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ABSTRACT. We consider several families of regular bipartite
graphs, most of which are vertex-transitive, and investigate
the problem of determining which ones are subgraphs of hyper-
cubes. We define Hi . as the graph on k vertices 0,1,2,...,k—1
which form a k-cycle (when traversed in that order), with the
additional edges (i,i + r) for i even, where i 4 r is computed
modulo k. Since this graph contains both a k-cycle and an
(r + 1)-cycle, it is bipartite (if and) only if k is even and r is
odd. (For the “if” part, the bipartition (X,Y) is given by X =
even vertices and Y = odd vertices.) Thus we consider on the
cases r = 3,5,7. We find that Hk,3 is a subgraph of a hyper-
cube precisely when & = 0 (mod 4). Hip can be embedded
in a hypercube precisely when k = 0 (mod 16). For r = 7 we
show that Hy g is embeddable in a hypercube whenever k = 0
(mod 16).

The question of which graphs can be embedded as a subgraph of a hy-
percube goes back to 1965. V.V. Firsov [5] asked which graphs could be
isometrically embedded in a hypercube. An embedding is isometric if dis-
tances are preserved. That is, ¢: H — G is isometric if for all z,y € V(H),
disty(z,y) = distg(z,y). This was answered in 1973 by Djokovié [3]. Garey
and Graham [4] in 1975 raised the general embedding question (dropping
the isometry requirement) and showed that a nice characterization was un-
likely. This was confirmed in 1986 by Cybenko, Krumme and Venkatara-
man (2], who proved that deciding whether or not a graph has an embed-
ding as a subgraph of a hypercube is NP-complete. In 1990, Wagner and
Corneil [8] showed that the problem is NP-complete even for trees. On
the other hand, many bipartite graphs are known to be subgraphs of hy-
percubes. A good reference for this is Leighton’s book [7). In particular,
an M; x M3 x ... My-array is a subgraph of an N-node hypercube if and
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only if N > 2flos Mi1+log My1++[logkl 7, exercise 3.20], and an N x N
mesh of trees is a subgraph of the 4N?-node hypercube (7, Exercise 3.60].
The purpose of this paper is to consider several families of regular bipartite
graphs, most of which are vertex-transitive, and investigate the problem
of determining which ones are subgraphs of hypercubes. We denote the
n-dimensional hypercube by @Q,. For an edge e = (z,y) of Qn, the n-tuples
z and y differ in exactly one coordinate i. We call this ¢ the dimension of
e and denote it by d(e).

Definition 1. Hy, is the graph on k vertices 0,1,2,...,k — 1 where for
all0<ij<k-1,(i,5)€ E& (1) |i—j| =1 (mod k) or (2) i is even and
j—i=r (mod k).

Note: Since Hj, contains both a k-cycle and an (r + 1)-cycle, the graph
is not bipartite if either k is odd or r is even. So we shall only consider
the graphs Hi, for k even and r odd. In this case Hy, is bipartite and
3-regular. Furthermore, it is vertex-transitive.
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Figure 1. Hyp 3

Proposition 1. If k is even then Hy 3 is a subgraph of some hypercube
4 k=0 (mod 4). Furthermore, Hym 3 is a subgraph of Qn & m < 2772,
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Proof: (=) Let k = 4m+-2, and suppose Hy 3 is a subgraph of a hypercube.
For i even, (i, + 1) belongs to the 4-cycle (¢,i+ 1,1 4 2,i + 3). Hence

d((i+2,i+3)) =d((3,i+1))
Let d((0,1)) = q. Then for all even integers i with 0 < i <k —1,
d((i,i+1)) = g.

Let E* be the set of edges e of the k-cycle C = (0,1,...,k — 1) with
d(e) = q. So |E*| > £ = 2m + 1. Since E* must be an independent set of
edges, |E*| = 1;- This is a contradiction since 52‘- is odd. Thus Hy 3 is not a
subgraph of any hypercube.

