The smallest covering code of
length 8 and radius 2 has 12
words

Uri Blass and Simon Litsyn
Tel-Aviv University,
Department of Electrical Engineering — Systems,
Ramat-Aviv 69978, Israel

Abstract
We prove that the smallest covering code of length 8 and covering
radius 2 has exactly 12 words. The proof is based on partial classifi-
cation of even weight codewords, followed by a search for small sets
of odd codewords covering the part of the space that has not been
covered by the even subcode.

1 Introduction

Covering codes have got a great deal of attention in the last decade, see
[1, 2, 3] and references therein. One of the main challenges in the theory
of covering codes is to determine minimal possible size of codes of given
length and radius. This problem turns out to be difficult even for small
lengths.

Let (n, K)R stand for a covering code of length n, cardinality K and of
covering radius R. For n < 8, the smallest possible K was not known only
in the case n = 8 and R = 2. The best covering of length 8 and radius 2,
known so far, is the code (8, 12)2, constructed using the amalgamated direct
sum of the piecewise constant (6, 12)1 code [4, 5] and the trivial (3, 2)1 code

[4):
00000111, 00001000, 00010000, 01100000, 10106000, 11000000,
00111111,01011111,10011111,11101111,11110111,11111000

In [6] it was proved that such a covering cannot have less than 11 words.
In the present correspondence we confirm that 11 is not achievable.

ARS COMBINATORIA 52(1999), pp. 309-318



It is clear that a brute force attack on the problem, by checking all
possibilities of choosing 11 words, is far from being tractable. However,
to find a combination of odd weight words that cover a given set of even
weight vectors is quite easy. So, we use the following scheme. Assuming
existence of a code of size 11, we prove that there should be a translation
of the code with four or five even weight codewords. Further, we classify
the possibilities for choosing four even codewords, reducing the problem
to considering 28 possible combinations. For each one of the combinations
it is a routine check that the space not covered by the four chosen words
cannot be covered by seven odd weight words, or six odd words and one
even word.

2 The proof

Let d(x,y) stand for the Hamming distance between vectors x,y € F, the
set of binary vectors of length 8. We say that a word ¢ € F covers a
vector x € F if d(c,x) < 2. An (8, K)2 covering code is a set of words
¢i,...,cx € F, such that

Vxe F3ie{l,...,K}: c;covers x.

Assume an (8,11)2 code C exists. Denote by £ and O the subsets of
even and odd vectors of F. Let F; C F, be the subset of vectors of weight i.
Denote by .7-',.(“) the subset of F; consisting of the vectors having weight a in
the first four coordinates. For instance, |F| = 256, |£| = |O| = 128,|F4] =
70, |F{?| = 36.

We use a simple algorithm to check if there exists a collection of k¥ odd
words that cover V C €. To do this we first assume an order on the elements
of V. We proceed in k steps, choosing on each step a new word. Let prior to
the i-th step, (i — 1) odd words have been chosen. We find the first vector
in the list vector not covered by the already chosen words. There are 8
possible odd words which cover this vector. Appending one of them to the
list of chosen words we pass to the next step. This we do for every one
out of 8 possible words. The algorithm terminates after k steps. We will
write Ax(V) = 1 if a covering is possible, and 0 otherwise. The maximal
number of collections of k words to be checked is 8%, and for k < 7 it takes
at most several minutes to compute it. Notice, that as a result we obtain
all possible odd coverings of V of size k or less.

Now we are in a position to present the proof. Although most of the
statements below have been proved analytically, we prefer to refer to results
of the algorithm whenever it allows avoiding cumbersome analysis.

Let C. and C, stand for the even and odd codewords respectively.
W.lo.g. assume that |C,| < |C,|, otherwise we always may shift the code
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by an odd vector. A codeword from C, covers at most 17 vectors of Fy4, and
a codeword from C, covers at most 5 vectors of F,. Since 1-17+10-5 < 70,
we get that |C,| > 2, and we may assume that the word (60000000) belongs
to C. Since this zero word does not cover any vector of F4, we need at least
two more even codewords to cover Fi, thus giving |C.| > 3.

