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Abstract

Upper bounds on Ky(n, R), the minimum number of codewords
in a g-ary code of length n and covering radius R, are improved.
Such bounds are obtained by constructing corresponding covering
codes. In particular, codes of length ¢ + 1 are discussed. Good
such codes can be obtained from maximum distance separable (MDS)
codes. Furthermore, they can often be combined effectively with
other covering codes to obtain new ones. Most of the new codes are
obtained by computer search using simulated annealing. The new
results are collected in updated tables of upper bounds on Kg¢(n, R},
q=3,4,5.

1. Introduction

We consider codes C' C Fg', where F* is the set of all words of length n over
F,. If q is a prime power, we let Fq be the Galois field GF(q), otherwise
Fy is the set of lntegers modulo g. The Hamming distance d(z,y) between
\ two words z,y € FJ is the number of coordinates where they differ. The
covering radius of a. code C is the smallest integer R with the property
that for each z € F' there is a codeword ¢ € C such that dz,c)<R. A
code C C F' that has covering radius R is said t.o be a (g,n, |C|)R code.
If the code is a linear code with length n and ¢* codewords, we use the
notation [n, k], R (notations (g,n,|C|) and [n, k], are used if the value of R
is insignificant). The main interest in the study of nonlinear covering codes
is determination of values of the following function:

K4(n, R) = min{M | there is a (¢, n, M)R code}.
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In (5] and [16], extensive tables of lower and upper bounds, respectively,
for 3-ary, 4-ary, and 5-ary covering codes are presented. In this paper new
tables of best known upper bounds are given, thus updating the tables
in [16]. Lower bounds are not given; however, known exact values are
indicated in the tables.

In Section 2 good codes of length ¢+ 1 obtained from maximum distance
separable (MDS) codes are discussed. Many such codes are also shown to
have a partitioning property, which makes them important building blocks
in constructions of new covering codes from old ones. A matrix method is
presented in Section 3. The method has earlier been used with success to
produce good binary, ternary, and mixed covering codes. Many of the new
bounds in this paper are obtained by computer search using this method
and a heuristic called simulated annealing. An improvement of a length-
ening construction by Honkala is discussed in Section 4; this construction
is used to obtain new linear covering codes. Finally, in Section 5, upper
bounds for the following functions are given: K3(n,R) for 1 < n < 14,
1< R<Y9 Ky(n,R)for 1 < n<10,1< R <7 and Ks(n,R) for
1<n<9 1< R<LT. New codes obtained by the matrix method are
listed in the Appendix.

2. Covering Codes from MDS Codes

A g-ary mazimum distance separable (MDS) code with ¢* codewords has
the property that for any k coordinates, each of the ¢* possible k-tuples
occurs in exactly one codeword. If the length of the code is n, then the
minimum distance is d = n — k + 1 [22]. It is easily seen that no code
with the same length and number of codewords can have greater minimum
distance; this explains the name of this class of codes. It is known that if ¢
is a prime power, then [g+1, k], MDS codes exist for all 1 < k < ¢+1 [15,
Ch. 11, Theorem 9]. Shortening these codes we get that MDS codes exist
forall1<k<n,1<n<qg+1. MDS codes lead to good covering codes
of length ¢ + 1 as the following theorem shows.

Theorem 1 If g is a prime power and no linear [q + 2,9 — R+ 1}, MDS
code ezists, then K,(¢+ 1,R) < ¢*~F.

Proof: The minimum distance of a [¢+ 1,9 — R]; MDS code is R+ 2. For
every z € F' and each set of k = ¢ — R coordinates, there’is a codeword
that coincides in these coordinates; the covering radius is thus at most
(g +1) — (¢ — R) = R+ 1. If the covering radius is R+ 1, then a column
can be added to the parity check matrix of the code without decreasing the
minimum distance; this, however, is not possible as we assume that there
exists no [¢+2,¢— R+ 1], MDS code. Hence the covering radius is at most
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R and the code shows that K,(g+1,R) < ¢¢~R. O

Unfortunately, Theorem 1 cannot always be applied, since [q + 2,k],
codes are known to exist for ¢ even and dimensions k¥ = 3 and k = ¢ — 1.
(No other parameters for which [g+ 2, k], codes exist are known; moreover,
for ¢ < 11 it has been proved that these are the only parameters for which
such codes exist [15, p. 328].) The next theorem is able to fill such gaps;
furthermore, it gives coverings when ¢ is not a prime power.

