Polychrome labelings of trees and cycles

Katja Valentin *

Abstract

This paper deals with a new kind of graph labeling similar to the well

known harmonious, graceful, and elegant labelings. A polychrome
labeling of a simple and connected graph G = (V, E) by an abelian
group A is a bijective map from V onto A such that the induced edge
labeling f*(vw) = f(v) + f(w), vw € E, is injective. Polychrome
labelings of a path and a cycle by a large class of abelian groups
are designed, and the connection to the above mentioned labelings is
shown. In addition, the author presents a conjecture which is similar
to a famous conjecture of G. Ringel about graceful trees (see [9]).

1 Introduction

A labeling of a simple connected graph G = (V, E) is an injective mapping
f from V on a finite set M. If e = |E|, then each labeling f from V
on {0,...,e} induces an edge labeling f; from E on the set {1,...,e} by
fo(vw) = |f(v) — f(w)| for vw € E. If f, is surjective, f is called graceful.
This labeling was defined by Rosa [11] first, but the terminology is due
to Golomb [3]. Moreover, we introduce two additive versions of graceful
labelings.

If G is not a tree, Graham and Sloane [5] call a labeling f from V on Z,
harmonious, if the map f, : E — Z,. defined by fa(vw) = f(v) + f(w)
(mod e) for vw € E is bijective. If G is a tree, a map f from V onto Z. is
harmonious, if f, (defined as above) is bijective. We find an exact additive
version by the elegant labelings.

A labeling f from V on Z.4; with induced edge labeling fe; : B — Zoq1
defined by fei(vw) = f(v) + f(w)(mod e+ 1), vw € E is said to be elegant
(see [1]), if fei(E) = Zesr \ {0}. A graph is called graceful (harmonious,
elegant), if it has a graceful (harmonious, elegant) labeling.
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The previous labelings above use the cyclic group. We introduce a new
kind of labeling by extending the considered group to an abelian group.
Let G = (V, E) be a simple connected graph and A be an abelian group. A
labeling f of G by A is a bijective map from V onto A. Let f* : E — A be
defined by f*(vw) = f(v)+ f(w) for vw € E. We call f and G polychrome,
if all edge labels are different. If f is a polychrome labeling of a tree T,
there is one vertex whose label does not occur as an edge label. This vertex
is called the root of f and T'.

We consider abelian groups of order n labeling the path P, polychrome.
Then we study labelings of a cycle in order to find more groups labeling a
path polychrome. In the last section we investigate trees with polychrome
labelings by cyclic groups and show the relationship to a special class of
graceful trees.

2 Polychrome labelings of P,

Let P, = (V, E) be a path with vertex set V = {vp,...,vn—1} and edge set
E = {vi—1v;| i < n}. Then we denote this by P, = vy...v,—1. We start
our investigations with the cyclic groups, the basic components of abelian
groups.

2.1 Proposition. Let n be an odd number. Then there exists a polychrome
labeling of P, by Z,,.

Proof. Let P, = vy...v,—,. We define the map f from V onto Z,, by
f(v;) = 4. Since n is odd, the induced edge labeling f* is injective. Thus f
is polychrome with root v, _;. 0

2.2 Proposition. For all positive integers n the path P, has a polychrome
labeling by Z,,.

Proof. Let P, = vy...v,-1 and f be the map from V onto Z,, defined by

Ny = £ ifiiseven, . _
f(vz)—{ l."z;lJ*'dz'—l if 1is odd (for i=0,...,n—1).

Evidently, f is a labeling. Let e; = vi—1v; for 1 < 7 < n. Then we obtain

for the edge labels f*(e;) = ["2;1J +ifori=1,...,n—1 Thus fisa
polychrome labeling with root of colour |251]. O
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The following theorem is a special case of Result 3.3 (see Walker [12] Th. 3).

2.3 Theorem. Let A be an abelian group of odd ordern. Then there exists
a polychrome labeling of P, by A.

In order to prove the next theorem we need to introduce the representation
of an integer.

