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ABSTRACT. The neighborhood or two-step graph, N(G), of a
graph G is the intersection graph of the open neighborhoods
of the vertices of G, and L(G) is the line graph of G. The
class of graphs for which N[L(G)] 2 L[N(G)] consists of those
graphs for which every component is either K, K33, or Cy,
where n > 3 and n # 4.

1 Introduction

All graphs considered have no loops or multiple edges. A graph equation is
an equality involving one or more graphs. A number of such equations have
been studied [2-6, 9-12, 16-19, 24-28] and Cvetkovic and Simic [13] present
an extensive bibliography of early work. The neighborhood or two-step
graph, N(G), of a graph G is the intersection graph of the open neighbor-
hoods of G, that is, N(G) can be considered to have the same vertex set
as G with two vertices adjacent if and only if, in G, they are joined by
a path of length two. Neighborhood graphs play an important role in the
study of competition graphs [20-23]. Properties of neighborhood graphs are
developed in [1, 7, 8, 14].

In this paper we let NL(G) and LN(G) represent the graphs obtained
by the composite operations N[L(G)] and L[N(G)), respectively, and char-
acterize those graphs G for which equality holds. The characterization
theorem follows.

Theorem. Every component of a graph G is one of K1, K 3, or C,, where
n > 3 and n # 4 if and only if NL(G) = LN(G).
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That NL(G) & LN(G) whenever the components of G are as required by
the theorem is established in Section 2 after some simple observations about
neighborhood graphs and line graphs are presented. The proof in the op-
posite direction is given for connected graphs in Section 3 and disconnected
graphs in Section 4.

2 Elementary Properties

Certain basic properties of line graphs and neighborhood graphs will be
useful in the subsequent development. The first observation states well-
known facts about line graphs.

Observation 1.

(a) If G is a connected graph, L(G) also is connected.
(b) Let n > 4. Then L(G) is the complete graph K, if and only if G is

1n-

(c) A graph is a line graph if and only if it contains none of nine special
graphs as an induced subgraph [15], four of which are K, 3, K5 minus
an edge (denoted by Ks — e), and the two graphs shown in Figure 1.

> <

Figure 1

We now examine basic properties of neighborhood graphs. The first is
well known, but we include a proof of necessity since we have been unable
to locate one in the literature. The second is a simple, but useful, property.

Observation 2. If G is connected, N(G) is disconnected if and only if G
is bipartite.

Proof: Sufficiency is shown by Exoo and Harary [14]. Suppose N(G) is dis-
connected but G is not bipartite. Then G contains an odd cycle C, implying
N(G) contains an odd cycle D on the same vertices as those in C. Let u be
a vertex in a component of N(G) different from the component which con-
tains D. Since G is connected, there is in G a path (u,v1,v2,...,v, w,T)
where w is the first vertex on this path which lies in C, and z is a neighbor
of w on C. Thus, in G, there is an even length path between u and either
w or z, that is, an even length path from u to at least one vertex of C,
implying u is joined to D by a path in N(G), a contradiction. (n]
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Observation 3. Let G be a connected bipartite graph with at least two
vertices in each bipartition. Then N(G) has exactly two components, both
of which are nontrivial.

Proof: Since G is connected, any two vertices of G which lie in a single
bipartition are joined by an even length path. Thus all the vertices of one
of the bipartitions are in a single component of N{G), and there must be
two components by Observation 2. Furthermore, each component has at
least one edge since each blpartltlon has at least two vertices. ]

The next two observations present helpful counting and structural results.
The number of vertices and edges of a graph G are indicated by |V(G)| and
|E(G)), respectively.

Observation 4. If NL(G) & LN(G), then |E(G)| = |E[N(G)]|.

Proof: Using the definitions of N(G) and L(G), it is clear that |V [N L(G)]| =
IVIL(@)]l = |E(G)] and [V[LN(G)]| = |E[N(G)]|. 0
Observation 5. If G has at least four edges, is not bipartite, and N L(G) =
LN(G), then NL(G) is not complete.

Proof: Suppose NL(G) = LN(G) & K, with n > 4. By Observation 1(b),
N(G) must be K. But G is not bipartite so both G and N(G) contain
an odd cycle. m]

The proof of Lemma 1 follows directly from the Observations and the
definitions of the composite operations on the specific graphs involved and
will not be given. The lemma also establishes one direction of the theorem:

If every component of G is one of K, K; 3, or C, where n > 3 and n # 4,
then NL(G) = LN(G).

