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Abstract

The quantity g(*) (v) was introduced in [6] as the minimum
number of blocks necessary in a pairwise balanced design on
v elements, subject to the condition that the longest block
has length k. Recently, we have needed to use all possibilit-
ies for such minimal covering designs, and we record all non-
isomorphic solutions to the problem for v < 13.

1 Introduction

Let V be a set of cardinality v. The quantity g*)(v) was intro-
duced in [6] as the minimum number of blocks necessary in a pair-
wise balanced design on v elements (PBD(v)), subject to the condi-
tion that the longest block has cardinality k. Values of g¥)(v) for
2 < k<wv< 13 aregiven in [6] and for 2 < k < v, 14 < v < 21,
with two omissions, in [5]. Although these values of g!*)(v) are known
and much effort has been put into their determination, a study of the
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designs which attain these bounds and the number of non-isomorphic
solutions for each case has received less attention. Recently, we have
needed to use this information and so have provided it. In this paper
we record the results, concentrating on the cases 2 < k < v < 13,
although some of the theorems are more general.

An aim of this paper is to be comprehensive. Hence the res-
ults range from the elementary to the complex. We also either list
all the relevant designs or describe how they may be constructed.
Occasionally this involves rehashing well-known information, but the
extra space needed is insignificant compared with the advantage of
not needing to refer to other papers. We will take as our represent-
ation of V the set {n:1 < n <wv,n € Z}. The elements 10, 11, 12,
and 13 will also be called A, B, C, and D, respectively, where appro-
priate. Often set brackets and commas will be omitted from listings
of designs where no confusion arises. The number of pairwise non-
isomorphic designs corresponding to each g!*)(v) will be denoted by
N®) (). We will not re-prove the values of g*)(v). These are already
given in [6]. They are quoted in the statement of all the theorems and
used to determine the required designs and values of N*)(v). Other
standard terminology used throughout the paper is as follows. In any
of the designs, the number of blocks of cardinality n, n > 2, will be
denoted by b,. Further, the number of blocks of cardinality n, that
is, the frequency, in which a given element occurs will be denoted
by f.. In the proofs of the theorems, the arguments often proceed
‘without loss of generality’. This is to be understood throughout the
paper and avoids the necessity of a formal statement on every occa-
sion. Similarly, and an example of this occurs immediately below,
in places where it is stated that the number of designs has a certain
value, this is ‘up to isomorphism’. These words too will be omitted
but are to be understood.

Finally, one piece of mathematics which recurs throughout the
paper concerns sets of one-factors of the complete graph Kg. It is
very well known (for example, see [8]) that there is a unique one-
factorization of K. It is perhaps most appropriately described on the
vertex set Zs U {oo}. The one-factors are the edge sets {(co,n), (n +
I,n+4),(n+2,n+3)}, 0 <n <4 Itis easily seen that the auto-
morphism group acts doubly transitively on the one-factors. There is
a unique set of four one-factors, obtained by removing any one-factor
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from the one-factorization. There are two sets of three one-factors.
One of these is obtained by removing any two one-factors (a 6-cycle)
from the one-factorization and the other consists of the one-factors
{(0,0),(1,2), (3,4)}, {(0,1),(2,3),(4,00)}, {(0,2),(0,3), (1,4)}. Tt
does not extend to a one-factorization. We will refer to these two
sets of three one-factors as the extendable set and non-extendable
set, respectively.

2 Designs with ‘long’ blocks

We begin with some easy general results.

Theorem 2.1 ¢ (v) =1, N¥(v) =1, v >2.

Proof The unique solution is {1,2,...,v}. m
Theorem 2.2 g(*-V(v) =v, N~ D(v) =1, v>3.

Proof The unique solution is {1,2,...,v — 1} and all pairs {i,v},
1<i<v—-1. ]

Theorem 2.3 g(*-2(v) = 2v —4, NO-I(y) =1, v > 5.