(<=) Hym,3 can be drawn as follows: The vertices {i | i = 0 (mod 4)} lie
on one 2m-cycle and the remaining vertices of Hy, 3 lie on another. The
edges {(3,+1) | 0 < i < 4m — 2} form a pairing of these two 2m-cycles
so that Hypm 3 >~ Cypy x Ko, Now the latter is a subgraph of Q, & Com
is a subgraph of Q,_;, and since hypercubes are Hamiltonian and contain
cycles of all even orders, Cap a subgraph of Q,—; & 2m < 2"71 je.
&m< R, O
Remark. Every occurrence of Hym 3 in a hypercube is contained in some
(m + 1)-dimensional subcube. For by the argument given at the start of
the proof of Proposition 1, for all even integers i, d((%,{ + 1)) = d((0, 1)).
Hence 2m of the 4m edges of the Hamiltonian cycle (0,1,...,4m — 1) have
the same d-value. Since every d-value must occur an even number of times
on any cycle, at most m other values can occur. Hence Hypn 3 is contained
in an (m + 1)-dimensional subcube.

Proposition 2. Hyk,22k+1 is not a subgraph of any hypercube.

Proof: For all 4, (4,i+1,i+ 2k +2,i+ 2k + 1) is a 4-cycle of H, and thus
d((3,%+2k +1)) = d((i + 1,i + 2k +2)). So this value, call it g, occurs on
every chord of the Hamiltonian cycle (0,1,...,4k + 1) of H. Since every
edge of this cycle is incident with two of these chords, the value ¢ occurs on
no edge of the Hamiltonian cycle. But then the value q occurs exactly once
on the (2k+4-2)-cycle (0,1,...,2k+1), namely on the chord (0,2k+1). This
contradicts the fact that any value must occur an even number of times on
any cycle. (m]
Remark. H8’5 o~ Hs,g >~ Q3.

Proposition 3. If k is an even integer, k > 8 and Hy s is embeddable in
Qn for some n then k =0 (mod 16).

Proof: We need three preliminary results.

Lemma 1. If the d-values on 3 consecutive edges of a 6-cycle in a hypercube
are a, b, a, then the d-values on the next 3 edges are c, b, c for some c distinct
from a and b.
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Proof: The third d-value which occurs on this 6-cycle, ¢, must occur twice
on the remaining 3 edges, and b must occur orice. Since edges sharing a
vertex must have different d-values, these values, in sequence, are ¢,b,c. O

Lemma 2. If Hyg is a subgraph of a hypercube, and if for some even
integer j, d((.71.7+ 1)) =a, d((] +1,5 +2)) = b, and d((ﬂ +2,5 +3)) =a,
then d((j + 4,5 +5)) = b, d((j + 5,5 +6)) = a, and d(( + 6,5 + 7)) =b.

Proof: Consider the subgraph H* of Hj s shown in Figure 2. By Lemma
1, d((5+4,5+5)) = b, and d((j +3,5 +4)) = d((4,5+5)) =c,c#a,c#b.
Since (j+2,5+7) and (j +1,7 +2) are incident, d((j +2,5+7)) #b. Soin
the 6-cycle (7 +2,5+3,5+4,5+5,5+6,+7), the only possible edge whose
d-value is b, other than (j +4,j + 5), is ( + 6,7 + 7). Hence the only edge
of the 6-cycle with d-value a, other than (5 +2,5+3),is (j +5,7+6). O

j+3 +4

J+1 j+6

I+7

Figure 2. H*

Lemma 3. Suppose k is an even integer, k > 8, and H; 5 is a subgraph
of a hypercube. If for some even integer j, d((j,7 +1)) = d((F + 2,5 + 3)),
then k = 0 (mod 16).

Proof: It follows from Lemma 2 that the sequence

{d(G +20,5+ 2+ D)Yd ™
alternates a,a,b,b,... where a = d((5,7 + 1)) and b = d(( + 1,5 + 2)).
Now if this sequence ends with an a, i.e. d((j — 2,7 — 1)) = a, then the
6-cycle (5 — 2,5 —1,4,7 + 1,5 + 2,5 + 3) has 3 edges whose d-value is a.
Since this is impossible, the sequence ends with b. In fact, since k& is even,
the sequence ends with 2 b’s, and so k = 4q for some integer ¢. By Lemma
2, the sequence {d((j,j +1))}jZ " has the form

a,b,a,x*bab,x*a,b,a,x*xbab,x,...
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where the omitted values are all different from both a and b. Since k = 4q,
the sequence consists of g 4-tuples. If q is odd, then the last 4-tuple is
a,b,a,+. But then the 6-cycle (k — 2,k — 1,0,1,2, 3) has 3 edges whose
d-value is e, which is impossible. So q is even. Thus 4 of the 4-tuples have
exactly 2 a’s and the other £ 4-tuples have exactly 1 a. So exactly %9 of
the edges of the k-cycle (0,1,2,...,k — 1) have the d-value a. Hence 1is
even. Say Z = 2p. Then k = 4q = 16p. a

