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ABSTRACT: For v > 3, v odd, it is shown that there exists
a decomposition of K, into b cycles whose edges partition the
edge set of K, if and only if

7 =es 5

For even v, v > 4, a similar result is obtained for K, minus a
1-factor.

In recent times much work has been done on decompositions of graphs,
especially complete graphs, into cycles. For example see the survey [3] and
the references therein. Alspach [1] conjectured in 1981 that the obvious
necessary conditions for the existence of a decomposition of the complete
graph into cycles of lengths my,ma,...,m; are sufficient and to date the
conjecture is still an open problem.

According to Jean Doyen (Auburn Combinatorics Conference, 1996),
Erdds conjectured that if v > 5, and if 2v—~4 < b < (3), with b not equal to
(3) =1 or (3) — 3, then there exists a linear space on v points with b lines.
(According to [4] and [5], this question was asked by Doyen himself!)

“Research supported by the Australian Research Council grants A49532750 and
ARCPDF015G.

ARS COMBINATORIA 52(1999), pp. 65-70



Here we consider the analogous problem for cycle decompositions of
complete graphs. That is, we determine the possible number of cycles in
cycle decompositions of K, for n odd (or of K, \ F, F a 1-factor, for n
even).

In the case of cycle decompositions of K, or K, \ F, the least value of
b arises with a hamilton decomposition of K, or K, \ F, and the greatest
value of b arises when all cycles are of length 3, or just one cycle has length
4 and the rest have length 3.

We start with some definitions. We denote by (v1,vs,...,vm) the m-
cycle with vertices vy, vs, ..., v, and edges v1vs, v2vs, ..., vnv;. If Hy and
H; are edge-disjoint graphs, we denote by H; + H, the graph with vertex
set V(H,) UV (H2) and edge set E(H,) U E(H,). For convenience, define
Gn to be the complete graph K, if n is odd, and K, \ F (F a 1-factor) if
n is even. We shall say that B(n) is the set of all ¢ such that the edge set
of G, can be partitioned into a set of ¢ cycles. Further, let e, = |E(G,)|,

n(n —1) n(n —2)

SO e, = — if n is odd and e, = — if n is even.

Now with this notation, our aim is to prove the following result.

MAIN THEOREM Let t be an integer. Then t € B(n) if and only if

t is in the interval [e—", e—"].
n 3

We start with a specific hamilton decomposition of G,,. If n = 2r+1, let
V(Ga) = {0,1,2,...,2r},and if n = 2r + 2, let V(G,) = {00,0',1,2,...,
2r}. Then let H,, be the hamilton cycle decomposition of G,, given by

Hn,={H;|i€Z,}
where for each i € Z,,

(i) Hi=(00,14¢,2r +4,2+4+4,2r—1+44,...,r+i,r+14+4) ifn = 2r +1;

(i) Hi = (00,1 +4,2r +4,2+4,2r — 144,..., 5 44,00, 30l 4§ rd3 4
..o, 7+, r+1414)if n=2r+2 and r is odd;

(ii)) Hi = (00,1 +4,2r +4,2+4,2r —1+4,..., 332 4 § 00!, 242 44 3 4
%oy +e,r+1414)if n=2r +2 and r is even.
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LEMMA 1 Forali€Z,,
(1) ifn2>5, Hi+Hiy1 =C3+Crnz2+Cr_1; and
(ii) ifn>7 H;+H 1 =C3+C3+Cph_g+Cnh_y.

Proof: (i) In H; we replace the path co,1 +4,2r + 4,2 + i with the path
00,2 + ¢ to obtain an (n — 2)-cycle, g1 say. In H,,, we replace the path
00,2 +1,1+1 with the path 00,1+ to obtain an (n — 1)-cycle, g2 say. The
unused edges form the 3-cycle (2r +14,1 +14,2 + 7).

(ii) In g, we replace the path co,7 + 1 + 4,7 + ¢,7 + 2 + i with the
path oco,r + 2 + 7 to obtain an (n — 4)-cycle. In g» we replace the path
00,7 +2+1%,7+141% with the path oo, 7+1+1 to obtain an (n—2)-cycle. The
unused edges form two 3-cycles, (2r+1,1+%,2+4) and (r+i,r+1+1,7+2+1).