Theorem 2 If there ezists a (9, — R+2,¢9"R) MDS code where 1 < R <
qg—1, then Kg(¢+1,R) < ¢¢ 1.

Proof: For 1 < R <¢-1, let C be a g-ary MDS code with ¢?~F codewords
and length ¢ —~ R+ 2, and let C; = {z | ({,z) € C}.

We first show that for every z € F‘;"R‘H, either there is an ¢ such that
d(z,C;) = 0; or d(x,C;) = 1 for ¢ — R+ 1 different subcodes C;. Take any
g — R of the coordinates of z (this can be done in ¢ — R+ 1 ways). For all
these choices, there is a codeword that meets exactly in these coordinates.
Now assume that for two of the choices, the codewords, say ¢; and ¢y,
belong to the same set C;. However, then d(c;,cz) < 2, s0 ¢; = ¢3 due to
the MDS property of the original code C; in this case d(z,C;) = 0. Also,
for all ¢, d(z, C;) < 2 due to the MDS property of C.

Now consider the code C' = |J;(4,%,...(R times)) ® C;. Take any
(z,y) € F§*!, where z € FF and y € Fg=R+1_ If there is an ¢ such that
d(y, C;) = 0, then d((z, y), C’) < R. Otherwise, if at least two of the coordi-
nates of z have the same values, then d(z,C’) < (R—2)+2 = R. Finally we
have to consider the case when d(z,(3,%,...)) = R—1 for R values of ¢, and
d(y,C;) = 1for g~ R+1 values of i. Then, since R+(¢q—R+1)=q¢+1> g,
we get that d((z,y),C’) = (R—-1) + 1 = R. This completes the proof. O

Note that the codes obtained in Theorem 2 are not MDS for B > 1. Us-
ing known MDS codes in Theorem 2, we obtain a corollary slightly stronger
than Theorem 1.

Corollary 1 If q is a prime power, then Ko(¢+1,R) < ¢*~F for 1l <R <
g—1.

Actually, we have equality in Corollary 1 for R = 1, ¢ a prime power
(Hamming codes), and in Theorems 1 and 2 and Corollary 1 for R =g —1
[5]. Corollary 1 reproves the bounds K4(5,2) < 16, K5(6,2) < 125, and
K5(6,3) < 25 given in [16]. As for the last two of these bounds, generator
matrices of corresponding linear codes were given in [16}; the first bound
was proved by explicitly listing the codewords.
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For k = 2, there is a (g, n, ¢%) MDS code exactly when there are (n —2)
mutually orthogonal Latin squares of order ¢ [7, Theorem 3], [22, Theo-
rem 3]. Since 2 mutually orthogonal Latin squares exist whenever ¢ # 2,6
[2], we get the following result, which is not restricted to codes over prime
power alphabets.

Corollary 2 K,(q+1,9—2) < ¢* for all ¢ # 2,6.

If we restrict our discussion to linear codes over GF(q), codes with the
same parameters as ours are equivalent to (R—1)-saturated (or R-spanning)
sets with n = ¢+1 points in the projective geometry PG(R, q). The problem
of finding the minimum n for which such sets exist has recently been studied
in several papers; for references and a short summary of results, see [6]. For
large ¢ and R = 2 it is possible to find (R — 1)-saturated sets in PG(R, q)
with less than ¢ + 1 points. For example, for ¢ > 8 and R = 2, there are
such sets with |¢/2 + 2| points.

We shall now show that there are (g,¢ + 1,¢?~%)R codes that can be
used as building blocks in constructing new codes. A (¢,n, M)R code is
strongly k-seminormal if it can be partitioned into k subcodes that all have
covering radius R+ 1 [16] (the term strongly seminormal is used if k = q).

Theorem 3 If there ezists a (¢, — R+3,¢?~ ") MDS code where 2 < R <
g—2 and ¢— R is even, then there is a strongly seminormal (q,q+1, ¢~ ®R
code.

Proof: Let C be a g-ary MDS code with ¢?~f codewords and length
g—R+3 and let C; = {z | (i,z) € C}. Now, deleting the last coordinate of
the code C” = |J;(3,1, .. .(R times)) ® C;, we get a (¢,9 + 1,¢*"F)R code
C' as in the proof of Theorem 2. We shall now prove that the partition
C' = |J; C!, where C{ = {z | (z,i) € C"}, proves strong seminormality
of C'. W.lo.g, we show that C"” = ;(3,4,...(R times)) & C{’, where
C!" = {z|(i,z,0) € C}, has covering radius R + 1.