Lemma 1.
(i) NL(Cn) =2 LN(C,) = C, if n is odd,
(ii) NL(Cy) = LN(C,) = Cyp g if n 2 6 is even,
(iii) NL(K1,3) = LN(K1,3) & C3, and
(iv) NL(K,) = LN(K,) =0, the graph with no vertices.

The proof that these are the only graphs for which NL(G) = LN(G) is
the subject of the next two sections, Section 3 for connected graphs and
Section 4 for disconnected graphs. Both sections proceed by developing a
sequence of results which identify a class of graphs of the specified type,

connected or disconnected, for which NL(G) 2 LN(G) and whose union is
all graphs of that type, except for those identified in the theorem.
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3 Connected Graphs

We first show that for all connected graphs G with maximum degree,
denoted A(G), at most two, other than those allowed by the theorem,
NL(G) ¢ LN(G). As with Lemma 1, the proof is straightforward and not
given.

Lemma 2. If a graph G is either a C4 or a path P, with n > 2, then
NL(G) ¢ LN(G).

All remaining connected graphs G for which NL(G) and LN(G) may be
isomorphic must have A(G) > 3. The bipartite graphs K ,, are treated
next in Lemma 3. All other bipartite graphs have at least two vertices
in each bipartition, in which case Observation 3 becomes useful, and are
covered in Lemma 4.

Lemma 3. If n # 3, then NL(K, ) ¥ LN(K1,).

Proof: The cases when n < 2 are included in the results of the previous
two lemmas, so we may assume n > 4 and that NL(K») = N(K,) = K,
while LN(K1n) = L(K1 U K,) = L(K,). When n > 4, K, has a pair
of nonadjacent edges. Thus, L(K,) and, hence, LN(K} ) is not complete
while NL(K, ) is complete. m]

Lemma 4. Let G be a connected bipartite graph with A(G) > 3 and at
least two vertices in each bipartition. Then NL(G) $ LN(G).

Proof: By Observation 2, N(G) is disconnected and by Observation 3 each
component of N(G) has at least one edge. Thus, LN(G) is disconnected.
Since G is connected, so is L(G) by Observation 1(a). Furthermore, L(G)
contains a triangle since G has a vertex of degree at least three, meaning
NL(G) is connected, again by Observation 2. O

Lemmas 2, 3, and 4 combine to show that the only connected bipar-
tite graphs for which NL(G) = LN(G) are exactly those specified in the
theorem. It remains to show that the only nonbipartite graphs for which
NL(G) = LN(G) are the odd cycles. This class of connected graphs is
partitioned into two subclasses: those that have induced Cy’s, and those
that do not.

We first consider the non-bipartite graphs which do not contain induced
Cy’s. Two results needed to establish a basis for the induction argument
used in the proof of Lemma 7 are now given.

Lemma 5. Let G; be the graph obtained by including a new vertex u
with edges to at least one and at most n — 1 of the vertices of a K,,, n > 3.

Then |E[N(G1)]| > |E(G1).

Proof: Note that N{G;) includes all edges of the K,,. Suppose u is adjacent
to vertex v in G1. Then, in N(Gi), u is adjacent to all of the vertices of
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the K,, except possibly v, and it is adjacent to v if, in G}, it is adjacent to
at least two vertices of the K,,. The result follows. O

Lemma 6. Let G; be the graph obtained from a C,,, n odd and n > 5, by
including a new vertex u with edges to at least one of the vertices of the
Cn. Then |E[N(G1)]| > |E(G1)|.

Proof: Let the vertices of the cycle be labeled in order by v, vy,...,9n-1.
All subscript arithmetic is to be taken modulo n. Observe that N(G) con-
tains the n-cycle (vp,v2,%4,...,Vp—1,%1,V3,...,0n—2,%). If u is adjacent
to all vertices of the cycle, N(G;) includes all the edges of G, as well, and
we are done. Otherwise, let v, vi+1,...,%+k be a maximal sequence of
consecutive vertices to which u is adjacent. If k > 1, u is adjacent to all of
these vertices in N(G;) and, in addition, is adjacent to viyx+1. f k=0, u
is adjacent to v;4+;. Thus, if any such sequence has k > 1, N(G,) will have
more edges than G;. On the other hand, if all k values are zero, then, for
at least one v; to which u is adjacent, neither v;_; nor v;_s is adjacent to
u. But, in N(G1), v;— is adjacent to u and represents an edge not counted
elsewhere, again giving the result. o

We now are in a position to show that NL(G) 2 LN (G) when G has no
induced Cjy’s.