Lemma 1 |C,| 2 4.

Proof. For every vector v € F, v = (vy,...,vg), we define its characteristic
vector of size 4 as

£, = (Ju1 — va),jus — val, Jus — ve, Jur — vsl),

i.e. in the positon i the vector f has 0 if vy;—y = w24, and 1 otherwise.
Clearly, we have 16 different vectors corresponding to a specific character-
istic vector. Moreover, F can be partitioned to 16 subsets of vectors having
different characteristic vectors. We use notation ¢(f) for the set of vec-
tors having f as the characteristic vector. Let f be the binary complement
of f. We say that the set ¢(f) is complementary to ¢(f). If f is even,
then o(f) C £ and is called an even class. If f is odd, then ¢(f) C O
and is called an odd class. Notice, that every codeword from C, covers
exactly two vectors in one of two complementary even classes, and none in
its complementary class.

Consider an even class p(f). The class contains 16 words, and we can
partition them to two subclasses, say o(f) and ¢;(f), such that the dis-
tance between any two different vectors in the same subclass is 4 or 8. To
see that it is possible, we just do it for ¢©(0000), namely, ©o(0000) consists
of all the vectors from ((0000) of weight 0, 4 or 8, and ¢ (0000) contains
the rest 8 vectors. Other classes ¢(f) can be seen as shifts of ©(0000), and
the partition can be done also for them. If a codeword from C, covers two
vectors in an even class p(f), then one of the covered vectors is in @o(f)
and the other one is in ¢, (f).

Assume that |C.| = 3. Among three even words we always have at least
two being at distance at most 4.

Case 1: There are two even codewords, say c; and c», being at distance
exactly 4.

W.l.o.g. we may assume that ¢; = 00000000 and c; = 11110000. Con-
sider the subset }'fz) of vectors from F, having exactly two ones in the first
4 coordinates. Clearly, | F{®| = 36, and ¢, and ¢, do not cover any vector in
.7-"‘52). An even word covers at most 9 vectors of .7-'?), and an odd word cov-
ers at most 3 vectors of .7-',22). Hence, there are at most 1.9+ 8-3 = 33 < 36,

vectors of F‘S?) that can be covered, a contradiction.
Case 2: There are no two even codewords being at distance 4.

311



Then there are two codewords at distance 2, say ¢; = 00000000 and
c» = 11000000. Consider the set F4. Eight odd codewords cover at most
8.5 = 40 vectors of F4. The third even codeword c3 cannot have weight 2,
since in this case ¢y and c3 cover at most 29 vectors of Fs. It cannot have
weight 4 since we forbid distance 4 between the even codewords. It cannot
have weight 8 since, in this case, c; does not cover any vector of F3. If c3
has weight 6, it cannot have two ones in the first two coordinates, otherwise
d(c2,c3) = 4. If c3 starts with 00, then d(c2,c3) = 8, and adding c; to all
codewords, we are not able to cover Fj.

We are left with a possibility of c; = 01111110, c3 € ¢(1001). Let ¢ be
defined so that it contains c3. Then there are 3 vectors in o(1001) which
are covered by c;,cs and c3. The other five vectors of ¢(1001) should be
covered by five vectors from C,. To cover the class ¢(0110) we need at least
4 words from C,. But there are no odd words which cover at once vectors
belonging to complementary classes. So, we need at least 9 odd codewords,
a contradiction to |C,| = 8.

a

Lemma 2 There are no two even codewords being at distance 8.

Proof. Let c;,cy,c3,cq be even codewords (it is possible that there is one
more even codeword). Assume d(cy,cs) = 8.

Case 1: Let d(c1,c3) = 4. W.l.o.g. we may assume ¢; = 11110000, c2=
00001111, c3 = 00000000. The rest 8 codewords must cover .7-'}2). For this
we need at least two even codewords (2:-9 + 6 -3 = 36). Since there
are at most five even codewords, then |Ce| is necessarily 5, and |C,| = 6.
Moreover, each of the two additional even codewords have to cover exactly
9 vectors from ffz), and their weights are 2,4 or 6. Since all odd codewords

are necessary for covering }fz), they are of weight at most 5, and vector
11111111 should be covered by an even codeword. Thus, at least one of
the even codewords, say cq4 is of weight 6, and w.l.o.g. we may assume
c4 = 11101110. The fifth even codeword, cs, must cover 9 vectors in .7-'}2),
and cannot have weight 6, otherwise the subsets of ffl) covered by c4 and
cs intersect.