The following is a slight modification of the corresponding steps in the
proof of Theorem 2. We first show that for every z € FJ —R+1 either there is
an 4, such that d(z, C!"") < 1; or d(z, C{"") < 2 for at least g — R+ 1 different
subcodes C!”. Take any ¢ — R— 1 of the coordinates of z; this can be done
in (¢ — R+ 1)(g — R)/2 ways. For all these choices, there is a codeword in
UU; C# that meets exactly in these coordinates. If there is a subcode C}" to
which at least [(¢— R+1)/2] of these codewords belong, then there are two
codewords, say ¢; and cz, with the property that d(e),c2) < 2,50 ¢4 = ¢2
due to the MDS property of C; thus d(z, C!’) < 1. On the other hand, if all
subcodes C! contain at most |(¢ — R+ 1)/2] of these codewords, then the
codewords belong to at least ((g—R+1)(¢—R)/2)/{(¢—R+1)/2] = ¢—R+1
different subcodes C}; for these subcodes, d(z,C{") <2 ([(¢—R+1)/2| =
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(9 — R)/2 when ¢ — R is even). Also, for all ¢, d(z,C!") < 3 due to the
MDS property of C.

Now take any (z,y) € Fgt!, where z € FF and y € Fg~R+1. If
there is an ¢ such that d(y, C’”) < 1, then d((:c ¥),C") < R+ 1. Oth-
erwise, if at least two of the coordmates of z have the same values, then
d((=, y), C") < (R-2)+ 3= R+1. Finally we have to consider the case
when d(z, (4,4,...)) = R—1 for R values of ¢, and d(y, C{") < 2 for at least
¢ — R+ 1 values of i. Then, since R+{g— R+ 1) = ¢+ 1 > g, we get that
d((z,y),C") < (R-1)+2 = R+ 1, which completes the proof. O

These codes can be used in constructions of new codes from old ones. If
q is a prime power, we now get the following very useful result by applying
[16, Theorem 4] to a (g,n, K4(n, R))R code and a strongly seminormal
(9,44 1,4 F)R code.

Corollary 3 If q is a prime power, 2< R <q-2, and ¢ — R' is even,
then Ko(n+ ¢, R+ R') < g9 R ‘qu(n R), where the code corresponding
to K. (n R) must have a coordinate where all q values occur.

Codes proving K,(¢+1—p, R) < ¢*"%? (p > 0) discussed earlier can
be used to get better constructions for large . Namely, if C is such a code,
then C® {0,1,...¢g — 1} is strongly seminormal and we get a construction
giving K (n+q—p+1,R+ R) < ¢*F “PKy(n, R).

The result in Corollary 3 is similar to that in [16, Theorem 3]. Note that
the [¢+1,¢ — R];R MDS codes in Theorem 1 are not strongly seminormal
as they have minimum distance R + 2, which then is the smallest possible
covering radius for the subcodes in a partitioning. However, partitions of
such codes can still be useful in constructions if we require additional prop-
erties of the codes we act upon. For partitioning constructions involving
Hamming codes, see [9, 16, 17].

Although we have not been able to give a proof in the case ¢ — R/
odd, it seems that Theorem 3 also holds for these parameters. As we later
tabulate bounds on K,(n, R) for ¢ = 3,4, 5, the question whether a strongly
seminormal (5, 6, 125)2 code exists is of particular interest. By construction
we give an affirmative answer to that question.

Theorem 4 There is a strongly seminormal (5,6,125)2 code. Thus Ks(n+
5, R+ 2) < 256K5(n, R).

Proof: Consider the (5,6,125)2 MDS code C obtained from the following
parity check matrix (from [15, p. 323]).