Proof The unique solution is {1,2,...,v — 2}, {1,v — 1,v}, and all
pairs {i,v — 1} and {7,v},2<i<v—2. O

Before proceeding, we need some further results. In [9], Woodall
showed that, in effect, g*)(v) > 1+ (v — k)(3k — v + 1)/2. It was
later shown (Theorem 3.3 of [6]) that if v = 1 (mod 4) this bound is
achieved for k > (v —1)/2 and otherwise for k£ > (v —1)/2. Moreover
(Theorem 3.4 of [6]), the only designs which achieve these bounds
are those which use pairs and triples as blocks other than the ‘long’
block. Having stated these results we can give the next theorem.

Theorem 2.4 ¢\*=3(v) = 3v — 11, N3 (v) =1, v > 6.
Proof The unique solution is {1,2,...,v—=3}, {1,v—2,v—1}, {1, v},

{2,v-2,v}, {2,v—1}, {3,v—-1,v}, {3,v—2} and all pairs {¢,v—2},
{i,v —1}, and {i,v}, 4 <i<v-3. O
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The next two theorems are also general in nature but require more
detailed analysis of the structure of the solutions. This is particularly
true of Theorem 2.6.

Theorem 2.5 g"=9(v) =4dv —21, v > 7. N®(7) =1, N¥(8) =2,
N®)(9) =3, Nv-9(y) =4, v > 10.

Proof Let the ‘long’ block be {1,2,...,v — 4}. Let the elements
v—3,v—2,v—1,v be called X,Y,Z,W.

One solution is obtained by taking the remaining blocks to be
{1,X,Y}, {1,Z,W}, {2,X,Z}, {2,Y,W}, {3,X,W}, {3,Y,Z}, and
all pairs {1, X}, {¢, Y}, {¢,Z}, and {i, W}, 4 <1 < v—4; design 2.5.1.

If v > 8, a second solution is obtained by replacing, in design 2.5.1,
{3,Y,2},{4,Y},{4,2}, by {4,Y,Z},{3,Y}, {3,Z}; design 2.5.2.

If v > 9, a third solution is obtained by replacing, in design 2.5.2,
{2,Y,W},{5,Y}, {5, W}, by {5,Y,W},{2,Y}, {2, W}; design 2.5.3.

If v > 10, a fourth solution is obtained by replacing, in design 2.5.3,
{1,Z, W}, {6,Z}, {6, W}, by {6,Z, W}, {1,Z}, {1, W}; design 2.5.4.

Observe that, in general, the number of non-isomorphic solu-
tions is equal to and corresponds directly with the number of non-
isomorphic proper edge-colourings of the complete graph K,. Let
the vertices of K4 be X,Y,Z,W. Then there are four proper edge-
colourings as follows.

# # colour classes Colour classes

1 3 {XY,ZW},{XZ,YW}, {XW,YZ}

2 4 {XY,ZW}, {XZ, YW}, {XW}, {YZ}

3 5 {(XY,ZW}, {XZ}, {YW}, {XW}, {YZ}

4 6 (XY}, {ZW}, {XZ}, {YW}, {XW},{YZ}

To obtain solutions to our problem, triples are formed by assigning
each colour class to an element of the ‘long’ block and completing the
design with pairs. The only restriction is when the number of colour
classes exceeds the number of elements in the ‘long’ block. m|

Theorem 2.6 g(*=%)(v) = 5v—34, v > 10. N®)(10) =1, NO(11) =

3, NO(12) = 7, N®(13) = 9, N©(14) = 10, N¥-9(v) = 11,
v > 15.
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Proof Let the ‘long’ block be {1,2,...,v — 5}. Let the elements
v—4,v-3,v—2,v—1,v be called X,Y,Z, W, V. Using the approach
introduced in Theorem 2.5, we see that the proper edge-colourings of
the complete graph K on vertex set {X,Y,Z, W, V} are as follows.