Proof of Proposition 3: Let Eo = {(j,j + 1) | j is even}. Suppose
that, contrary to the assumption in Lemma 3, consecutive edges of Ey
have different d-values, i.e. that for all even integers 7, d((4,7 + 1)) #
d((7 +2,5 + 3)).

Claim 1: d((j —2, j+3)) = d((4,5 +1)), for all even j. For in the 6-cycle
(4—2,7—-1,5,5+1,5+2,5+3), 2 of the 3 edges not incident with (,J+1)
belong to Ey and are consecutive with (j,j + 1). Thus neither one can have
d-value = d((7,5+1)). The chord (5 —2, j+3) is therefore the only possible
edge e # (j,j + 1) such that d(e) = d((4,7 + 1)). This proves Claim 1.

Figure 3. The induced subgraph

Claim 2: [{d(e) | e € Ep}| > 3.

For suppose there were only 2 distinct d-values, say a and b, for edges e €
Ey. Consider the induced subgraph of His on the vertices {0,1,2,...,9}.
The d-values on the edges in Ey alternate between a and b, as shown in Fig-
ure 3. Since d((4,5)) = d((0,1)) = g, it follows from Lemma 1, applied to
the 6-cycle (0, 1,2, 3,4, 5) that d((3,4)) = d((1,2)). Call this value c. In the
6-cycle (2,3,4,5,6,7), d((2,3)) = d((6,7)) = b, so by Lemma 1 d((5,6)) =
d((3,4)) = c. Finally, in the 6-cycle (4,5, 6,7, 8, 9), d((8,9)) = d((4,5)) = a,
so a third application of Lemma 1 yields d((7,8)) = d((5,6)) = c. But then
the sequence {d((j,j+1))}=] is a, ¢, b, ¢, a, ¢, b, c. Since each d-value oceurs
an even number of times, vertices 0 and 8 coincide, which is a contradiction.
This proves Claim 2. Now.by our initial assumption, consecutive edges of
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E, have different d-values, and by Claim 2, there at least 3 different d-values
on edges of Ey. Hence there must be 3 consecutive edges of Ey with 3 dif-
ferent d-values. Without loss of generality we may suppose d((0,1)) = a,
d((2,3)) = b, and d((4,5)) = c, where a, b, and c are all distinct (see Figure
4). By Claim 1, d((2,7)) = d((4, 5)) = c. Since the dvalues a, b, and c occur
on the edges of the 6-cycle (0,1,2,3,4,5), d((1,2)) must be one of these.
Since a and b are the values on edges mcldent with (1, 2), d((1,2)) must be
c. But then (2, 7) and (1, 2) are incident edges with the same d-value, which
is impossible. Hence for some even integer 7, d((5,7+1)) = d((§ +2,J +3)),
and so by Lemma 3, k=0 (mod 16).

Figure 4.

The next proposition is the converse to Proposition 3.

Proposition 4. For all k, Hyeks is a subgraph of Qy, where -1 <
16k < 27,

Proof: We shall construct a special (16k)-cycle on Q, as follows. For
4 < j < nlet P(j) be the sequence 12132125. If k = 1 then n = 4 and
we let S = P(4), P(4) = (12132124)2. It is not hard to check that S is
the sequence of edge dimensions of a Hamiltonian cycle on Q4. We now
generalize the construction of S for k > 1 and n > 4. Let a1,02,...,02k
be the edge-dimension sequence of a (2k)-cycle on the (n — 3)-dimensional
subcube {000+" 3} = {# € ZF | z; =0 for 1 < i < 3} of Q. (Note that
since 16k < 2", we have 2k < 2"~3, and thus such a 2k-cycle exists.) So
foreachi,4 <a; <n. Let S = P(a1),P(a2) ., P(azx). - Then S is an
edge-dimension sequence of length 8 - 2k = 16k. By starting at vertex 0
and traversing the sequence of edges whose corresponding sequence is S, we
obtain a walk of length 16k on Q,, which we claim is a cycle. To see this,
note that by Theorem 1 of [6], an edge-dimension sequence corresponds to
a closed walk if and only if every integer occurs an even number of times,
and corresponds to a path if and only if for every proper segment of the
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sequence, some integer occurs an odd number of times. Using this and
the assumption that a,, ay, .. ., ag; corresponds to a cycle, it is easy to see
that S cooresponds to a closed walk, each P(j) corresponds to a path, and
furthermore, every proper segment of S corresponds to a path. This means
that S corresponds to a cycle. Finally, if we let S = by, by, ...,biex—; then
we claim that for all i,