Case 1.1 Weight of cs is 4.

a) Let c5 € .'F,gs). Then cs necessarily has the last coordinate equal to
1, otherwise ¢4 and cs cover less than 18 vectors in .7-',@. Then, w.l.o.g.
¢s = 11100001 or cs = 11010001. In both cases, if V stands for the set of
even vectors that are not covered, we check that Ag(V) = 0.

b) Let cs5 € .7-'52). To cover 9 not covered vectors from .7-',52) , Cg must have
1 in the fourth and eighth coordinates. W.l.o.g. assume cs = 10011001.
However, we are not able to cover ((0000) (we need 3 odd codewords)
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along with the subclass of ¢(1111) containing cs (we need 5 odd codewords,
different from the previous ones).

c)Ifes € }"f'), it is equivalent to a).

Case 1.2 Weight of cs5 is 2.

a) Let ¢c5 € .’F'él). The word c3 must have 1 in the fourth or eighth

coordinates, otherwise there is intersection in .7-'§2). By symmetry we may
assume that the eighth coordinate of cs is 1. Now, w.l.o.g., there are
two possibilities for cs, namely, 10000001 and 00010001. In both cases,
Ag(V) =0.

b) It is impossible that c5 € .7-'.§2) orcs € .7-".§°) since it does not cover 9

new vectors in f,g'z).

Case 2: W.l.o.g. assume ¢, = 00000000, c,= 11111111, ¢c3= 11111100.
Clearly, |C.| = 5, otherwise we are not able to cover F4 (2-15+7:5 =
65 < 70). W.lo.g. there are two possibilities for choosing ¢4 and cs.

Case 2.1: Both, ¢4 and c5, have weight 6.

a) Let d(c3,¢4) = 2. Then, w.lo.g., ¢4 = 11111010. Since c3 and c4
cover jointly exactly 25 vectors of Fy4, and cs covers at most 13 additional
vectors of F4, we are not able to cover F; (25 + 13+ 65 = 68 < 70).

b) All three codewords, c3,c4 and cs, are at distance 4. W.l.o.g. ¢4 =
11110011, cs = 11001111. Now, the words from C. do not cover any vector
in (1111), and we need at least 8 odd words to cover (1111).

Case 2.2: Both ¢4 and c5 have weight 2.

Then c4 must cover at least 10 vectors from F4 not covered by ci,c2
and c3. So, ¢4 cannot have two zeros in the last two coordinates, otherwise
it covers at most 9 new vectors of F;. Hence, w.l.o.g., assume that ¢4 =
10000010. Then there are the following possibilities to choose c5: 10000001,
01000010, 00000011, 01000001. The first three possibilities are impossible
since cy,...,cs cover all together 40 vectors of F4, and the rest 30 vectors
must be covered by 6 odd codewords. Therefore, each of the odd vectors
has to cover 5 vectors from F4. This is possible only if the odd codewords
are chosen from the vectors of weight 3, starting with 00 and ending with
01, or from the vectors of weight 5, starting with 0 and ending with 11.
Any three vectors of such form and the same weight (3 or 5) cover common
vectors in F4, and among 6 codewords there are always at least three of the
same weight, a contradiction. If cs = 01000001, there exist 26 vectors from
F4 that are not covered. So, we need at least two odd codewords covering
5 vectors from F;. These vectors are of weight 5, start with 00 and end
with 11. However, in this case any two such vectors (there are four) cover
common vectors, a contradiction.

Case 2.3: Weight of c4 is 6 and weight of c5 is 2. Adding the all one
vector to all the codewords we reduce the case to Case 2.2.

o
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Lemma 3 There exist three codewords, ¢),cy,c3 € C, such that
d(cy,¢) < d(er,c3) < 4.