#  # colour classes Colour classes

1 5 {YZ, WV} {XW,ZV}, {XV, YW},
{XZ, YV}, {XY,ZW}

2 6 {YZ, WV}, {XW,ZV}, {XV, YW},
{XZ,YV}, {XY}, {ZW}

3 6 {YZ,WV} {XW,ZV}, {XV, YW},
{YV,ZW}, {XY}, {XZ}

4 7 {YZ, WV}, {YW,ZV},{YV,ZW}, {XY},
{X2}, {XW}, {XV}

5 7 {XV,ZW},{YW,ZV},{YZ, WV}, {XY},
(X2}, {(XW}, {YV}

6 7 {XV,YZ},{YV,ZW},{XW,ZV}, {XY},
{XZ},{YW},{wV}

7 7 {XW, YV} {YW, ZV}, {ZW, XV}, {XY},
{XZ},{YZ},{WV}

8 8 {XY,ZW}, {XZ, YW}, {XW}, {XV},
{YZ},{YV},{ZV},{WV}

9 8 {XY,ZW}, {XV,YZ},{XZ}, {(XW},
YW}, {YV},{ZV},{WV})

10 9 {XY,ZW}, {XZ}, {XW}, {XV},{YZ},
{YW},{YV},{ZV},{WV}

11 10 {XY}, {XZ}, {XW}, {XV},{YZ}, {YW},

{YV}, {ZW}, {ZV}, {WV)

The above results can casily be verified by the reader. They are
completely straightforward, and only the case of 7 colour classes is
not immediately evident. In order to evaluate the ultimate value of
N@=6)(y), the equivalent problem is to determine the number of non-
isomorphic proper edge-colourings of the complete graph K. This
appears not to be in the published literature and the reason may be
that it seems an extremely tedious task. Our cursory investigations
indicate that there are several hundred solutions. Consequently, for
the last theorem in this section, we have restricted our attention to
the values we need, that is, v = 11, 12, and 13.
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Theorem 2.7 ¢g{*=%(v) = 6v — 50, v > 11.
N®)(11) = 1, N©®(12) = 6, N(D(13) = 34.

Proof Let the ‘long’ block be {1,2,...,v — 6}. Let the elements
v—>5v—4,v—3,v—2,v— 1,0 be called X,Y,Z,W,V,U. Using
the approach introduced in Theorem 2.5, we see that the value of
N@=6)(y), v = 11,12,13, can be found by determining the number
of proper edge-colourings, with 5, 6, or 7 colours, of the complete
graph K¢ on vertex set {X,Y,Z,W,V,U}. The notation 3* 2% 1*
will be used to indicate that an edge-colouring has z,, colour classes
of cardinality n for n = 1,2,3. There are respectively 1, 2, and 4 such
patterns corresponding to 5, 6, and 7 colours. These are 3%, 342!1!,
3323 34138, 332212, 322%1!, and 3!'26.

There is just one proper edge-colouring of K with the pattern 3%;
it is the unique one-factorization of Kg. Hence N®(11) = 1.

Consider the pattern 3*2!1!. There is a unique set of four disjoint
one-factors of Kg: {XZ,WY,VU}, {XW,VZ,UY}, {XV,UW,YZ},
{XU,YV,ZW}. The remaining edges of K can be partitioned into
the pattern 2!1! in three ways:

(XY, ZU}, {WV}; {XY, WV}, {ZU}; {WV, ZU}, {XY}.

However the permutations (ZVUW) and (XVYW) map the first of
these to the second and third, respectively, and fix the set of four one-
factors. Hence there is just one edge-colouring of Kg with the pattern
342111, namely the above set of four one-factors together with any one
of the three patterns 2!1! above.

Now consider the pattern 332%. There are two sets of three pair-
wise disjoint one-factors of /4. Consider first the non-extendable set
of one-factors: {XY,ZW,VU}, {YZ,WV,XU}, {XW,YV,ZU}. The
six remaining edges are XZ, ZV, VX, YW, WU, and UY. The first
three of these edges, and the last three, form 3-cycles and so must
all lie in different colour classes. This gives at most six possibilities
for the remaining three colour classes: {XZ,-},{ZV,-}, {VX,-}, where
the three dots are replaced in turn by the six arrangements of YW,
WU, UY. However, the permutation (YWU) permutes these six in
two cycles of three and fixes the above set of three one-factors, leav-
ing at most two possibilities for an edge-colouring of K4 with pattern
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3323, namely the above set of three one-factors together with either
of the following:

{XZ, YW}, {ZV, WU}, {VX, UY};
{XZ,YW}, {2V, UY},{VX, WU}.

