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Abstract

Let G be a finite group with a normal subgroup H. We prove that
if there exist a (h,r; A, H) difference matrix and a (g/h,r;1,G/H)
difference matrix, then there exists a (g,7; A, G} difference matrix.
This shows in particular that if there exist 7 mutually orthogonal
orthomorphisms of H and » mutually orthogonal orthomorphisms of
G/H then there exist 7 mutually orthogonal orthomorphisms of G.
We also show that a dihedral group of order 16 admits at least 3
mutually orthogonal orthomorphisms.

1 Introduction

Let G be a group of order g. A 7 x Ag matrix D = [d;;] is called a
(9,7 )\, G) difference matriz if for each iy,i2 € {1,...,7}, i1 # ia, the
multiset {d;,;~'d;,; : 5 =1,...,Ag} contains each element of G precisely A
times. For example, the following is a (4,4;1, K) difference matrix where
K is the four-group {a,b | a® = b% = (ab)? = ¢):

Q0o 00
o
&

o

Any (g,7; A\, G) difference matrix can be normalized by pre-multiplying each
row and column by the inverse of the entry which appears in the first
position of that row or column, to obtain a (g, 7; A, G) difference matrix in
which the first row and column contain only the identity element.

Difference matrices are discussed in the general design theory books [2]
and [5]. The following is a standard composition theorem for difference
matrices, due to Jungnickel [9].
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Result 1.1 If there exists a (g,7; A, G) difference matriz and a (¢',7; N,G")
difference matriz, then there ezists a (g9’,7; AN, G x G') difference matriz.

In this note we present a partial generalisation of this result, in which we
build from difference matrices over a normal subgroup H and factor group
G/H of a finite group G to a difference matrix over G. This generalisation
is therefore relevant to some cases where G is non-abelian. Our theorem
is not a complete generalisation of the above result because we insist that
A =1 for the difference matrix over G/H.

Difference matrices generalise the notion of orthomorphisms of a group.
Two permutations 6; and 65 of a finite group G are said to be orthogonal if
the mapping @ — 0;(x)'62(z) is also a permutation of G. A permutation
of a group G which is orthogonal to the identity permutation is called an
orthomorphism of G. The final 7 — 1 rows of a normalized (g,7;1, G) differ-
ence matrix with r > 3 specify 7 — 2 mutually orthogonal orthomorphisms
of G: the first of these rows lists the elements of G and each of the other
r — 2 rows gives the respective images of these elements under an ortho-
morphism. Thus it is clear that a (g,7;1, G) difference matrix with 7 > 3
is equivalent to a set of 7 — 2 mutually orthogonal orthomorphisms of G.

A set of  mutually orthogonal orthomorphisms of a group G can be
used to construct a set of 7 + 1 mutually orthogonal latin squares based
on G. This was first observed by Mann [10], and the construction is used
in [3] and [8], for example. Mann’s construction is not the only way in
which mutually orthogonal latin squares can be constructed from mutually
orthogonal orthomorphisms of a group: [1] surveys some other ways.

Orthomorphisms have been extensively studied. The most comprehen-
sive text on them is [6].

In [11], Paige proves the following result.

Result 1.2 Let G be a finite group with a normal subgroup H. If both H
and G/H admit an orthomorphism, then G admits an orthomorphism.

(Paige states and proves the result in terms of complete mappings rather
than orthomorphisms. A complete mapping of a group G is a permutation
# of G such that the mapping z — z¢(z) is a also a permutation of G. It
is straightforward to verify that  is an orthomorphism of G if and only if
the mapping z +— x~'6(x) is a complete mapping of G)

The case A = 1 of our theorem on difference matrices is a generalisation
of Paige’s result. We state this case as Corollary 2.2. Tt is a worthwhile
addition to the known standard composition theorems for mutually orthog-
onal orthomorphisms of groups, relevant to non-abelian groups. A recent
paper by Bowler [4] is essentially a particular case of Corollary 2.2.
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Bowler [4] shows that a dihedral group of order 4n, n = 1,5 (mod 6),
admits at least two mutually orthogonal orthomorphisms. It is also known
that the maximum number of mutually orthogonal orthomorphisms of a
dihedral group of order 12 is two (see [6]). In the final section of this note
we show that a dihedral group of order 16 admits at least three mutually
orthogonal orthomorphisms. A group whose order is twice an odd number
admits no orthomorphisms, by a well-known theorem of Hall and Paige (7).

2 A composition theorem for difference
matrices

Theorem 2.1 Let G be a finite group with a normal subgroup H. If there
exists both a (h,m; A\, H) difference matriz and a (g/h,r;1,G/H) difference
matriz, then there ezists a (g,7;\, G) difference matriz.

Proof. Let C and D bea (h,r; A, H) difference matrix and a (g/h,r;1,G/H)
difference matrix respectively. Let C = [¢;;]. Choose any set of coset rep-
resentatives for H in G, and let U = [u;x] be the matrix formed from D by
replacing each entry by its coset representative in this set. Let B =

C11u11  C12U11 -+ CranUpg | C11U12 C12u12 -+ €1,ARUI2

C21U21 C22U2)1 - C2ARU21 | C21U22 C22U22 --- C2AhU22

Crilirl  Cp2Ury "t CpARUP1 | CrlUr2  CpaUp2 -+ CpApUP2
C11U1,9/h  C12U1,9/h  **° CLARU1,g/h
C21U2,g/h  C22U2,9/n  **° C2,ARU2.g/h
Crilr,g/h  Cr2Urg/h *°*  CrahUpg/h

We show that B is a (g,7; A, G) difference matrix. We shall refer to the
submatrices into which we have partitioned B as blocks.