2.4 Lemma. Let by,...,0q > 1 be iniegers and by = 1. Then the map
fa: Zb, X oo X Lpy — Lp,...b, with

d-1 i
fa(ao,...,aam1) =Y e [] b
=0 j=0

is bijective.

Proof. Using induction on d one can show that
fa(ao, ..., aa- ,)<Hb for d € N and a; € Z,,,,. (%)

We shall prove by induction on d that fg is bijective.
Clearly, fi is bijective.

Suppose now that d > 1 and the assertion is true for d — 1.
Let (aq,...,aa-1),(ab,...,a4_y) € Zy, X -+ x Ly, such that

fa(ao, ..., aa-1) = fa(ag, ..., a4_y).

d-1
From fq4(ao,...,aa-1) = fa-1(ao,...,ad—2) + ag—1 - [] b; we obtain
i=0

d-1
fa-1(av, ..., @a-2) = fam1(af, ..., a4_s) = (@hoy —aacr) - [] b

=0
By (*), this implies ag—; = a}j_, and fg_1(ao, ..., aa-2)=fa-1(ay, .. .,a&_g).
By induction, it follows that (ao,...,as-1) = (ap,...,ay_,). Hence fy is
bijective. m]

k-1
If £ € Zy, ..., with representation x = ag+a1by+agbibe+.. . +ar_1- [] bs,
i=1

we define repr(p, ... bk)(a:) := (ag,...,ar—1). If the values for by,..., b
are given by the context, we write repr(z) as well.
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2.5 Theorem. Let A = Z, x -+ X L, withd > 2, ky even and k; odd
fori>1. Then P,, n =|A|, has a polychrome labeling by A.

Proof. Let P, = vg...vp-1 and @ = (ky,...,kq). If z € Z, with
(z1,-...,2q) = reprg(z), we define f : V — A by

flve) = (f (mod k1), 2, ..., wd) if = is even,
7 (B + & (mod k1), @2, ..., za) if z isodd.

We prove that f is bijective.

Let z, y € Z, and (21,...,24) = repra(z), (¥1,...,¥4) = reprz(y). Let
f(vz) = f(vy). By Th. 2.4, we obtain z; = y;, 1 > 1. Thus | — y| < k.

If z and y have the same parity, we conclude k; | =%. Since
|t —yl < k1, we get z = y. If z and y have different parity, we assume
w.l.o.g. that z is even and y is odd. Then k; | yi;—“’—k‘ follows. Together
with —k) <y—2 —1 < k; — 2 we obtain z = y. Thus f is bijective and a

labeling of P,.

Let ez = vpvg41 for 0 <z < n— 2. We obtain f*(ez) = f(vz) + f(vo41).
If f(vg) = (21,...,24), we define

sg:=max{i€IN|i<d, aj=k;j—1for1<j<i}.

Moreover, let t; = (tz,1,...,tz,4) € A, where
_ 0 if i> s, .
t:v,z—{ 1 lflslséx (fOl‘ 'l—l,..wd).

We suppose that f(v:) = (z1,...,2d), f(Ves1) = (Y1,.-.,¥a) withz <n-1
and conclude y; = z; + 1 ; for ¢ > 1. Moreover, £, +y, = k2 +z (mod k).
Thus

k
flez) = (:c + Tl(mod k1),2z4 +iz,2,.. 224+ tx_d) .

Let e, and e, be equally labeled egdes such that reprgz(z) = (21,...,%q)
and reprz(y) = (y1,-..,y4). We obtain

2a;+ti=2yi+lyi, 1> 1 €))]

and
ky ky
7+a:(mod k1)=7+y(mod ky). 2)
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Assume s; < sy. If s > 1, then z5, < ks, ~1 = ys,. But, by (1),
we conclude 2z5, + 1 = 2ys, + 1, which implies z5, = Ys,- This is a
contradiction. If s, = 1, we get z(mod k1) # ky — 1 = y(mod k;). This
contradicts (2).