Proof. Among four even codewords it is always possible to choose a pair,
say ¢; and ¢y, being at distance at most 4. If d(c;, c3) < 4 then we are done,
otherwise, d(c;,c3) = d(c1,c4) = 6, and d(cs,cq) < 4. Let |Ce| = 3, then
or d(c;,c5) < 4, or d(c3,c5) < 4, and, thus, either ¢, c,, c5, or c3, ¢y, 5 is
the sought triple.

If |C.|] = 4, we need more complex arguments. Assume d(c;,c2) >
d(cs, c4), and all other pairwise distances equal 6.

Case 1: d(c;,c2) = 4. W.lo.g. assume ¢, = 00000000, c, = 11110000,
then c3 and c4 are of weight 6 and end with four ones. In this situation we
are not able to cover .7-'}2), since c3 and c4 cover at most 12 vectors from

.7-'.52), and seven odd codewords can cover at most 21 vectors from .7-'}2)
(12 + 21 = 33 < 36).

Case 2: d(cy,¢2) = d(c3,c4) = 2. W.lo.g. assume ¢; = 00000000, c; =
11000000, c3 = 10111110. Then c4 is a vector of weight 6, and there are,
w.l.o.g., two possibilities to choose it, namely,

a) ¢4 = 01111110. Then there are 40 vectors from £ that should be
covered by 7 odd codewords, and it is easy to check that an odd codeword
covers at most 5 vectors from £, a contradiction.

b) ¢4 = 10111101. Denote by V the set of 30 not covered vectors of F.
A7(V) =0, i.e. V cannot be covered by any collection of 7 odd words.

(]

Lemma 4 There exists an even codeword ¢, such that d(c, c2), d(cy,c3),
d(c1,¢4), are at most 4.

Proof.

Case 1: Assume that in every triple of even codewords there exist a
pair being at distance 6.

Case 1.1: d(c;,c2) = 4,d(c;,c3) = 2,d(c2,c3) = 6. In this case,
w.l.o.g. assume ¢; = 00000000, c; = 11110000, c3 = 00001100. If weight of
c4 is less than 6, then the statement of the lemma is valid with ¢, ¢y, c3
and c4. Then there are the following possibilities for choosing c4, being of
weight 6 and at distance at most 6 from the three chosen words.

a) ¢4 = 11111100. To cover p(1111) we need at least five even codewords
(7-2 =14 < 16). It is necessary that d(cs,cs) < 4 or d(c3,c5) < 4, since
otherwise there exists triangle in the Hamming space with all sides equal
to 6, which is impossible. Now, either c; or c3, are at distance at most 4
from c¢;,c4 and cs, the situation we seek.
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b) ¢4 = 11101110. To cover 24 vectors of }'4(2) we need additional even
codeword c5 (7 -3 = 21 < 24). Now the same arguments as in a) prove the
claim in this case.

¢) cq = 11001111. To cover (1111) we need additional even codeword.
cs (7-2 =14 < 16). Since cs covers at most 5 vectors in ¢(1111), at least
6 odd codewords are necessary to cover ¢(1111). These odd codewords
do not cover any vector from ¢(0000), and, hence, cs necessarily covers
00110011 which is not yet covered, and at least 4 vectors from ¢(1111).
W.lo.g. cs = 10111011, and A5(V) = 0, where V is the set of even vectors
not covered by c,,...,cs. However, Ag(V) = 1. Nevertheless, since Ag(V)
gives all the possible collections of 6 odd vectors that cover V, it is easy to
check that they, together with ¢;,...,cs, do not cover the whole space.

d) ¢4 = 11111010. Consider the set V of 12 words consisting of the
class ¢(1111) and the two vectors: 11000011 and 00110011. Since A7(V) =
0, we need a fifth even codeword c;. Necessarily, weight of cs is 6, and
d(cq,cs) < 4. Since d(cq, c2) = 2, we get d(ca,c5) = 6. So, c5 € féQ), and
it is equivalent to subcase c.

e) ¢4 = 11101011. If there is an additional even codeword cs then
the same arguments as in d) prove that it is equivalent to c). Otherwise,
A7(V) =0, where V is the set of even vectors not covered by c;,...,cs.

