximum cost in Z (by Theorems
1 and 3). Let rank of ¥ be p, B = {ay,0a2,...,a,} with C(a;) > C(az) >

.2 C(ap) and B; = {b],bz,... ,bp} with C(b]) > C(bg) >...2 C(bp)
From the definition of a lexicographically maximum base it follows that
C(b;) > C(a;) for 1 < i < p. Since B is not greedy, it must be strictly
lexicographically smaller than B,. Hence Y7, C(b;) > Y_i_, C(a;). Hence
B is not optimal for P(C), which is a contradiction. Hence ICO(B) = K(B).
n

Lemma 2 Let ) be an IS for which K(B) is convez for all bases B.
Then Y. is a matroid.

Proof: If possible, assume that ), is not a matroid. By Corollary 4.1, there
exists a base By and y € E — B; such that (ByUy) —e ¢ Z for all e € B;.
Let S = B; Uy and B, be a maximal independent subset of S containing
y. Then B, # S since S is dependent and if |By| = |S| — 1, we get a
contradiction to the property just stated. Thus |By| < |S| — 2, hence there
exist two distinct elements p and ¢ in S — B,. Note that ByUp ¢ T and
B,Ug ¢ I. Now consider the cost vector C? defined by

1, for e € By —
l1—¢ fore=y
Clle) =<¢ 1, fore=p (14)
2 fore=gq
0, otherwise.

where 0 < € < 1. Let C? be the cost function obtained from C! by
interchanging the values of 1 and ; at p and ¢. One can easily show that
B, is greedy solution for C? as well as for C2.

Now we shall prove that B is optimal for P(C!). Clearly C'(B;) =
C!(B,)+ 1 +¢, and C*(S) = C'(B,) + 1 —¢. Suppose B, is not optimal for
P(Cl) and let B, € T be a base with C(B;) > C'(B;). Let I = B,N S.
Thus C*(I) = C'(B;) as C'(e) = 0 for all e € E — S. Hence

c\(I) > CY(B,). (15)

Since S is the set of elements with nonzero costs, C'(S) is an upper bound
for C1(I). Since S is dependent set I C S. We claim that B,Up C I.
Suppose y ¢ I, then C'(I) < C}(S — y) = C!(B,), which contradicts (15).
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Suppose z ¢ I for any x € S —y and = # g, then C'(I) < C}(S —z) =
C!(S) — 1 £ CY(B,), again this contradicts (15). Hence our claim is true.
Since By Up is dependent and By Up C I C B, B, is dependent, which
is a contradiction. Hence B; is optimal for PC(C!). Similarly it can be
proved that B; is also optimal for PC(C?).

C!,C? € K(B,) as B, is greedy optimal for both PC(C?) and PC(C?).
Let C = JC" + 1C2. For the cost vector C, let B, be any greedy solution.
Any greedy solution for PC(C) clearly contains By and cannot contain p
and g. Thus B is not a greedy solution for PC(C) and ¢ ¢ X(B,). Hence
C is not a member of K(B,), i.e. X(B,) is not convex. [ |

Combining Lemmas 1 and 2 we have Theorem 5.

Theorem 5 An IS Y is a matroid iff K(B) ¢s convez for all B.
Let

K= Jx(B) (16)

BeB
Theorem 6 An IS Y is a matroid iff K is convez.

Proof: Soppose Y is not a matroid. Construct By,y,C?,C? and C as in
the proof of Lemma 2. Then with respect to cost function C, any greedy
solution has cost |B,| — € whereas the base By has cost |By| +0.5. Thus no
greedy solution for PC(C) is optimal for PC(C) and so there is no base
B such that C € K(B). Thus C ¢ K and K is not convex. On the other
hand, if } is a matroid then a greedy solution is optimal for all C € R}
(by Theorem 1), hence K = R%. Thus K is convex. [ |

Theorem 7 An IS Y is a matroid iff K = R].

Proof: This follows easily from the proof of the previous theorem. [ ]
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