{b2i }A{bait1}A ... A{by i} = 1.

To see this, note that by; occurs in some segment 12132127 of length 8. Let
B = {bai}A{bais1}A... A{boita}-

If 2 =0 (mod 8), B={1}A{2}A{1}A{3}A{2} = {3}.

If2i =2 (mod 8), 8= {1}A{3}A{2}A{1}A{2} = {3}.

If2i =4 (mod 8), = {2}A{1}A{2}A{5}A{1} = {5}.

If2i=6 (mod 8), f={2}A{j}A{1}A{2}A{1} = {5}.

Thus in all cases |8| = 1. If we denote the corresponding (16k)-cycle by
V0,71, ..., V16k—1 then it follows that for all i, (vg;, voi45) is an edge of Q,,.

Thus Hiek,s is a subgraph of Q,,. m}

A modification of the construction of Proposition 4 shows an analogous
result for Hygp 7.

Proposition 5. For all k, Hig 7 is a subgraph of Q,,, where 2"~ <
16k < 2™,

Proof: The only change we make is in the definition of P(5). We let
P(7) = 1232123;. As the rest of the proof is virtually the same as that for
Proposition 4, we omit it. a
Example 1. Let G(X,Y) be the bipartite graph associated with the pro-
Jective plane of order 3 (or equivalently, with the ( 13,4,1) perfect difference
set). Then G is a 4-regular, vertex-transitive graph which cannot be em-
bedded in Q, for any n.

Proof: G contains Hags as a subgraph and since 26 % 0 (mod 16), the
result follows from Proposition 4. (]
Example 2. For n odd, Q. has an (n + 1)/2-regular subgraph H on
2- (a71) vertices. None of the graphs is an H,y..

Proof: V(H) = {nodes of Hamming weight (n —1)/2 or (n+1)/2}. Since
- (a5h) = 241,
n
weni=2- (2
3
Now each v with weight(v) = 23! is adjacent to exactly n.— (23t) =121
nodes of weigh 1‘;—1 +1= !‘-“2’—1 For each of the heavier neighbors of v can
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be obtained by flipping exactly one of the —'*‘— bits of v which is 0. Similarly,
by flipping exactly one of the 1’s of a node of ‘weight —}'—, we obtain an
adjacent node of weight 2 T’ and this can also be done in exactly —g‘— ways.
Thus H is —+— -regular. For n = 5, the 3-regular subgraph H of Qs can
be drawn as shown in Figure 5. Thus it is the generalized Petersen graph

GP(10,3) (see [1] for the general definition).

None of these graphs belongs to the family of Hy, graphs. For if n # 5
then —'f— # 3 and so H is not 3-regular. On the other hand, if n = 5 then
H= GP(10 3) has no 4-cycle, whereas in Hag 3 the vertices 0,1,2, 3 span
a 4-cycle. (]

{1,2} {1,2,4}

{ ""5}

{25}

{2,3,5}

{3.5} {3,4,5}

Figure 5

Proposition 6. For k > 3, no k-regular bipartite graph on 10 vertices can
be embedded in a hypercube.