Case 1.2: By Lemma 3, we have d(c,, ¢2) < d(c;,c3) £ 4. By assump-
tion, d(cz,c3) = 6. By the triangle inequality d(c;,cz) = d(cy,¢3) = 2
is impossible, and since we are not in Case 1.1, d(c;,ca) = d(cy,c3) = 4.
W.lo.g. assume ¢; = 00000000,c, = 11110000, c3 = 10001110. We con-
sider several possibilities for choosing c,.

a)cy € }'é“), then d(cy,cq4) = 6,d(c2,c4) = 2, and ¢, c2 and c4 are as
in Case 1.1.

b) ¢4 = 01111110. It is easy to check that there is no other even word
cs that can be added in such a way that it does not fall under previous
cases. Hence, there are 7 odd codewords, and for the set of even vectors
not covered by ¢,,...,cq we verify that A;(V) =0.

c)cy € Féz). The first coordinate of ¢, must be 0, otherwise there exists
a permutation giving a). W.l.o.g. we may assume c4 = 01101111. Again
there is no place for additional even codeword, and A(V) = 0.

d)cy € féa). The only (up to permutations) situation which has not
been considered yet is that the first and the last coordinates of ¢4 equal to
1. W.lo.g., ¢4 = 11100111. The same argument as in the cases b) and c)
is valid here as well.

Case 2: 4 > d(c;,c2) > d(c1,c3) > d(cz,c3). W.lo.g. we assume
c; = 00000000. There are four possibilities for the distances between the
three codewords.

a) d(cl,C2) = d(cl,c;;) = d(c;;,C3) = 4, W.l.o.g. Cy = 11110000,03 =
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11001100. Necessarily, the distance from c4 to ¢;,c2 and c3 is 6. Indeed,
otherwise the claim of the lemma is true. There is only one possibility to
choose c4, namely, c¢; = 00111111, and there is no more even codewords.
Now, considering covering of ¢(1111) we conclude that it is impossible by
7 odd codewords.

b) d(cy, e2) = d(cy,¢3) =4,d(c2, c3) = 2. W.lo.g., c2 = 11110000,c3 =
11101000. Then c4 has five ones in the last five coordinates, and w.l.o.g. we
assume c4 = 00111111. If there are only four even codewords, we check that
A7(V) = 0. Otherwise, there is an additional even codeword cs. W.l.o.g.
cs = 01011111, Surprisingly, A¢(V) = 1, i.e. the noncovered odd vectors
can be covered by 6 (even 5) odd codewords. However, since Ag(V) gives
all the possible collections of 6 odd vectors to cover V, it is easy to check
that they do not cover all the space.

¢) d(cy,c2) = 4,d(cy1,¢3) = d(ca,c3) = 2. W.lo.g. ¢y =11110000,c3 =
11000000, c4 = 01011111. Since A;(V) = 0 there is necessarily an even
codeword ¢s. There are two nonequivalent possibilities for cs, namely,
10011111 and 10101111. In the first case Ag(V = 0. In the second case
As(V) = 0, but Ag(V) = 1. However, checking all the possiblities giving
Ag(V) = 1 we never get complete covering of the whole space.

d) d(c1,¢2) = d(c1,c3) = d(c2,c3) = 2. W.lo.g. ¢z = 11000000,c3 =
10100000. There are two nonequivalent choices of c4. If ¢4 = 10011111
and there four even codewords, then we have A;(V) = 0. Otherwise, if
cq = 01111110, then A7(V) = 0, and if there exists cs it is 01111101 or
10011111. Continuing as in case c) we check that it is impossible.

(]

Lemma 5 Let ¢; = 00000000, and d(c;,c2), d(ci,c3), d(ci,cy) are at
most 4. Then ca,c3 and cq cannot belong simultaneously to ©(0000).