O

COROLLARY 2

2en

En &n +1,e—"+2,...,——leB(n).
n n

For n>3, —,—
n' n

Proof: The existence of the hamilton cycle decomposition H,, tells us that
en/n € B(n). We obtain e, /n, e,/n+1, en/n+2, ..., 2e,/n—1€ B(n)
by applying Lemma 1 to Hy and H;, and then subsequently to H; and Hj,
H, and Hs and so on. When |H,| is even we also have 2e,/n € B(n). O

LEMMA 3 If t € B(n) then t+%"+1€B(n+2).

Proof: Let S be a set of cycles which partitions the edge set of G, and
suppose that V(G,) = {1,2,...,n} and V(Gny2) = V(G,)U{n+1,n+2}.
If n is even, then

Su{(l,n+1,2,n+2),3,n+1,4,n+2),...,(n-Ln+1,nn+2)}

is a set of t + n/2 (that is, t + e./n + 1) cycles which partitions the edge
set of G qa.
If n is odd, then

S u {(I,n+1,2,n+2),(3,n+1,4,n+2),...,
n-2,n+1,n-1,n+2),(n,n+1,n+2)}

is a set of t + (n + 1)/2 (that is, ¢ + en/n + 1) cycles which partitions the
edge set of Gpqa. a

The following proposition is a corollary of a result in [2]
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PROPOSITION 4  If 3z + 4y = e, with z, y > 0, then there is a
decomposition of G, into z 3-cycles and y 4-cycles.

COROLLARY 5  For all integers t in the range I-%-I <t< [e—"J,
t € B(n).

Proof: It is straightforward to check that there exist non-negative integers
z and y satisfying 3z + 4y = e, for any n > 3. Let tmin and tmax be
respectively the minimum and maximum number of cycles in a set of 3-
cycles and 4-cycles which partition E(G,).

If3z+4y = e, then 3(x+4)+4(y—3) = en, and if y < 3and 3z+4y = e,
then £ +y = tmax. Hence for all ¢ in the range tmin £t < tmax,t € B(n).

We shall now show that tmin <[] and tmax >

Suppose, on the contrary, that ¢,;, > [%.I » T+Y = tyip and 344y =
en. Then

en — 3z _€en T

tmln=T+$—z+Z

andsoT+4 > [4] Hence (en+z)/4 > en/4+1andsoz > 4. Thisisa

contradiction, since 3(z—4)+4(y+3) = e, and z—4+y+3 = t;, —1. Hence
tmin < [ ] Similarly, if tmax < |er/3}, 2+y =tmax and 3z +4y =,
then y > 3 and again we have a contradiction. Hence tmax > |en/3]. O

We can now prove our main result.

MAIN THEOREM Let t be an integer. Then t € B(n) if and only if
t is in the interval [e_,, .

Proof: Clearly, if t < en/n, then we are forced to have at least one cycle
containing more than n edges (which is impossible), and if ¢ > e, /3, then
we are forced to have at least one cycle containing fewer than three edges
(which again is impossible).

Case 1: n is odd The proof is by induction on n. Clearly 1 € B(3) and
so the result is true for n = 3. Now assume it is true for n = k— 2 > 3 and
consider the case n = k.

By Corollary 2,

-, 2=, ..., k—2€ B(k). 1)

By Lemma 3 and the induction hypothesis for B(k — 2), we have

{? % [—(k_z)ék_B)J}+kz;1§B(k),
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that is,

2 _
k-2 k-1, ..., [%JGB(I:)‘ )

By Corollary 5,
[k(k—l)]’ [k(k—l)w T {’“’“‘UJ € B(k). (3)

8 8 6
Now,
k2—-2k+3 _ k(k-1) _1)>k2—2k+3,_k2—k

6 8 - 6 8

_k2-5k+12
24

_(k=2)(k-3)+6
- 24

>0
and so the result follows from (1), (2) and (3).

Case 2: n is even Again, the proof is by induction on n. Clearly 1 €
B(4) and so the result is true for n = 4. Now assume it is true for n =
k — 2 > 4 and consider the case n = k. By Corollary 2,

k-2 &k
—_— = e k- .
=1 5 o k=3 € B(K) @

By Lemma 3 and the induction hypothesis we have

{% =2 [(’“‘2)6(’“‘4’J}+’°;2g3(k).

That is,

2 _
k=3, k-2, ..., [U#JEB(I:). (5)

By Corollary 5,

e e R L RN
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Now,

lk2—3k+2J _ ([k(k—2)] _1) > k2—3k+2_k2-—2k

6 8 - 6 8
_k*—6k+8
B 24
_ (k- 3)2-1
- 24
>0 sincek >4
and so the result follows from (4), (5) and (6). |
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