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Abstract

A graph is well-covered if it has no isolated vertices and all the
maximal independent sets have the same cardinality. If furthermore
this cardinality is exactly half the number of vertices, the graph is
called very well covered. Sankaranarayana in [5] presented a certain
subclass of well covered graphs (called Wsg) and gave a character-
ization of this class which generalized the characterization of very
well covered graphs given by Favaron [2]. The purpose of this arti-
cle is to generalize to this new subclass some results concerning the
stability, domination, and irredundance parameters proved for very
well covered graphs in [2].

1. Introduction

Let G = (V, E) be a simple connected graph. A clique is a complete
subgraph of G, and throughout this paper, we will denote by the same
symbol the clique and its corresponding vertex set. We will denote by G[K)
the subgraph induced by the subset K of the vertex set V, and by d(v) the
degree of the vertex v. An independent set S is a set of nonadjacent vertices.
The minimum (resp. maximum) cardinality of a maximal independent set
is denoted by i(G) (resp. a(G)). A set D of vertices of G is dominating
if every vertex of V — D has at least one neighbor in D. The minimum
(resp. maximum) cardinality of a dominating set is denoted by v(G) (resp.
I'(G)). A set I of vertices of G is irredundant if every vertex z of I
which is not isolated in I has at least one I-private neighbor z', that is a
vertex of V — I which is adjacent to = but to no other vertex of I. The
minimum (resp. maximum) cardinality of a maximal irredundant set is
denoted by ir(G) (resp. IR(G)). A vertex annihilates (or is an annihilator
of) a vertex z of an irredundant I (not isolated in I) if it dominates the
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whole I-private neighborhood of x . We mention the well known chain of
inequalities between these parameters :

ir(G) < ¥(G) < i(G) < a(G) < T(G) < IR(G).

A simple connected graph is said to be well-covered if i{(G) = a(G), that
is every maximal independent set is maximum (see [4] for a survey on well-
covered graphs). This concept, which was first introduced by Plummer in
1970 (3], is of interest since the independence number problem, which is NP-
complete for general graphs, can be solved efficiently for this family. We say
that a well-covered graph of even order is very well covered if every maximal
independent set in it contains exactly half the vertices in the graph.

A simple connected graph is said to be complete k-partite if its vertex
set can be partitioned into k disjoint independent sets, or parts, such that
each vertex is adjacent to every other vertex that is not in the same part.
It is said to be complete k,-partite if furthermore all parts have the same
number n of vertices.

Let ¢ = {C,,C3,---,C,} be a clique partition of a graph G. For every
v € V we denote by N¢,(v) the set N(v) N C; and by dc,(v) its cardinality,
by C(v) the clique of C that v belongs to. We say that a clique partition C
is a Q-clique partition if C satisfies the following property :

Property Q:
a)VWwe VVie{1,2,---,p}, dc,(v)=0 or d¢,(v)=|Ci| - 1.
b)VweV, (weC(v),u€ N(v)—N(w)) = (udominates N(w)—N(v)).

The first condition states that if a vertex in G has a neighbor in some
clique of the clique partition, then it is adjacent to all but one vertex in
that clique. Note that all cliques contain at least two vertices, since G is
connected. The second one states that for every two vertices in a clique,
their non-common neighbors are adjacent.

Proposition 1.1. :
A graph admiting a Q-clique partition is well-covered, and each Q-clique
partition consists of ¢(G) = a(G) cliques and all of them are maximal.

Proof : Let S be a maximal stable set and C = {C;,C3,---,Cp} be a clique
partition. Each clique C; contains at most one vertex of S, hence |S| < p.
Suppose that C; N S = @. Then, as S dominates C; and by Property Qa),
there exist at least two vertices £, and 3 in S (we can suppose z; € C;)
and there exist y, and y3 in C; such that for : = 1,2, z; dominates y; but
not y; (j # ¢). Then by Property Qb), 2223 is an edge, which contradicts
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the stability of S. Thus each clique C; contains exactly one vertex of S
and therefore p = i(G) = a(G). Each clique C; is maximal, otherwise
there exist C; and a vertex z in V — Cj; such that @ dominates C;, hence
dc;(z) = |Cj|, which contradicts Property Qa).0

Sankaranarayana in [6] introduced a hierarchy of four new subclasses
of well-covered graphs. Among them is the class W4p, mentioned in the
abstract and defined below in Definition 1.2 by one of its characteriza-
tions given in [5]). This generalizes the characterization of very well covered
graphs observed in [2] : a graph is very well covered if and only if it admits
a Q-clique partition with each clique of cardinality two.