111110
123 40 0].
1 4 4101
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Applying the construction in the proof of Theorem 3 to C, we obtain a
code that is strongly seminormal. O

The (3,7,12)3 code given in [16] was proved to be strongly seminormal
in that paper. It is even strongly 4-seminormal, which is proved by form-
ing a fourth subset out of the last codewords in each of the subsets given
in [16]. To make use of this property in the construction of good ternary
codes we need good ternary/quaternary mixed codes. Mixed codes (mainly
binary/ternary) have earlier been considered, for example, in [8, 14, 18, 21,
23]. Following the notations in [18,21], welet Kq, g;.....qm(R1, 12, .. nm,R)
denote the minimum number of codewords in a code C C FRrFg: ns . Fgm
that has covering radius R. By applying [16, Theorem 4] to the strongly
4-seminormal (3,7, 12)3 code, we get the following theorem.

Theorem 5 K3(n+7,R+3) < 3K,3(1,n; R).

From [21] we know that K43(1,6;2) < 36; this gives a new bound
in Table I, K3(13,5) < 108. Another improvement, K3(13,6) < 45, can
be obtained from K4 3(1,6;3) < 15 proved by the following code: Take
the words in C = {0021210, 1000020, 1120020, 2212100,3100210} C F} F$
together with the words in C + 0111111 and C + 0222222. This code
was actually found using the method to be presented in the next section
(modified to work for mixed codes, cf. [18]).

3. A Matrix Method

In 1970, Kamps and Van Lint [11] gave a nice combinatorial proof of
K3(9,1) < 1458. The method used in the proof was later further devel-
oped and generalized by Blokhuis and Lam [1] and Van Lint Jr. [13]. Let
A = (I; M) = (a1, ...,a,) be an r x n matrix where I is the » x r identity
matrix and M is an 7 x (n — r) matrix with entries from F;. For a column
vector s € F7, we define

R
Sar(s) = {s+)_ajai, | aj € Fy}
=1
for any R-subset {a;,,...,a;} of {ai1,...,a,}, and say that s R-covers

Sa,r(s) using A. If A = I, this covering coincides with covering in the
traditional sense. More generally, a subset S of FJ is said to R-cover F7
using A if

F7 = Sa,r(s).

SES
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Theorem 6 (Van Lint Jr. [13, Theorem 1.4.4]). If S R-covers Fy using
an v X n matriz A = (LM), then W = {w € F? | Aw € S} covers Fp
with radius R. |W|= |S|¢"~".

This method was used in this research to obtain new 3-ary, 4-ary and
5-ary covering codes. The codes together with the matrix M are listed in
the Appendix; a new binary code proving K3(14,1) < 1408 is also included
in the list. In the search for these codes, a search heuristic called simulated
annealing has played a central role. The same approach as in [19] has been
used; see that paper for further details. A code obtained by the matrix
method is the union of some of the cosets of a linear code. Two of the
new codes—a (3, 14, 3%)5 code and a (3, 14, 3%)6 code—are actually linear.
These were found by checking linear codes with large minimum distance.
A (3,14,3%)5 code was earlier constructed by Kennedy [12].

4. An Improved Lengthening Construction

The matrix method presented in Section 3 can be used in constructing
new codes from old. It has been shown [1, 13] that if C is a (¢,n, M)R
code (g is a prime power), then {0} ® C' R-covers F;‘“ using the following
(n+1) x (gn + 1) matrix:

10 ---01 .-1292 ... 9 g—1 - ¢—-1
0
: I, In I, I
0

By using Theorem 6 we get that if ¢ is a prime power, then K (qn +
1,R) < ¢"4=VK,(n, R). Although this construction works for R >1,it
gives record-breaking codes only for R = 1. For example, K3(14,1) <
1408 proved here gives a series of new bounds, starting with K2(29,1) <
23068672. Honkala [10], however, recognized that the construction can be

improved under certain conditions. He shows that if g is a prime, then
N @& C R-covers Fg*! using the following (n 4 1) x (tn + 1) matrix A:

l 0 ... 0 a2 PETERY az a3 o« e a3 . e at .. a'

: I, I, I, xx Iy

0

where N C Fy (|N| = max{1,q — (¢t — 1)R}) is arbitrary and so are the
(¢t — 1) different elements a3, a3, ...,a; € F, \ {0}. We now show that this
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construction can be further improved for R > 2, since the first column of
A is then superfluous. In the proof of the following theorem we only show
how to modify the proof of [10, Theorem 3].

Theorem 7 Let s = max{l,q—(t—1)R}. Ifq is a prime and R > 2, then
Kq(tn, R) < sqt=D"=1K, (n, R).