Thus s; > sy. Similarly, we get s; < s,. Therefore s; = s, and {, = t,.
Since the numbers k; are odd for i > 1, (1) implies z; = y;, i > 1. By (2),

we have z (mod &) = y(mod k). Finally, we obtain z =y, and P, has a
polychrome labeling by the group A. [m]

Hence there is a polychrome labeling of a path by all abelian groups with
cyclic Sylow 2-group.

Now we prove a non-existence result due to M. Maamoun and H. Meyniel
[9], which is a counterexample to a conjecture of G. Hahn.

2.6 Lemma. Ifd > 1, then in (Z,)? the equation 5. =z =0 holds.
L‘E(Zz)d

Proof. Let d > 1 and (sy,...,54) = ), «z, then s; = 2""1(mod 2),
:L‘E(Zq)d

i=1,...,d. Since d > 1, it follows that s; = 0. ]

2.7 Result. Ifd > 1, then there is no polychrome labeling of Pya by (Z5)°.

Proof. Let d > 1 and Pys = vg...v9a_,. We assume that there exists a
polychrome labeling f of Py« by (Z2)?. Since each element of (Z3)? is of
order two, the root of f is of colour 0. On the one hand the sum of edge
labels equals the sum of vertex labels; on the other hand

291 2¢-1

D fmieaw) =2 Y f(w) = (f(vo) + f(vae_1)).
i=l i=0

d

-1

The Lemmaabove implies ) f(v;) = 0. Weobtain f(vg) + f(vga_;) = 0.
i=0

Thus f(ve) = f(va¢_,). This is a contradiction. 0

The groups with elementary abelian Sylow 2-group different from Z, play
a special role, as we shall see in the next section as well.
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3 Polychrome labelings of the cycle C,

In this section we study cycles and thereby get results about labeling a
path.

Let Cy, (n > 2) consist of vertices vy, ..., vn—; and edges vovy, . .., Un-2VUn_1,
Un—109. We denote this by C, = vy ...vp-1.

We begin our investigations — similar to the last section — with cyclic groups.
By definition, a labeling of the cycle C,, is harmonious if and only if it is
polychrome by Z,,. Therefore we can use Th. 14 from (5] as follows.

3.1 Result. The cycle C, has a polychrome labeling by Z,, if and only if
n s odd.

The next four theorems characterize those abelian groups that admit a
polychrome labeling of a cycle.

3.2 Theorem. Let A be an abelian group of odd order n and f be a
polychrome labeling of P, by A. Then f is a polychrome labeling ofC

Proof. Let d,n,...,ng € Nsuchthat A=7Z,, x---xZ,,and n = H ng.

Let P, = vo...vn_1. We shall prove that f(vg) + f(va—1) = f(r), where r
is the root of P

n—1
Let (s1,...,54) € A such that (s1,...,84) = . f(v;). Then
i=0

n;i—1

Z {(mod n;) =

n n,(n, n;

D (mod n;) = n - —1 (mod n;)

fori=1,...,d. Since the numbers n; are odd, we obtain s; = 0,1 < i< d.
Thus (s1,...,54) = 0.

Define e; = v;_1v;, 1 < n. Then
"i] f*(es) = 'i:l f(vi) = f(r) = = f(r)
and = =
'i:f*(ei) =2 'if(vi) = f(v0) = f(vn-1) = —f(v0) = f(vn-1).
This i;nplies £(r) =t;(vo) + f(va—1). Accordingly, vo...va_1 is a poly-

chrome cycle.
0
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The next result is due to Walker ([12] Th. 3) who considered another kind
of labelings called ’standard colourings’. In our terminology his result reads
as follows.