Definition 1.2. : (Sankaranarayana)[5)
G belongs to Wag if G admits a Q-clique partition.

In very well covered graphs, the chain of inequalities between the six
studied parameters splits into two chains of equalities as shown by :

Theorem 1.3. : (Favaron)|[2]
If G is very well covered then:i =a =T =JR and ir = «.

The aim of this paper is to generalize to W, graphs the two previous
chains of equalities dealing with the six parameters concerning stability,
domination, and irredundance, and to relate them to the structure into
Q-clique partitions.

2. Equivalence relation

In this section let G belong to W4r and let C be a Q-clique partition
of G. Like Sankaranarayana we define the following equivalence relation :

Definition 2.1. : (Sankaranarayana)[5)
We say that u = v if either u = v or |C(u)| = |C(v)| and V(z,y) € C(v) x
C(v), zv and yu are edges if and only if = # » and y # v.

Note that two vertices of the same clique cannot be equivalent and that
by Property Q, this relation is effectively an equivalence. We will denote
by U the equivalence class of » and by C(U) the corresponding clique
class, that is, C(U) is made up of the cliques C(u) corresponding to each
vertex u € U together with the edges between the cliques. This equivalence
relation is very helpful to describe the structure of W, graphs :
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Proposition 2.2. : (Sankaranarayana)(5]

a) The equivalence classes partition V into independent sets.

b) Each clique class is complete k,-partite, with each part forming an equiv-
alence class, and the clique classes form a partition of G.

Now we mention some results concerning the relation = and some defi-
nitions that will be useful afterwards.

Lemma 2.3.:
If u = v and uz € E, then vz € E.

That is, two equivalent vertices have the same neighborhood.

Proof : This is clear if ¢ € C(u) U C(v). Now suppose z € C(u) U C(v).
As uz € E, by Property Qa) there exists w in C(u) such that wz is not an
edge. As u = v we have wv € E (indeed v is adjacent to every vertex in
C(u) — {u}) and Property Qb) implies vz € E.O

Cl = Cg (C] - wl).l_(Cz - :cz)

Figure 1 : C; and C; are two cliques.

Definition 2.4. : (See Figure 1)

Let C; and C; be two cliques in C. We say that :

- C1 = Cy if G [CyUC; ] is complete kp-partite.

- (C1—=21)L(Ca—=2) if there exists (21, 22) € Cy X C; such that de, (21) =
dc, (z2) = 0 and such that G [(C1 — {21}) U (C2 — {z2}) ] is a clique.

Remark 2.5.: (See Figure 1)

a) u = v if and only if C(u) = C(v) with {u,v} forming one of the parts.
b)If C; = C; every (¥1,21,¥2,22) € C:12 x Cy? such that y; = y, and
21 = z; satisfies G [y1,21,¥2,22 | ~ C4.
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c) If (C1 — &1)L(Cs — z3) every (y1,21,¥2,22) € C1? x Cy? satisfies
G [11,21,¥2,22 | ~ Py, K, or Z; (a triangle with another vertex adjacent
to exactly one of the three vertices of the triangle).

Definition 2.8. : Let C be a Q-clique partition of G.
A link is an induced subgraph G [y1, 21, 22,y2 | isomorphic to Cy4 such that
¥121 and y22; are edges of two distinct cliques of C.

The following result shows how the edges are positionned between two
cliques of a @Q-clique partition, whether they are in the same clique class or
not.

Lemma 2.7. : (See Figure 1)

If there exists an edge between two cliques Cy and C, in C then :
Either C; = C; and G [C; U C; | contains a link.

Or (Cy — 21)L(C2 — z2) and G [C; U Cy ] is linkless.