Proof: Take any (z,y), wherez € Fy,y € Fg. Now, since C'isa (¢,n, M)R
code, there is a codeword ¢ € C, such that d(y,¢) = & < R. In the case
k = R, the first column in A is not used in the proof of [10, Theorem 3];
we can thus proceed with the case k£ < R. If ¥ < R, then for any b€ N,

k
(@97 = (6,07 + (2 =8 A1 + ) oA, (1)

i=1

where A; is the ith column of A, and ¢; is the jth nonzero coordinate of
y—c. If z # b, the first column of A is used. We now choose a; =1 to get
A1 = (g — 1)A14i; + Ar4i;4n for any 4. If & > 1, we can rewrite (1) as

k
(,9)T = (b,0)T +((g=1D)(@—b)+ 1) Arpiy +(@=b)Artiyan+ ) &A1,

j=2
()
which uses £+ 1 < R columns of A. If k = 0, A; can be expressed as a
weighted sum of two other columns in the same way, so for the construction
to work we must have R > 2. Together with the details in [10, Theorem 3],
this completes the proof. O

Now [10, Corollary 5] can also be improved: If ¢ is a prime and R >
max{2, ¢ — 1}, then K (2n, R) < ¢"~!K,(n, R). Thus, by starting from the
ternary Golay code we get that K3(22,2) < 3'°K3(11,2) = 3!°, thereby
“saving one coordinate” compared to the result in [10] (K3(23,2) < 317,
which immediately follows from our result).

It is not difficult to see that if the original code is a linear code and
s = 1 (N = {0}), then the code obtained by this construction is also
linear. Linear ternary covering codes have recently been studied in [6]. Let
I(r, R; q) denote the minimum length of a g-ary linear code of co-dimension
r (= n — k) and covering radius R. The new construction gives that if q is
a prime and R > max{2, ¢—1}, then I(r+1, R;¢) < 2I(r, R; q), which leads
to several improvements in [6, Table I]: {(6,2;3) < 22, 1(12,2;3) < 646,
1(14,2;3) < 1942, 1(16,2;3) < 5830, I(18,2;3) < 17468, 1(20,2;3) < 52406,
1(22,2; 3) < 157220, and I(24, 2; 3) < 471662.
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In [10] the case when ¢ is a prime power is also considered. Slight
improvements on [10, Theorems 7 and 8] can be obtained using arguments
similar to those in the proof of Theorem 7.

5. Tables of Upper Bounds

Upper bounds for 3-ary, 4-ary, and 5-ary covering codes are given in Tables
I, II, and I1I, respectively. Unmarked entries are collected from [16]. Marked
entries are those bounds which have been improved since [16] appeared—
there are 23 such bounds—and old bounds which have been given a nice
new construction (possibly in this paper). Constructions of ternary codes
can also be found in [21). Lower bounds are not given, but known exact
values are indicated by a period. These are from [5], except for K3(5,2) = 8,
which is from [21].

In [4, Remark 4.2(b)] it is claimed that K5(7,2) < 500, which is slightly
better than K5(7,2) < 525 proved here. Unfortunately, the proof of [4,
Theorem 4.1]—which claims that Kg(n+ 1, R+ 1) < (g — 1)¢*~! if there
is a linear (g,n, ¢*)R code—is incorrect and cannot be used to prove the
bound. For example, by applying this theorem to the ternary Hamming
code of length 4, we get that K3(5,2) < 6, but from Table I we can see that
K3(5,2) = 8. The proof contains elementary errors. None of the correct
upper bounds given in [4] improve on the upper bounds in Tables I-I1I.

Key to Tables I, II, and III.

a  Published in the Finnish magazine Veikkaaja 47/1960;
constructed by Aarne Lahtinen.

¢t Corollary i.

d Ki(n+1,R)<qK,(n,R).

m  Matrix method.

ri  Reference [i].

ti  Theorem i.
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TABLE 1. Upper bounds on K3(n,R),1<n<14,1< R<9

n\R 1 2 3 4 5 6 7
1 T.

2 3. 1.

3 5. 3. 1.

4 9. 3. 3. 1.

5 27. 8. 3. 3. 1.

6 73 17 6. 3. 3. 1
7 186 34 12 3. 3. 3.
8 486 81 27 9 3. 3
9 1341 219 54 18 6 3.
10 3645 558 108 36 12 3.