3.3 Result. Let A be an abelian group of odd order n. Then C, has a
polychrome labeling by A.

3.4 Theorem. Lei A be an abelian group of odd order m, and let | be
a posilive even inleger. Then there is no polychrome labeling of Cpq by

AXZ:.

d
Proof. Letd,n,...,ng € Nsuch that A = Z, x---xZ,, andm = [] n;.

i=1
Let n = m - l. We assume that there is a polychrome labeling of C,, by
AxZ;. Let (s1,...,5441) € A x Z; such that (s,...,sap1) = 3, =.
TEAXX,
We obtain

1-1 n
- ) i(modl!) = T

1=0

il -

1))
) (mod {)

Sd41 =

Thus ), z#0.

TEAXZ,

N3 ~|3

(I=1)(mod I) = g(mod 1.

Since each vertex is incident with two edges, on the one hand the sum of
edge labels equals 2 -5 2. On the other hand the sum of edge labels

TEAXZ
equals the sum of vertex labels. We conclude 3> =z =2-) 2. This
TE€EAXZ; TEAXZ;
implies 3~ =0, a contradiction. D

TEAXZ;

3.5 Theorem. Let A =Z,, X - X Zp,, d> 2, be an abelian group such
that at least two n; are even. If n = |A|, then each polychrome labeling of
P, by A is a polychrome labeling of C,, by A, too.
d
Proof. Let n = [] n; and f be a polychrome labeling of P, = vg...vn—1
i=1
with root 7. We establish f(r) = f(vo) + f(vn-1).
n—1
Let (s1,...,54) € A such that (s1,...,s4) = Y &= 3 f(vi). Then
i=0

TEA
n n  nj(n; —1)
5j = - z i(mod nj) = — %——(mod n;)
i=0 ?
= n. M- ! (mod n;) = %(mod nj) (for 1 < j < d).
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Since at least two n; are even, it follows that s; =0 for 1 < j <d.
As in proof of Th. 3.2 we obtain f(r) = f(vo) + f(vn-1). Hence one can
close P, = vg...v,-; to a polychrome cycle. 0

Notice that the preceding theorem does not imply the existence of a poly-
chrome cycle by the considered groups.

We are now ready to compose small cycles to bigger ones.

3.6 Theorem. Let A and B be abelian groups of relatively prime orders
m and n. If Cy and C,, have polychrome labelings by A and B, resp., then
there exists a polychrome labeling of Cpy.n by A X B.

Proof. Let f and f’ be polychrome labelings of C, = vp...vm-1 and
Cp=wv)...v_, by A and B, resp. Let Cpy.y = wo ... Wnn—~1. We define
the map g : {wo,...,wWmn-1} = A x B by

g(wi) = (f(vi (mod m)), f’('vz" (mod n))) (fOl’ 1=0,...,mn— ])

Since m and n are relatively prime, and f and f’ are bijective, g also is
bijective by the chinese remainder theorem. Hence it is a labeling of Cp,.po.

Let the e; = wiwi41 (mod mn), 0 < i < mn, be the edges of Cn... We obtain
for i < mn

g‘(ﬁi) = (f* ('Ui (mod m) Vi4+1 (mod m))a fl*(vz (mod n) ”$+| (mod n))) .

With the same argument one can see that g* is bijective, too. Thus g is a
polychrome labeling of Cpn.n by A x B. (]

Remark. The converse of Th. 3.6 is not true. While Zz and Z, x Z4 x Z3
permit polychrome labelings of C3 and C)z, resp., there is no polychrome
labeling of P4 (thus also C4) by Z3 x Z3 (cf. Th. 2.7).

Consider an abelian group A and its Sylow 2-group S, k£ = |S|. If there is
a polychrome labeling of Cx by S, we obtain a polychrome labeling of C,,,
n = |A|, by A (¢f. Res.3.3, Th.3.2 and Th. 3.6). If S is elementary abelian,
we cannot refer to the last theorem. However, we get a generalization of
Th. 3.6.