Proof : Suppose for instance that |C;| < |C2|. We will consider two cases :
Case 1 : If there exists ¢, € C; such that dc,(z1) = 0: Let y1y, be an edge
with y; € C; (i = 1,2). Then by Property Qa) let us call z; the vertex of
C; such that Ng,(y1) = C2 — {z2}. Suppose that there exists z; € C; such
that 2122 € E. Let z; € C; — {z2}. We know that y;2; is an edge, hence
by Property Qa), z; is adjacent to every vertex of C; — {1} (because of
dc, (1) = 0) and in particular to z;. Therefore z; is adjacent to C2 — {z2}
and to z3, a contradiction. Thus d¢,(22) = 0. Then, by Property Qa),
there exists an edge between each vertex of C; — {z;} and each vertex of
Cz - {:cz}

Case 2 : If for all z € Cy dc,(z) > 0: Let Cy = {z1,22,---,21}. By
Property Qa), for each z; there exists one and only one y; in C, such that
z;yi € E. Moreover if |Cy| < |C2| there exists yi.1 € C; such that y;
is adjacent to each vertex of Ci, a contradiction. Hence G [C1 U C; | is
complete ky-partite.

To conclude, by Remark 2.5, it is clear that C; = C; if and only if G [C; U
C> | contains a link.0

We now express the translation of Property Qb) in terms of whole
cliques.
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Lemma 2.8. : (See Figure 2)

Suppose that C,,C; and Cj; are three cliques in C and suppose there exists
(:cl,yz,ZQ,:c;;) in C] X sz X 03 such that (Cl - (cl)J_(Cz - yz) and (Cg -
22)J.(C3 - (83).

If yo # z3 then (C; — 1) L(C; — z3).

Proof : We know that N¢,(y2) = Cs3 — {23} and d¢,(y2) = 0. Similarly
Ne,(z2) = C1 — {1} and d¢,(22) = 0. We now apply Property Qb) to C;
(v =y2 and w = z2) and get that G [C; — {21},C3 — {23} ] is a clique, and
thus (Cy — z1)L(C3 — z3) by Lemma 2.7 .0

Figure 2 : C;,C; and Cj are three cliques.

3. Reduction

Let G belong to W4 and let C be a Q-cligue partition of G. One can
associate with the graph G the quotient graph G obtained by replacing each
class U of G by one vertex called U, and where two vertices are joined in G
if there exists in G an edge between the corresponding two classes. This is
equivalent by Lemma 2.3 to saying that the subgraph of G induced by the
two classes is complete bipartite (for an example of reduction see Figure 3).

Theorem 3.1. :
G belongs to Wag and is the same for every choice of a Q-clique partition
of G.
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<> arecliques
S . are clique classes

the reduction of G

Figure 3 : G and its associated G.

Proof :

It is clear that G belongs to W 4R since every two vertices in the same class
have the same neighbors. Let C = {C1,C3,*+-,Cp} and C* = {C},C3,--+,C}}
be two Q-clique partitions of G (by Proposition 1.1, p = i(G) = «(G)).
Every C* € C* is entirely included in a clique class in relation to C. Indeed,
otherwise suppose that there exists C* € C* satisfying C; N C* # 0 and
C2 N C* # O with C; and C; not in the same clique class in relation to C.
For i = 1,2 let y; be a vertex of C; NC* and as C; # C, there exist z; € C;

(i = 1,2) such that (C; — 1) L(C; — =2) (see Lemma 2.7). The vertex z,
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is not in C* because z,1y, € E (C* is a clique), and the same for 2. Then
by Property Qb) applied to C* (with v = y; and w = ), we must have
z1x2 € F, a contradiction.

Let {C1,C5,--+,Ci} be a clique class in relation to C constituted by |C;|
equivalence classes. As C* is a clique, C* does not contain two vertices u
and v such that » is equivalent to v in relation to C, hence |C*| < |Cy|. If
|C*} < |C1], let U be a class such that U N C* = 0 and let u be an element
in U; then © dominates C*, because in a clique class uv ¢ F if and only if
u = v, which contradicts the maximality of C* (see Proposition 1.1). Thus
|C*| = |C1] and C* contains exactly one vertex by class in the clique class.
Therefore all the cliques of C* located in the clique class in relation to C
are equivalents and the clique classes in relation to C and in relation to C*
are the same.O

Remark 3.2. :

To resume, if we consider the classes in relation to a fixed Q-clique partition,
each clique of another Q-clique partition contains exactly one vertex by class
in some clique class, and we can obtain all the @Q-clique partitions in this
way.