Lemma 7. Let G be connected, not bipartite, not an odd cycle, and have
no induced C,’s. Then NL(G) ¢ LN(G).

Proof: We may assume G is not complete, otherwise the result follows
directly from Observation 5. The proof is by induction starting with an in-
duced subgraph G, of G; adding vertices one at a time to create a sequence
of induced subgraphs G»,Gs, ..., Gk = G; and showing that |E[N(G;)]| >
|E(Gy)], for 1 < i < k. Since G is not bipartite, it contains either a maximal
complete subgraph K,,, n > 3, in which case G; is taken as the graph of
Lemma 5, or an induced odd cycle of length at least five and then G is taken
to be the graph of Lemma 6. In either case, |E[N(G1)]| > |E(G1)|. Suppose
Gi, 1 < k, has been obtained and |E[N(Gj)]| > |E(G;)|. Since G is con-
nected, there is a vertex u € V(G)—V(G;) which has r > 1 neighbors in G;.
Let G; 4, be the subgraph of G induced by V(G;)U{u}. Note that N(G;)isa
subgraph of N(G;1). Consider any edge uz in G;4;. If there is also an edge
uy with z and y adjacent in G;, then both uz and uy are edges in N(Gi41).
If no such edge uy exists, then uz is an edge of N(G;4) for any z in G; which
is adjacent to z. Moreover, (u,v, z) is not a path in G;;; for any v # =
since then Gj,, and hence G, would have an induced Cy. Thus N(G;;,)
has at least r edges incident to u. It follows from this and the inductive
hypothesis that |E[N(Gi11)]| 2 |E[N(Gi)ll +7 > |E(Gi)| + 7 = |E(Giy1)l.
Since eventually this process creates the graph G, the result follows from
Observation 4. (]
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The rest of the proof of the theorem for connected graphs deals with the
case when G is not bipartite and contains an induced 4-cycle {a, b, ¢, d, a).
Let X = {a,b,c,d} and Ex be the set of edges in G with exactly one end
vertex in X. The following two structural lemmas, and the corollary to the
first of them, facilitate the remainder of the proof. The vertices of L(G)
and NL(G) often will be indicated by the two symbol string defining the
end vertices of the corresponding edge in G. Thus, the 4-cycle becomes the
cycle in L(G) with vertices ab, bc, cd, and da. The degree of vertex v is
denoted d,.

Lemma 8. Let e and f be any two edges in G. Then vertices e and f
are not adjacent in NL(G) if and only if, in G, the end vertices of e and
f induce either 2K; or P3 where the common vertex of the P3 has degree
two in G.

Proof: Assume e and f are not adjacent vertices in NL(G) and, in G, the
end vertices of the edges e and f do not induce 2K, and, if they induce
P3, the common vertex has degree at least three. Suppose e and f are
independent edges in G. Then there must be an edge k joining them, for
otherwise their end vertices would induce 2K. In this case (e, h, f) is a path
in L(G), and e and f are adjacent in NL(G), a contradiction. Therefore,
we must have e = zy and f = yz, where either z and z are adjacent in
G, or y has degree at least three. In either case, we again have e and f
adjacent in NL(G). Now assume the end vertices of e and f induce 2K,
in G. Then e and f have no common neighbor in L(G) and, hence, are
not adjacent in NL(G). Finally, suppose e and f induce P; in G, that is,
e =zy and f = yz, where z and z are not adjacent and y has degree two
in G. Then e and f have no common neighbor in L(G) and, hence, are not
adjacent in NL(G). o

Corollary. In NL(G), vertex
(1) ab is adjacent to cd,
(2) bc is adjacent to da,
(3) ab is adjacent to be if and only if dy > 2,
(4) bc is adjacent to cd if and only if d; > 2,
(5) cd is adjacent to da if and only if dg > 2, and
(6) da is adjacent to ab if and only if d, > 2.