Proof: Since a k-regular bipartite graph is 1-factorable, it has a 3-regular
subgraph. Hence it suffices to prove the result for the case k = 3. Assume
the contrary, letting G be a 3-regular counter-example. Since the complete
bipartite graph K33 can not be embedded in a hypercube, K3 is not a
subgraph of G. Thus if (X,Y) is a bipartition of G and y,y’' € Y with y#
', then N(y) # N(y'), where N(z) denotes the neighbor set of z. Hence
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{N(v) | y € Y} consists of 5 distinct 3-sets of X. Similarly, {N(z) |z € X }
consists of 5 distinct 3-sets of Y. Furthermore, for any 2-set B C X, let
S={(B,y)|lyeYand BC N(y)}. Let Sp ={y € Y | (B,y) € S}, and
let Sy ={BC X |(B,y) € S}. Then

Y. I1ssl=181=3"Is,l.

BCX,|B|=2 yeY
3 3
YIs=Y" (2) =5- (2) = 15.
yeY yeY
Therefore
Z |SB| = 15.
BCX,|B|=2

Since Kj3 is not a subgraph of G, |Sg| < 2 for all 2-sets B ¢ X. On
the other hand, if B = {z,2'} then B C N(y) & y € N(z)n N(z'). So
|SB| = N(z)N N(z’). But since |Y| = 5, the 3-sets N(z) and N (z’) cannot
be disjoint. Hence |[Sp| > 1 for all B. So |Sp| = [N(z)n N (z")]. Hence
|Sg| > 1 for all B.

Since 1 < [Sp| < 2, 3°|SB| = 15, and there are 10 summands, we
must have |Sp| = 2 for 5 B’s and |Sg| = 1 for the other 5 B’s. These
same remarks apply with the roles of X and Y reversed. In particular,
for y,y' € Y, N(y) N N(y') # 0. Choose z,z5 € X such that IN(z1) N
N(zz)l = 2. Let N(:L‘l) = {yl,yg,ya} and N(:L'z) = {yz,y3,y4}. Since
y1 & N(z2), we have =, ¢ N(y;), and since y, & N(z1), we have z; ¢
N(y4). Now z5 € N(y4), so calling the other 2 members of N (y4) z3 and
Za, we have N(ys) = {z3, z3,4}. By a remark above, N(y;) N N(ys) # 0.
Since zz & N(y1), either z3 or z4 is in N(y;) N N(ys). Without loss
of generality we may assume that z3 € N (1) N N(ys). Suppose that
z4 € N(y1) N N(y4) also. Then N(y;) = {z1,%3,z4}, and so z5 & N(y;).
Since z5 & N(ys) = {z2,z3,74}, we must have N(zs) = {y2,y3,¥5}. But
then N(y2) = N(y3) = {1, 23,25}, contradicting the distinctness of the
N(y)’s. Thus z4 ¢ N(y1). Hence N(y;) = {z1,z3,z5}. Now by our choice
of z; and z3, neither of them is in N(ys). Hence N (v5) = {z3, 74,5}
Thus N(z3) = {y1,94,95}. Hence z3 ¢ N(y2) U N(ys). Since N(y) N
N(ys) D {z1,z2} and N(y2) # N(us), one of them must be {z1, z2, 24},
and the other {zy, z5,z5}. With no loss of generality, we may assume that
N(y2) = {z1,%2,24} and N(y3) = {z;,z, z5}. So G is as shown in Figure
6. But this is precisely the graph H 10,3 (see Figure 6b) which by Proposition
1 is not a subgraph of any hypercube. (u]

Finally, we show just how special the number 10 was in the preceding
result.
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Figure 6b. A redrawing of G

Proposition 7. Let k be an integer > 14 and suppose that k =2 (mod 4).
Then there is a 3-regular graph on k vertices which is a subgraph of a

hypercube.

Proof: We argue by induction on g, where k = 4¢ + 2. For ¢ = 3 (so
k = 14), we give an example of a 3-regular subgraph of Q4 on 14 vertices
(see Figure 7a). Now to establish the result in general we shall show that
if G is a 3-regular subgraph of Q, and if z, y, 2, w is a 4-cycle in Qr
such that all four vertices belong to G and edges (z,y) and (2, w) belong
to G, then we can adjoin an additional four vertices of Qn41 to form a
larger 3-regular subgraph. For viewing Qn41 as two copies of Qn, joined
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by a perfect matching, choose vertices z’, ' » 2, and w' in Qn4; so that
the edges (z, '), (v,9'), (z,2'), (w,w’) are part of this perfect matching.
Let G’ be the graph obtained from G by deleting edges (z,y) and (2, w),
and adjoining the vertices and edges of the 4-cycle 2/, y/, 2/, w’, along with
the four edges matching the two 4-cycles. Clearly G’ is 3-regular. This
construction is illustrated by Figure 7b. a

Figure 7a

w' 2

Figure 7b
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