Definition 3.3. :
We say that G is the W g-irreducible graph associated to G
and we say that G is Wy g-irreducible if G = G.

Conversely, in a graph G which has a Q-clique partitionC, let us consider
the following operation which gives a new graph denoted G(C,S) : if C €
C and C = {uy,us,---,ur} replace every vertex u; by a copy S; of an
independent set S, join every pair of vertices in S; and, corresponding to
each edge u;z in G, add edges s;z in G(C, S) for all 5; in S;. Then G(C, S)
belongs to Wsg and one can get all Wap graphs from irreducible ones
by applying the above operation to different cliques. Let us now study a
characterization of W4 g-irreducible graphs in order to recognize them.

Theorem 3.4. :

The following are equivalent for a graph G.
a) G is W g-irreducible.
b) G has a linkless Q-clique partition.
c) G has an unique @Q-clique partition.

Proof : )
a) & b) : G is Wyg-irreducible if and only if there is no C; and C; in C
such as Cy = C3, that is, if and only if G is linkless (See Lemma 2.7)
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a) & c) : See Remark 3.2 O

We now suppose that G is W r-irreducible, and it is important to note
that, as G is irreducible, for every (C1,C2) € C? such that there exists an
edge between C; and Cj, then (C; — 21)L1(Cs — z2).

Definition 38.5. : Let G be a Wg-irreducible graph.
A vertex v is simplicial if G [N(v) | is a clique in a Q-clique partition, a
clique containing a simplicial vertex is also said to be simplicial, and the
number of simplicial cliques in G is denoted by ¢(G).

Proposition 3.8, : Let G be a Wyg-irreducible graph.

1) A vertex v is simplicial if and only if N(v) = C(v) — {v}, that is, if
and only if d(v) = |C(v)| — 1.

2) If G is not a clique, then each clique of the clique partition contains
at most one simplicial vertex.

Proof :

1) Clearly C(v) — {v} C N(v) and by Property Qa) there cannot exist a
vertex of N(v) out of C(v), otherwise G [N(v) ] could not be a clique.

2) By Property Qa).0

Proposition 3.7. : Let G be a W4g-irreducible graph.
Every vertex is simplicial or is adjacent to every vertex except the simplicial
vertex of some simplicial clique.

Proof : Suppose that z; is not simplicial. Then z; is adjacent to some
vertices in another clique C;. Let C; be C(21). As G is Wyp-irreducible, by
Lemma 2.7, for some z; € C; and 22 € C; we have (Cy;—z;) L(Cy—23). We
can suppose that there exists y3 € N(22)—Cj, otherwise by Proposition 3.6
z, is simplicial and note that z; is adjacent to Cz2 — {z,}. Let C3 = C(y3),
and by Lemma 2.7 we have (C; — y2)L(C3 — x3) with y; € Cz — {22} and
z3 € C3 — {y3}. Then by Lemma 2.8 we have (C; —z,).L(C3 — z3). Finally,
N(z2) C N(z1) and because of z1z; ¢ E we have d(z2) < d(z1). Let us
rename z as z3, and note that if C; = C(2;) then z; dominates C; — {22}.
We can iterate the process by replacing z; by z2. The process stops since
there is no strictly descending infinite chain of degree. Remark that if 2, z2
and z; are three consecutive terms of the process, z; dominates C; — {z2}
and z; dominates Cy — {23}, hence by Property Qb) applied to w = 23,
u = z; and v some vertex of C; — {22}, z1 dominates C3 — {z3}. Thus,
we can suppose that z3 is the last vertex of the process, which must be
simplicial and the associated clique suits.0
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4. Independent, Dominating, and irredundant sets

We are now ready to prove the main result of this article which gives,
according to the structure due to the Q-clique partition of G, the relation
between the six parameters concerning stability, domination, and irredun-
dance.

Proposition 4.1.

Let G be a Wyp a.nd let Y,, 1 < j < q(G), be the simplicial vertices in G.

Then every subgraph A of G containing one vertex Z; of each C(Y;) - {Y¥;}
is a dominating set of G and every subgraph A4 of G containing one vertex z;
of each class Z; is a dominating set of G. Hence, there exists a dominating
set in G which contains exactly one vertex of each simplicial clique of the
associated W4 g-irreducible graph G of G.