11 947771 729. 243 81 27 9
12 27702719 2187 729 204 542 18
13 59049. 6561 1215717 408"'7 108'° 45%
14 177147 19683 2187 72917 243™ 81™

Noo s wwwr

~ N

© o0 w0 s
00 00 e3¢0 Lo

TABLE II. Upper bounds on K4(n,R),1<n<10,1<R<7

n\R 1 2 3 4 5 6 7
1 1.
2 4, 1.
3 8. 4, 1.
4 24. 7. 4. 1.
5 64. 16! 4. 4, 1.
6 256 52m 16 4. 4, 1.
7 1024 128™ 323 12 4. 4. 1.
8 3456™  384™  96°3 283 8 4. 4
9 12288™ 1024™ 256 64 16 4. 4.
10  49152¢ 4096 1024 208 64 16 4.
TABLE III. Upper bounds on K5(n,R),1<n<9,1<R<L7
ME 1 2 3 1 5 6 7
1 1.
2 5. 1.
3 13. 5. 1.
4 51 11718 5. 1.
5 184 35 gris 5. 1.
6 625. 125! 25¢1 5. 5. 1.
K 3125  525™ 125 25 5. 5. 1.
8 15625 1875™  325'% 653 20 5. 5.
9 78125 7500™ 1275% 2553 553 15 5.
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Appendix

Codes obtained by the matrix method are listed here. For each code, the
columns of the M matrix are first listed, followed by the words in S. These
two sets are separated by a semi-colon. For ¢ = 4, we denote Fy = {0,1,2=
@,3 = a?}, where « is a primitive element; for q = 2,3,5, welet Fy =
{0,...,9— 1} and operate on this set modulo g.

K5(14,1) < 1408: 110000000, 101000000, 011000000, 100111000, 011000111;
000001111, 000010011, 000010101, 000011000, 000101001, 000111110,
001000001, 001001000, 001010000, 001111010, 001111101, 010000111,
010011110, 010100010, 010101100, 010110100, 010111011, 011000110,
011001011, 011001101, 011010001, 011100000, 011110111, 100000010,
100000100, 100001001, 100100110, 100110001, 101001110, 101010110,
101011111, 101100011, 101100100, 110000000, 110011001, 110100101,
110101010, 110110010, 110111100, 111010111, 111011010, 111011100,
111101111, 111111000.

K3(14,5) < 243: 111111000, 211100110, 021021210, 121010101, 220201011;
000000000.

K3(14,6) < 81: 1111111000, 2211100110, 1021021210, 1221010101;
0000000000.

K4(8,1) < 3456: 11100, 32100, 23100; 00122, 00131, 01321, 01332, 02001,
02010, 02033, 03200, 03212, 03223, 10122, 10131, 11201, 11210, 11233,
12300, 12312, 12323, 13021, 13032, 20122, 20131, 21000, 21012, 21023,
22221, 22232, 23301, 23310, 23333, 30003, 30011, 30030, 30100, 30103,
30110, 30113, 30122, 30131, 30203, 30211, 30230, 30303, 30311, 30330,
31102, 31113, 31120, 32102, 32113, 32120, 33102, 33113, 33120.

Ka(9,1) < 12288: 1100, 1010, 1001, 0111, 1111; 0133, 0221, 1000, 1312,
2102, 2210, 3011, 3023, 3120, 3232, 3303, 3331.

Ka(6,2) < 52: 11111; 00031, 00323, 03100, 10210, 12133, 12302, 22020,
23232, 23311, 31003, 31112, 31221, 31330.

K4(7,2) < 128: 11100, 32100; 02202, 02231, 10113, 10120, 21301, 21332,
33010, 33023.

Ka(8,2) < 384: 11100, 32111, 21321; 02132, 10232, 21032, 33303, 33311,
33320.
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K5(7,2) < 525: 11100, 11010; 03324, 04214, 12320, 13213, 14210, 14431,
21100, 21321, 23101, 24041, 30102, 31042, 32432, 33043, 33212, 33321,
40044, 40433, 41430, 42323, 44104.

K5(8,2) < 1875: 11100, 32100, 43110; 00144, 01221, 03442, 04003, 11423,
14200, 20041, 22202, 24404, 30243, 31324, 33020, 40440, 41022, 44301.
K5(9,2) < 7500: 11000, 21000, 31000, 41110; 01001, 01122, 10003, 10132,
10213, 24142, 24210, 33211, 33424, 42000, 42124, 42344.
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