3.7 Theorem. Let A and B be abelian groups of order m and n. If n s

odd, and if there are polychrome labelings of Cp, and Cp, by A and B, resp.,
then there ezists a polychrome labeling of Cy,., by A x B.
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Proof. Let f and f’ are polychrome labelings of C,, = vg...vm—; and
Cn = vp...vh_, by A and B, resp. Let V be the vertex set of
Cmn = Wo...Wnn_1. We define the map g from V onto A x B by

g(wi) = (f(”s' (mod m)),fl('l”l#-l )) (for i =0,...,mn - 1).

Then g is bijective by construction.
Let e; = wiwiy1 (mod mn), 2 = 0,...,mn — 1, be the edges of Cn., and
€ = ViVi41 (mod m) fori =0,...,m—~1. Then we obtainfori = 0,...,mn—1

g*(ef) =g('w,') + g(wi+l(mod mn))
= (f('vi (mod m))’ fl('vll.#J )) + (f('vi-H (mod m)), fl(v’l- i1 (mod mn!J ))
= (" @ moa m))s PO )+ F (0] 83 moa ) - *)

We prove that g* is bijective.

If g*(e:) = g*(ej), then f*(&; (mod m)) = f*(&; (mod m)) holds. Since f is
polychrome, we conclude i(mod m) = j(mod m).

If i(mod m) # m — 1, we obtain |£| = |&l] and |L] = lLJ In con-
Jjunction with () follows that 2f’(vl J) = 2f’(vl_LJ) Since n is odd, this
implies f'(v] |. J) =f (v[_,_J) Furthermore, f’ is polychrome. Thus we get

k]

[—J [-J-J and |i — j| < m. Since i(mod m) = j(mod m), we obtain -

m

i=j.

If i(modm) = m — 1, then |%l]| (modn) = [#J + 1(mod n) and
I_LJ mod n) = |_J—J + 1(mod n). We define k = | %] nd ! = [mJ
Together with () this implies

fl(v;:) + f,(v;c-l-l (mod n)) = fl(v;) + fl(v;+l {mod n))‘

Since f’ is polychrome and v} v,+] (mod n) fori=0,...,n~1is an edge of
Ch, we obtain k£ = I. Using ¢(mod m) = j (mod m) we get i = j. Thus ¢
is a polychrome labeling of C,,,., by A x B. a

To decide for every abelian group A, whether a polychrome labeling of
a path or a cycle by A exists or not, it suffices to show that there are
polychrome labelings of a cycle by the following groups:

o (Z2)* x Z, for k > 1 and all odd prime powers 7.

¢ The non-cyclic and non-elementary abelian 2-groups.
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One result concerning such groups is the following.

3.8 Proposition. There exists a polychrome labeling of Cgy, by Zan X Z 5.

Proof. Consider G = (V,E) with V = {vg,...,vsn-1} and
E = {eo,...,egn—1}. We define the vertex-edge-incidences for i = 0, ...,
2n—1by

ViV2n4i
V4n4iVan42n+i-1
ViV4n4(i~1 (mod 4n))
V2n4iVan+2n4i-

€2n42i (mod 4n)
€2n42i—1 (mod 4n)
€4n4(2i—1 (mod 4n))
€4n4-2¢

We obtain the paths v; Ve, 4iVen+iVani+1Vigs, § < 2n—2, Von_2V4n_208n_2
Uen—1Van, V2n—1V4n—1Vsn—1Yo and e4n41 = v1vg, in G. It is a routine
matter to check that GG contains the cycle

C'= VoV20V6nV4n+1V2V2n +2V6n +2V4n 4304
<o V2n—2V4n - 2V8n - 2V6n—1V4nV1 V2n41V6n+1V4n42V3V2n+3V6n +3V4n44 U5

- V2n—1V4n—-1V8n-1

of length 8n. Hence G is equal to C.