Proof : Let £ be a vertex of G with equivalence class T' in G. From Propo-
sition 3.7, the vertex T of G has a neighbor Z; in G. Moreover by Lemma
2.3, t is adjacent in G to all the vertices in the class Z; and in particular
to the only vertex z; of AN Z;.0

Remark 4.2.:Since two equivalent vertices have the same neighborhood:
1) If an irredundant set I of G contains a vertex z, either z is isolated in
I and if I is maximal, it contains all the vertices of the class X of z, or =
has a neighbor adjacent to no other vertex of I, and I does not contain any
other vertex of X.

2)a) If I is an irredundant set of G, then the set I defined by I=J,., X is
irredundant in G.

b) If Iis an irredundant set of G, let us call Z the set of the vertices
of I isolated in I and let Y be I—Z. Then the set I of G defined by
=(Uzez 2) U (Uyey{y/for a choice of y in Y'}) is irredundant in G.
This choice (see 2)b)) induces an injection from the set of the irredundant
sets of G into the set of the irredundant sets of G which is compatible with
the inclusion. Therefore this injection maps the maximal irredundant sets

of G into the maximal irredundant sets of G.

Proposition 4.3. :
If G belongs to Wag, then ir(G) > q(G).

Proof : If G is a clique, then i#(G) = ¢(G) = 1. Assume henceforth that
G is not a clique, and let us consider 2 minimum maximal irredundant I
of G. Then I is a maximal irredundant of G (see Remark 4.2) such that
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1| < |I], hence ir(G)< ir(G).

Since ir(G)< i7(G) we can suppose that G is W4 g-irreducible and then it
suffices to show that every maximal irredundant set I contains at least g
vertices. When G is not a clique we will find an injective function f from
the ¢ simplicial vertices into I. There are two cases to consider.

Case 1 : z is simplicial and satisfies C(z) NI # 0 : let u be a vertex in
C(z)NI and define f(z) by u. Note that by Proposition 3.6,), f(z) = f(z2)
cannot stand in this case for another simplicial vertex z and note that f(z)
is located in a simplicial clique.

Case 2 : y is simplicial and satisfies C(y) NI =0 : by maximality I U {y}
is not irredundant and as y is isolated in U {y} (since that N(y) = C(y) —
{¥}), y annihilates at least one vertex a in I.

We will prove that C(a) is not simplicial. Since the I-private neighborhood
of a is contained in C(y), more precisely is exactly C(y) — {y} by Property
Qa), a is not simplicial. As G is connected, we have C(a) # {a}.

If C(a) NI = {a}, every vertex b of C(a) — {a} dominates some vertex c
of I — {a}, since the I-private neighborhood of a is contained in C(y) and
bg C(y). Cla)nI = {a} and ¢ € I imply ¢ ¢ C(a). Hence b, which is
adjacent to ¢, is not simplicial, and thus C(a) is not simplicial.

If C(a) NI # {a}, then a vertex b of C(a) N (I — {a}) admits an I-private
neighbor ' & C(a) U C(y) since C(a) U (C(y) — {y}) C N(a) and y is
simplicial. As G is W 4g-irreducible, the cliques C(y), C(a),C(b') form the
configuration described in Lemma 2.8 with y» = @ and z; = b, and thus
C(a) is not simplicial.

We put f(y) = a. Since f(y) is located in a nonsimplicial clique, f(y) =
f(z) cannot hold if = belongs to case 1. Suppose furthermore that ¢ is
simplicial such that C(¢)NI =0 and f(t) = f(y) = a: then C(y) = C(t) is
the clique of the @Q-clique partition including the I-private neighborhood of
a. Then, by Proposition 3.6,), y = £. Thus f is injective and the proposition
is proven.O

Theorem 4.4.:

Let G belong to W4 g and let p(G) be the number of cliques and g(G) be the
number of simplicial cliques in any Q-clique partition, then i(G) = a(G) =
I'(G) = IR(G) = p(G) and ir(G) = v(G) = ¢(G).