Lemma 9. Let e € Ex. Then, in NL(G), vertex e is adjacent to all of
vertices ab, be, cd, and da.
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Proof: Without loss of generality, assume e = za. Then, in L(G), e forms
a triangle with ab and da and has a length two path to each of bc and cd. O

The proof of the theorem, in the connected case, will be completed by
the next two lemmas. The first assumes Ex has edges e and f which
correspond to nonadjacent vertices in NL(G). The second deals with the
case when no such pair exists.

Lemma 10. Let G be a connected nonbipartite graph having edges e and
f in Ex corresponding to nonadjacent vertices in NL(G). Then NL(G) %

LN(G).

Proof: From Lemma 8, the end vertices of ¢ and f induce, in G, either
2K or P; where, in the latter case, the common vertex has degree two in
G. By Lemma 9, e and f are adjacent to all of ab, bc, cd, and da in NL(G).

Suppose first that the end vertices of e and f induce 2K5. Then, e and
f must meet the 4-cycle in diagonally opposite corners, or otherwise they
would be adjacent in NL(G). Without loss of generality, assume e = aa’
and f = cc. If there is a third edge in Ex, G must include one of the
subgraphs shown in Figure 2.

(b)
Figure 2

In the subgraphs of Figure 2(a) and 2(b), vertices aa’, ab, bb’ (bc’ for 2(b)),
bc, and cc’ induce a K5 —e in N L(G) where the missing edge is between aa’
and cc’. Thus, NL(G) is not a line graph and therefore NL(G) % LN(G).
If neither 2(a) nor 2(b) applies, then dy = dg = 2 and 2(c) yields, in NL(G),
a Ky —e on vertices aa’, aa”, ab, da, and bc where the edge between ab and
be is guaranteed to be missing by the corollary.

If aa’ and cc’ are the only edges of Ex, we know that at least one of a’ or
¢ has another incident edge since otherwise the graph would be bipartite.
Without loss of generality, assume there is additional edge ga’. First, sup-
pose g is the only neighbor of a’ other than a and let H be the subgraph
of G induced by the edges ab, bc, cd, da, ad’, and cc’. Then, in NL(G),
ga' is adjacent only to ab and da of the edges of H, and, furthermore, H
is transformed to the line graph of K4. If NL(G) = LN(G), N(G) must
contain a structure which includes a K3 and which, when the line graph is
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taken, generates the subgraph H along with a vertex equivalent to ga’ and
its two edges to H. This can be done only if some vertex z is adjacent to
at least one vertex of the K4 in N(G). But then z is adjacent to at least
three of the K, vertices in LN(G) which means it is impossible to create
in LN(G) the equivalent of vertex ga’ which is joined to only two of the
vertices.

Thus, if NL(G) & LN(G), we may assume vertex a’ has degree at least
three in G. Since G is not bipartite, one of the subgraphs of Figure 3 must
appear, where, in 3(b), k # ¢.

Figure 3

In either case, the subgraph of NL(G) induced by the vertices gh, aa’,
ab, and bc is K 3 with the central vertex being aa’. In this subgraph, gh is
not adjacent to ab or be since, in G, there is no edge between either g or 2
and any of a, b, and c. Vertices ab and bc are not adjacent by the corollary
and the fact that dp = 2.

The only remaining situation is if the end vertices of e and f induce a P3
in G and the common vertex has degree two. Then, G must contain one of
the subgraphs shown in Figure 4 where the edge with end vertex A must
appear since the graph is not bipartite and, hence, must contain additional
structure.

b b
h
d d
(@)

a (b)
Figure 4
In 4(a), the vertices dh, ab, bc, gb, and gd in N L(G) induce K5 — e with
gb and gd not adjacent by assumption. In 4(b), the vertices be, cd, ch, gb,

and gd perform the same function, again with gb and gd not adjacent. All
cases have been examined and show that NL(G) $ LN(G). (]
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In all remaining cases, any two edges of G which are in Ex become
adjacent vertices in NL(G), implying all edges of Ex induce a complete
subgraph of NL(G) and each such edge is adjacent to every one of the
vertices ab, bc, cd, and de. The next lemma completes the proof of the
theorem for connected graphs.

Lemma 11. Let G be a connected nonbipartite graph having every pair
of edges e and f in Ex correspond to adjacent vertices in NL(G). Then
NL(G) ¢ LN(G).

Proof: There are several cases depending on the size of Ex and the way
edges of Ex are incident to the vertices of the 4-cycle.