Proof. Seeking a contradiction assume that cz,c3 and c4 are in ¢(0000).
Then |C,| = 5. Indeed, otherwise we are not able to cover ¢(1111). The
same argument shows that cs, the fifth even codeword, cannot belong to
©(0000). On the other hand, c5 does not belong to ¢(1111) since in this case
we cannot cover (1111). Now, cy,...,c; must cover all ©(0000). Indeed,
otherwise assume that there is one vector in ¢(0000) that is not covered by
an even codeword. Since there are at least 12 vectors of ¢(1111) that are
not covered by the even codewords (cy,...,c4 cover nothing in ¢(1111), and
cs covers at most 4 vectors in ¢(1111)), we need at least 7 odd codewords
to cover (1111) and the not covered vector from ¢(0000).

We consider the four cases.

Case 1: c» and c3 have weight 2. W.l.o.g. we may assume that c; =
11000000 and ¢3 = 00110000. In this case the weight cy4 is 4, otherwise we
cannot cover all p(0000). The following possibilities exist for the choice of
C4q:
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a) cq = 11110000. Then, w.l.o.g., cs = 10101111, and 44(V) =0.

b) ¢4 = 11001100. Then ¢(0000) cannot be covered.

c¢) ¢4 = 00001111. Then cs must cover the three vectors 11111111,
11111100, 11110011, so cs necessarily belongs to ¢(0011). But then there
exists a permutation of coordinates which puts all the even codewords in
©(0000), a contradiction.

Case 2: c, has weight 2, c3 has weight 4, and d(c,c3) = 2. If we add
ca to all the codewords we get Case 1.

Case 3: c, has weight 2, c; has weight 4, and d(cz,¢c3) = 6. W.log.
¢, = 11000000, c3 = 00001111. Then c4 has weight 4 (if it is 2 then we are
in Case 1), and w.l.o.g ¢4 = 00111100. Since 00110011 and 11111111 have
to be covered, this yields, w.l.o.g. c¢s = 10111011, and Ag(V) = 0.

Case 4: c» and c3 have weight 4, and d(cy,c3) = 4. Then, to avoid
the previous cases, the weight of c4 should be 4, and, hence, the five even
codewords cannot cover (0000).

a

So, as a corollary of Lemma 4, we conclude that we always may assume
¢; = 00000000, the weights of c» and c3 are at most 4, and d(cz,¢3) < 4.
As it is easy to check there are four possibilities to choose c; and c3, namely,

a) ¢ = 11000000, c3 = 10100000;

b) c; = 11000000, c3 = 00110000;

¢) ¢z = 11000000, c3 = 10111000;

d) c; = 11110000, c3 = 11001100.

For each of these cases we can find all possible ¢4 such that it has
distance at most 4 to at least one of the chosen even codewords, and distance
at most 6 to all others. In the following table we give all these nonequivalent
possibilities for c4:

a) 01100000, 10010000, 01010000, 00011000,

10011100, 01111000, 01011100, 00001111,

b) 11101000, 10101100, 10001110, 11101110;

¢) 10110100, 01111000, 10100110, 01110100, 10000111, 01100110,

00111100, 00110110, 00100111, 10111110, 10110111, 01111110;

d) 10101010, 00111010, 10100011, 00101011.

All in all we have 28 possible choices of four even codewords cy,..., ¢4,
and as it is easy to check that A7(V) = 0 in all these cases. It requires
checking 28 x 87 collections of 7 odd codewords. So, there should be one
more even codeword.

The problem now becomes tractable. For each of 28 choices of the four
even codewords, the computer program goes through all possibilities for the
fifth even codeword. Given the five even codewords, let V stand for the set of
even vectors not covered by them. In all the cases A4(V) =0, i.e. we always
need at least 5 odd codewords to cover V. If A5(V) =0 and Ag(V) =1, as
a result of the program we obtain all the sets of 6 odd codewords that cover
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V. For each such set we check if the resulting collection of 5 even and 6
odd codewords cover the complete space. It requires checking 28 x 128 x 8°
collections of 6 odd codewords. If As(V) = 1 we just have to check the
combination of 5 even and 5 odd codewords if the part of F not covered
by them is within a sphere of radius 2. It requires checking 28 x 128 x 8°
collections of 5 odd codewords.
The program did not find any set of 11 codewords covering F, thus
confirming the conjecture.
]
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