Proof : By Propositions 4.1 and 4.3, it is clear that if G is not a clique, then
ir(G) = ¥(G) = ¢(G), and if G is a clique, then i#(G) = v(G) = ¢(G) = 1.
Let I be a maximum irredundant set and C = {C1,C3,:-+,C,} be a Q-
clique partition of G. Each C; contains at most two vertices of I : indeed,
suppose {21,Z2,23} C C; NI and let y; be a I-private neighbor of z;
includedin C; (j # i). Then y;2, and y; 3 are not edges, which contradicts
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Property Qa) since y;z, € E.
Let F;={CecC/ICNI|=1},0<i<2.

1) Suppose that G is W4 g-irreducible.
Consider H the graph obtained from G in the following manner : the
vertices of H are the cliques of Fo U F, and the edges of H are the couple
(Co,C2) € Fy x F3 such that Cy contains at least one I-private neighbor
of some vertex in Ca NI. It is clear that H is bipartite with bipartition
(F 0, F. 2)'

Claim 1 : VC, € Fy dH(Cz) > 2.

Let z; and z; be the vertices of C; NI and for ¢ = 1,2, let &} be one
I-private neighbor of z;. If C(z}) = C(z5) then G [z;,z2,2},z} ] is a link,
which contradicts G is W g-irreducible (see Theorem 3.4).

Claim 2 : VCj € F} dH(Co) <2

Suppose that z},z5, and zj, which are respectively three I-private neigh-
bors of three vertices of z;,22, and z3 of I, are located in the same clique
C; of C. Clearly z; cannot be in C; and as 2,2z} € E then by Property Qa)
z; dominates x4 or z}, a contradiction.

As H is bipartite and if X; C F; we have :

Y du(Co) 2 e(Xa, N(X3)) = Y. du(Cy)

CoEN(X3) Cr€X;

where e(X3, N(X2)) denotes the number of edges between X, and N(X3).
Then by Claims 1 and 2 :

AN(Xz) > ). du(Co) and Y du(Ch) > 2X|
CoEN(X3) Ci€X,

Therefore [N(X;)| > |X2| and we are now ready to apply the following
famous theorem :

Theorem (Hall 1935)[1] Let G be a bipartite graph with bipartition (X,Y).
Then G contains a matching that saturates every vertex in X if and only
if IN(S)| > |S|forall S C X.

Thus there exists a matching that saturates every vertex in F, and which
induces an injection ¢ from F3 into Fj.

22 If G is W4 g not irreducible.
Let G be the a:ssocia.ted W sg-irreducible graph and consider the set L; of
the cliques of G which correspond to the cliques of G which are in F;.
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Claim 3 : There exists a bijection s from F; into L.

Let C; be in F5. Let z; and z; be the vertices of C; N I. Note that, for
t = 1,2 X; is the class of z;. Then the clique class C = C(X;) = C(X,)
is such that C NI is reduced to {z;,22}, by Remark 4.2,y and because the
clique C of G contains at most two vertices X3 and X3 of the maximal
irredundant set I defined as in Remark 4.2. Thus CN I = {X;,X;} and
C € L;. Then define 5(C;) by C.

Claim 4 : There exists an injection ¢ from Ly into Fp.
For every clique Cq in Lo define t(C_Jo) by Cp with Cp being one clique in G
corresponding to the clique Cq in G.

By 1) there exists an injection ® from L; into Ly. Then, define ¢ by to®os
which induces an injection from F; into Fjp.

Thus |Fy| < |Fol and IR = |1 = 21| + |Fi] < |Fol + || + 1Bl < p.
Moreover as i(G) = p (Proposition 1.1) we have the following chain of
equalities i(G) = a(G) =T(G) = IR(G) = p.0

Acknowledgements

The author would like to thank O. Favaron for her helpful remarks con-
cerning this article.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, The
Macmillan Press LTD 1976.

[2] O. Favaron, Very well covered graphs, Discrete Mathematics 42 (1982)
177-187.

(3] M.D. Plummer, Some covering concepts in graphs, J. Combin. Theory
8 (1970) 91-98.

[4] M.D. Plummer, Well-covered graphs : a survey, Quaestiones Mathe-
maticae 16(3) (1993) 253-287.

[5] R.S. Sankaranarayana, A generalization of Favaron’s theorem, Ars
Combinatoria, Accepted.

(6] R.S. Sankaranarayana, Well-covered graphs : some new subclasses
and complexity results, PhD thesis, Department of Computing Sci-
ence Technical Report TR 94-02, University of Alberta, 1994.

271