Case 1: |Ex| =1. Without loss of generality, assume the single edge in
Ex is ad’. Then dy = d, = dg4 = 2 and d, = 3. Since G is not bipartite,
there must be more to the graph and thus G must have one of the subgraphs
depicted in Figure 5.

b

o0
{ 19
82

he

(b)
Figure 5

For 5(a), NL(G) contains a K 3 induced by vertices ga’, aa’, bc, and cd
while, for 5(b), NL(G) contains a K 3 induced by kg, aa’, bc, and cd.
Case 2: |Ex| = 2. Either one of the subgraphs shown in Figure 6 or
the subgraph of Figure 2(c) without edge cc’ must appear in G. For the
subgraphs in Figure 6, two vertices of the cycle must have degree two, and,
in (a), it is possible that a’ = b’.

b b b
a' a c a' a C ¢
d
@ (b)
Figure 6

41



In the case of Figure 2(c), without edge cc¢/, the same argument as in the
proof of Lemma 10 shows the presence of a K5 —¢€ in NL(G). The subgraph
of 6(a) yields in NL(G) an induced K5 — e on vertices aa’, ab, be, bb’, and
cd (even if @’ = b'); and 6(b) also does on vertices aa’, ab, da, bc, and cc'.
Case 3: |Ex| > 3 with at least one vertex, assumed without loss of gen-
erality to be a, of the 4-cycle having degree two in G. By the corollary, ab
and da are not adjacent in NL(G). Thus the vertices of NL(G) associated
with any three of the edges of Ex along with ab and da induce a K5 —e.

Case 4: Every vertex of X has degree at least three in G. Define the basic
structure to be the subgraph of G induced by the edges of the 4-cycle along
with those in Ex. Note that the corresponding vertices in NL(G) induce
a complete subgraph. Furthermore, no single edge can be adjacent in G
to all the edges of the basic structure, nor can any pair of adjacent edges
between them be adjacent to all those edges if the 4-cycle is to have no
chords. Now let Z be the set of vertices of NL(G) which form a maximal
complete subgraph and which contains the vertices corresponding to the
edges of the basic structure. In L(G), partition Z into Z;, the vertices
having at most one neighbor in Z; Z,, the vertices having exactly two
neighbors in Z; and Zs, the vertices having at least three neighbors in Z.
Notice that Z3 includes all the vertices corresponding to the edges of the
basic structure. We will show that either NL(G) contains a K5 — e or it is
complete with more than three vertices, a contradiction in both cases. The
following discussion concerns the situation in L(G).

Suppose z € Z3. We may assume z has no neighbors outside of Z, for
such a neighbor would be adjacent in NL(G) to at least three vertices of
Z, but not to all vertices of Z, and a K5 — e would result.

Next suppose z € Z;. Then z must have a path of length 2 to every
vertex of Z3. The common neighbor ¥ must be in Z since vertices in Z3
are adjacent only to vertices in Z by the previous paragraph. Thus y must
dominate all of Z3 which means an edge of G is adjacent to all edges of the
basic structure, which we have seen is not the case. It follows that Z; is
empty.

Finally consider z € Z; where z is adjacent to 2; and 23 in Z. It must
be that z; and 22 also are adjacent in order for there to be a length two
path between 2 and each of them. Also, 2 must have a length two path to
all vertices of Z3. The central vertices of all such paths must be z; and 25,
implying these two vertices dominate all the vertices of the basic structure,
that is, two adjacent edges are adjacent in G to all the edges of the basic
structure, which is not possible. Therefore Z» also is empty.

We have shown L(G) consists only of the vertices of the basic structure
implying the impossible situation, by Observation 5, that NL(G) is com-
plete on more than three vertices. This completes the proof of the lemma. O
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For connected graphs G satisfying any of Lemmas 2, 3, 4, 7, 10, or
11, NL(G) 2 LN(G). Further, the collection of such graphs is exactly the
collection of all connected graphs except for those identified in the theorem.
Therefore, the theorem holds for connected graphs. In the next section, we
establish the theorem for disconnected graphs.