We define f : V — Zun x Z2 by f(vi) = reprin,2)(i) for i = 0,...,
8n — 1. By Th. 2.4, f is a labeling of . By definition of GG, we obtain
f*(e:) = repran 2)(é) fori = 0,...,8n—1. Hence f is a polychrome labeling
of G and thus of Cg,, by Z4, x Z5. (]

As a direct conclusion we obtain

3.9 Theorem. Suppose that B is an abelian group of odd order mn. Then
there is a polychrome labeling of Coxtr.p, k> 1, by Zy X Zox x B.

Remark. There is a polychrome labeling of P41, for £ > 1 by
Zy x Zox x B with root of colour z for all ¢ € Z5 x Z4x x B.

With the help of a computer we obtained polychrome labelings of a path
by all abelian groups — which are not elementary abelian 2-groups — of
cardinality 30 at most. Using Th. 3.7 we find polychrome labelings of a
cycle by more groups. For instance, we get polychrome labelings of a cycle
(and a path) by all abelian groups with Zs x Z, as Sylow 2-group and
Z, x S as Sylow p-group for p € {3,5,7} and a p-group S.
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4 The special case Z,
In this section we call a tree T on n vertices polychrome if and only if there
is a polychrome labeling of T by Z,,.

First we notice that the elegant trees are exactly the trees on n vertices
which have a polychrome labeling by Z,, with root of colour 0. We shall
now study the close connection between a special class of graceful labelings
called 'balanced labelings’ which are also known as ’interlaced labelings’ or
‘a-labelings’ and the polychrome labelings.

A labeling f of a graph G = (V, E) is called balanced, if it is graceful, and if
there is a z; € IN such that f(v) < z; < f(w) or f(w) < z; < f(v) holds
for all edges vw € E.

The labeling used in the next theorem is due to [4] Prop. 3.
4.1 Proposition. Suppose that T is a iree with balanced labeling. Then T
is polychrome.

Proof. Let T = (V,E) be a tree on e edges with balanced labeling
f:V —{0,...,e} and z; as defined above. We consider h : V — Z 41,

where
_] fv) if f(v) <y,
h(v)-{ e+ 11— f(v)+z; if f(v)>:1:;

Obviously h is a labeling. Let vw € E and f(v) < f(w). By definition,
f(v) < zy < f(w) holds. So we obtain

h*(vw) = e+ 14z — fo(vw)(mod e + 1).
Hence T is polychrome with root of colour ;. a

Conversely, we have

4.2 Proposition. Suppose T = (V, E) is a tree with polychrome labeling
f. If z is the colour of the root, and if f(v) < z < f(w) or f(w) < z < f(v)
for all edges vw € E, then T has a balanced labeling.

Proof. Let n = |V|. We define h: V — {0,...,n— 1} by

_f ) if f(v) <,
h(v) = { n+z— f(v) if f(v) >z

Clearly, h is bijective. Let vw € E and w.lo.g f(v) < z. Then
h(v) < z < h(w) and hy(vw) = |h(v) — h(w)] = n+ z — f(v) — f(w).
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Since f(v) < z < f(w) or f(w) < z < f(v) for all edges vw € E, we obtain,
conceiving f(v) and f(w) as integers,

{f(v) + f(w)|vw e E}={z+1,...,2+n—1}.

Hence hy(E) = {1,...,n—1}, and h is a balanced labeling of T with 2, = 2.
a

During the last 30 years graceful graphs, especially graceful trees, have
received extensive attention. Some of the research results can be trans-
ferred onto polychrome trees. In particular, caterpillars (the trees with the
property that the removal of its endnodes leaves a path), several classes of
product trees and all trees with 10 vertices at most are polychrome. Some
few theorems can be obtained by having a careful look at [1], [2], [6], (7],
(8] and [11].

We conclude with a conjecture which is similar to the famous conjecture of
G. Ringel [10] that all trees are graceful.

Conjecture. Every tree on n vertices has a polychrome labeling by Z,.
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