Consider any two rows of B, indexed by 7, and i, respectively. We con-
sider the Ag differences between the entries in row ¢ and the corresponding
entries in row ¢3. Here and in the rest of this proof, the word difference
will always mean a difference 2~ 'y between an entry x in row i; and the
corresponding entry y in row is.

We begin by showing that the multisets of differences arising from any
two different blocks of B are disjoint. Let the two blocks be indexed by &,
and ko respectively. All differences arising from the first block are of the
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form (c;, j, ik, )" (Ciyjy Uik, ) for some ji, and all those arising from the
second block are of the form (ci, j, i, k,) ™" (Cizjo Uisk, ) for some jo. We have

. =Lfn. . 9. — .. ay. =1(.. . .
(ciljlu'llkl) (cl'uluf-_»kn) = (Chhullkz) (Ct'_)Jeuizkz)
-1 -1 — -1 -1

= Uik~ Ciygy  CiggiWisky = Uirks Ciyja  CiagaUisks
-1 -1 —_ -1 -
= Uik, Cij ci'.’jlu'i"lle = Uik, Cija 1C’i~.’j2ui2k2H

-1 -1 -1
= Uik Uirk Uisk,  Ciij ci:jnuizan
_ -1 -1 -
= Uirky  WiskaUisky “Cigjo lci;'j'.-ui'.'k;’H

= ui|k|-luizan = uiukz—luizsz
(because wi,k, ~1¢i,jy " Ciujy Uik, A0 Uiy, T1 iy gy T CingyUink, BTE
conjugates of elements of H and are therefore themselves
elements of H)

= (i H) uin, H) = (i, H) 7 (tign, H)

= k] = k2
(since each element of G/H appears just once in D as a difference
between an entry in row i, and the corresponding entry in row i9).

Hence the multisets of differences arising from the two different blocks of
B are indeed disjoint.

We now show that the multiset of differences arising from any particular
block of B contains h elements of G, each repeated A times. This follows
immediately from the fact that C is a (h,7; A, H) difference matrix, since
for any k indexing a block,

(Ciljluilk)_l(ci'.’jl“’i:k) = (Ciljzuilk)—l(ci'zjzuizk)
Aad Civjy —lci'z.il = C‘ilje_lcizj-.' .
We can deduce that the multiset of Ag differences arising from all g/h

blocks of B contains each element of G precisely A times.
Thus B is a (g,7; A\, G) difference matrix, as claimed. 0O

Corollary 2.2 Let G be a finite group with a normal subgroup H. If there
exist r mutually orthogonal orthomorphisms of H and r mutually orthogonal
orthomorphisms of G/H then there exist T mutually orthogonal orthomor-
phisms of G.

Proof. This is immediate from Theorem 2.1 on taking A = 1. O

The pivotal theorem in Bowler’s paper [4] states that if Z, admits
at least two mutually orthogonal orthomorphisms then so does Ds, =
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{a,b | a®" = b? = (ab)? = ¢). This is an immediate consequence of Corol-
lary 2.2, since Dy, has {a?) = Z, as a normal subgroup, and Do, /{a?)
is the four-group, which admits two mutually orthogonal orthomorphisms,
as can be seen from the difference matrix given in Section 1. Z, admits
two mutually orthogonal orthomorphisms whenever n = 1,5 (mod 6): for
example (using additive notation) & — 22 and z — 3z.

3 Mutually orthogonal orthomorphisms of di-
hedral groups

We denote the maximum number of mutually orthogonal orthomorphisms
of a group G by w(G). Very little seems to be known about orthomorphisms
of non-abelian groups. Computer searches have provided some data for
small groups. It is known that the dihedral and quaternion groups of order 8
each have 48 orthomorphisms, and in each case no two are orthogonal. The
alternating group of order 12 has 3776 orthomorphisms, no two of which
are orthogonal. The dihedral group of order 12 has 6 336 orthomorphisms,
and w(Ds) = 2. All of these results can be found in [6]. In [4], Bowler shows
that a dihedral group of order 4n, n = 1,5 (mod 6), admits two mutually
orthogonal orthomorphisms. We have the following result, obtained by a
non-exhaustive computer search, for a dihedral group of order 16.

Proposition 3.1 w(Dg) > 3.

Proof. The following mappings are mutually orthogonal orthomorphisms
of Dg = (a,b | a® = b% = (ab)? = ¢). We write a’d’ as ij.

x 00 10 20 30 40 50 60 70
1(zx) 00 01 61 60 41 40 20 21
f2(x) 00 30 41 40 31 21 10 71
f3(z) 00 31 30 71 51 01 40 20

x 01 11 21 31 41 51 61 71
f1(x) 30 71 10 51 31 70 11 50
6(z) 70 60 51 50 61 11 20 01
3(x) 11 41 61 60 21 50 70 10
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We include the check:

x 00 10 20 30 40 50 60 70
@=19,(x) 00 71 41 30 01 70 40 31
x~16(z) 00 20 21 10 71 51 30 O1

f1(x)"'02(x) 00 51 20 60 10 61 70 30
x103(z) 00 21 10 41 11 31 60 30

f1(x)"'03(z) 00 50 31 11 70 41 20 01

f2(x)"03(z) 00 01 11 31 60 20 30 51

x 01 11 21 31 41 51 61 71
a9 (z) 51 20 11 60 10 61 50 21
2 05(x) 11 31 50 61 60 40 41 70
f1(x)"'02(x) 40 11 41 01 50 21 71 31
x~193(x) 70 50 40 51 20 01 71 61
f1(x)"'03(z) 61 30 51 71 10 60 21 40
f2(x)"'03(z) 21 61 70 10 40 41 50 71
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