4 Disconnected Graphs

As with connected graphs in Section 3, we establish a sequence of lemmas
which show that a graph G with any component other than one of Kj,
K3, or C,, where n > 3 and n 3 4 results in NL(G) 2 LN(G). We
may assume that G has no component H isomorphic to any of those of
the theorem statement since NL(H) & LN(H) for each such component.
Furthermore, induced Cj;’s can only appear in bipartite components. To
see this, the arguments of Lemmas 8 through 11 can be applied to any
non bipartite component H having an induced Cy4. In all but one case, a
forbidden subgraph appears in NL({H). However, in one instance of the
proof of Lemma 11, the condition NL(H) = K,, with n > 4 represents a
contradiction for connected graphs. In the disconnected case, it may be
possible for LN(G) to possess a different component which is isomorphic
to Kn. If so, N(G) must have a component isomorphic to K} n, which
implies G must have a bipartite component H’ with a vertex z so that
A(H’) 2 dr =n > 4 and includes Figure 7(a) as an induced subgraph. No
pair of 1, x2, .. ., Zn, the vertices at distance two from z, can have common
neighbors. In N(H’), = corresponds to the central vertex and z1,x2,...,Zn
are the leaves of the K . Then, L(H’) must contain the induced subgraph
of Figure 7(b) which, in turn, produces the forbidden subgraph K5 — e in
NL(H".

X
a

X ®¢ b €
d a

*2 c

X3 c b

X4

) (b)
Figure 7

Thus, the only possibility for induced Cy’s is in bipartite components of
G.
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In view of the preceding comments, the following table lists the possi-
ble types of components and properties of the corresponding NL and LN
graphs with which we must still be concerned.

Class Component H NL(H) LN(H) Components Components
in NL(H) in LN(H)
A Py P ] 1 0
B Ps 2P P 2 1
C Pn,ﬂ24 Pl-gi-_l-luplli-_rlj Prn—a]UPln-:j 2 2
D Cy 2P 2P 2 2
E Kinn24 Kan L(Ky) 1 1
F Bipartite, not  Not bipartite At least one 1 2
Kin, A23 component.
not bipartite
G Not bipartite, Not bipartite Not bipartite 1 1
no induced
Cs, A>3

Notice that components of Classes A and B each produce one more com-
ponent in NL than in LN, and this extra component is a P;. The only
components which can make up this difference are those in Class F. Anal-
ogously, the components of Class F each produce one more component in
LN than in NL. The only components which can make up this differ-
ence are those in Classes A and B. Therefore, the number of Class A and
B components must be the same as the number of Class F components.
Our first result assumes no component isomorphic to P, or Ps, that is, no
components in classes A or B, and therefore none in Class F.

Lemma 12. If all components of G are in classes C, D, E, and G, then
NL(G) ¢ LN(G).

Proof: Notice that, for every member H of classes E or G, both NL(H) and
LN(H) contain a triangle while no component in classes C or D produces a
triangle. It follows that for NL(G) = LN(G) we must have NL(EUG) =
LN(EUQG) and, thus, NL(CU D) = LN(CU D).

In the proof of Lemma 7 we saw |V[LN(H)]| > |[V[NL(H)]| for any
component H in Class G. It is easy to see that the inequality also applies
to members of E. Thus, NL(EUG) ¢ LN(EUG) and implies that we can
have no components from classes E or G.

Therefore, all components are Cy’s or P,’s withn > 4, and NL(CUD) =
LN(C U D) which are both unions of paths. Let m be the largest index
such that there is a component P,,, and suppose m > 6. Then the largest
component in NL(C U D) is P["‘“'I’ where [251] > 3, and must be
matched in LN(C U D). This is impossible when m is even since then
the largest component in LN(C U D) is ij-_. When m is odd, there

are two Pﬂi-_x components of NL(C U D) for each original P, in G, but
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only one of these can be matched in LN(C U D). It follows that the only
components we can have are isomorphic to Py, Ps, or C4. An easy check
shows no combination of these is allowable. This final contradiction proves
the lernma. a

We now consider the P, and P3 components of Classes A and B, respec-
tively. The previous result shows that if there is any component other than
those described in the theorem, some of them must be from Class A or B,
with an equal number from Class F. Our next result shows the possibilities
in Class F are limited to exactly six graphs. Lemma 14 will finally establish
the theorem by showing that none of these six is allowable.

First, recall that a P; or P3 component produces one more component, a
Py, in NL(G) than in LN(G) and must be paired with a Class F component
which generates exactly one P, in LN(G), that is, exactly one P, in N(G).
Furthermore, if NL(G) 2 LN(G) and H is a component of G in Class F,
then H must produce a P; in N(G).

Lemma 13. Let G be a graph such that NL(G) = LN(G) and H be
a component in Class F with partite sets U = {uj,us,...,un} and V,
where m > 2 and |V| > 2. Without loss of generality, assume N(H) has a
component isomorphic to P, on vertices uy and ug. Then

(a) m=2,
(b) the degree of at least one vertex of V is two, and
(c) A(H)=3.

Proof: Let v € V be adjacent to u; and/or us. Then V has no other
neighbors in U, for otherwise u; (or u2) would have a neighbor in N(H)
other than ug (or u;). Since H is connected, m = 2. For u; and us to
be adjacent in N(H), they must have a common neighbor, that is, some
vertex in V must have degree two. Thus, (a) and (b) are established. Since
H isin Class F, u; or uz must have degree at least three. If, say, vertex u;
has degree four or more, there is, in H, the subgraph shown in Figure 8(a),
with corresponding subgraphs in L(H) and NL(H) shown in Figures 8(b)
and 8(c), respectively.

a b €
b
u, ii c d
u; € v e ¢ d
(@ (b) ©
Figure 8
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There is no path of length two between d and e in L{H) since that would
require either an edge between u; and uy, which is impossible because H
is bipartite, or another edge incident to v, which is also impossible. The
vertices in Figure 8(c) then induce a forbidden K5 — e in NL(H) with de
being the missing edge. This contradiction proves (c). o

Observe that, for H in Class F, if the component in N(H) induced by the
vertices of V' has an edge clique cover number of k, then at least k vertices
must exist in U. This follows because the end vertices in V' of all edges of H
which are incident to the same vertex of U form a clique in this component,
and all edges of the component are created in this way. Since k cliques are
required to cover all the edges of the component, U must contain at least
k vertices. Recall that every component in Class F has [U| =

Lemma 14. Let G be a graph such that NL(G) = LN(G). Then no
component in Class F can produce a P, in N(G).

Proof: From Lemma 13, the only possible Class F graphs are shown in
Figure 9.

a
. 2 b a
(A < e C (4
d € f d

Figure 9

The corresponding line graphs are given in Figure 10.

A

Figure 10

The corresponding NL graphs are shown in Figure 11.
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Figure 11

¢
c : 7
@ (b)

If a graph of Figure 11 is a component of NL(G), there must be an
isomorphic component in LN(G). We show for each that this is impossible.
We take them slightly out of order.

(b) For the graph of Figure 11(b) to be a component in LN(G), a compo-
nent isomorphic to the one in Figure 10(b) must appear in N(G). This
component can arise in N(G) as either the connected neighborhood
graph of a nonbipartite component H’ of G or as one of multiple com-
ponents in the neighborhood graph of a bipartite component H’ of G.
If H' is nonbipartite, then H’ is a five vertex graph in Class G. Ex-
amination of all five vertex graphs (see, e.g., the table in [15]) reveals
none having this graph as its neighborhood graph. Thus H’ is bipar-
tite and therefore in Class F. By the comment preceding the lemma,
U must contain at least three vertices. Since NL(G) = LN(G), H'
must produce a P> in N(H’) so that Lemma 13 applies and we have
a contradiction.

(a) We must have Figure 10(a) as a component in N(G). No four ver-
tex graph has this as its neighborhood graph. However, it can be
generated from the graph of Figure 9(b). This graph, though, is not
allowed as shown in the proof to (b) above.

(c) We have the forbidden subgraph induced by vertices a, b, c, d, and e.

(d) N(G) must contain the following component which can not arise from

AN

any five vertex graph. The only members of Class F which can pro-
duce it have at least three vertices in U, again, contradicting Lemma
13.

(e) = (f) This graph is L(K,), so we need a K, component in N(G). Such a
component can not arise from any graph in Class F for which |U] = 2
and A = 3. However, a K, is the neighborhood graph of either
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another K4 or a K4 — e. Suppose K, is a component of G. Now,
NL(K,) = Kg is the line graph of K. This implies N(G) has a
component isomorphic to K;¢. Such a graph can arise only from a
member of Class F with at least six vertices in U, and contradicts
Lemma 13. Since NL(K4 — e) is K5, a similar argument eliminates
this case.

All possibilities have been considered and the lemma is proved. o
The proof of the characterization theorem is now complete.
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