To see that these two edge-colourings are non-isomorphic, consider,
for each of them, the three subgraphs induced in the edge-coloured
graph made up of the colour classes of cardinality 3 by the vertices
of the three colour classes of cardinality 2. For both colourings, all
three subgraphs have pattern 2'1%. In the first colouring, the three
subgraphs have two edges of the same colour from the same colour
class of cardinality 3, while in the second colouring, the three sub-
graphs have two edges of the same colour from different colour classes
of cardinality 3.

The extendable set of three one-factors of K is {XY,ZW,VU},
{YZ,WV,UX}, {XW,YU,ZV}. The six remaining edges are XZ,
ZU, UW, WY, YV and VX, which form a 6-cycle. There are two
possibilities for the sequence of three colours round the edges of the 6-
cycle, namely (¢, coc3¢1¢a¢3) and (¢ ¢s¢i¢3¢5¢3). Since the permutation
(XZUWYYV) cyclically permutes the vertices of the 6-cycle, and fixes
the above set of three one-factors, all partitions corresponding to a
particular colour sequence give isomorphic colourings of Kg. This
leaves two non-isomorphic colourings of Kg, corresponding to the two
colour sequences, namely the above set of three one-factors together
with either of the following:

{XZ, WY}, {ZU, YV}, {UW, VX};
{XZ, YV}, {ZU, WY}, {UW, VX}.

Thus there are, in total, four proper edge-colourings of K with the
pattern 3323, This completes the determination of N(€)(12): we have
N®((12)=1+4+1+4=6.

Now consider the pattern 3*13. There is a unique set of four
pairwise disjoint one-factors of Kj; since there is just one way to
partition the remaining three edges into the pattern 13, there is just
one proper edge-colouring of K with the pattern 3413:

{XZ, WY, VU}, {XW, VZ, UY}, {XV, UW, YZ},
{XU, YV, ZW}, {XY}, {ZU}, {WV}.
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Now consider the pattern 322212, There are two sets of pair-
wise disjoint one-factors of K. Consider first the non-extendable set:
{XY,ZW,VU}, {YZ,WV,XU}, {XW,YV,ZU}. The six remaining
edges are XZ, ZV, VX, YW, WU and UY. The first three of these
edges, and the last three, form 3-cycles and so must all lie in differ-
ent colour classes. Both the permutations (XZV) and (YWU) fix the
above set of three one-factors, leaving at most two possibilities for
an edge-colouring of K with pattern 3221, namely the above set of
three one-factors together with either of the following:

(XZ, YW}, {2V, WU}, {VX}, {UY};
(XZ,YW}, {ZV,UY},{VX}, {WU}.

To see that these two edge-colourings are non-isomorphic, consider,
for each of them, the two subgraphs induced in the edge-coloured
graph made up of the colour classes of cardinality 3 by the vertices of
the two colour classes of cardinality 2. For both colourings, both sub-
graphs have pattern 2!12. In the first colouring, the two subgraphs
have two edges of the same colour from the same colour class of car-
dinality 3, while in the second colouring, the two subgraphs have two
edges of the same colour from different colour classes of cardinality 3.

The extendable set of three one-factors of K is {XY,ZW,VU},
{YZ,WV,UX}, {XW,YU,ZV}. The six remaining edges are XZ,
ZU, UW, WY, YV and VX, which form a 6-cycle. There arc four
possibilities for the sequence of four colours round the edges of the 6-
cycle: (c1caci¢2¢3¢4), (€162¢1Ca62¢4), (€rCa¢3€1C2¢4), and (cyCac3CC1C4).
Since the permutation (XZUWYYV) cyclically permutes the vertices
of the 6-cycle, and fixes the above set of three one-factors, all parti-
tions corresponding to a particular colour sequence give isomorphic
colourings of Kg. This leaves four non-isomorphic colourings of Kg,
corresponding to the four colour sequences, namely the above set of
three one-factors together with each of the following:

{XZ,UW}, {ZU, WY}, {YV}, {VX};
{XZ, UW}, {ZU, YV}, {WY}, {VX};
{XZ,WY},{ZU, YV}, {UW}, {VX};
{XZ,YV}.{ZU, WY}, {UW}, {VX]}.
Thus there are, in total, six proper edge-colourings of /s with the
pattern 332212,

78



Now consider the pattern 3°211!. There is a unique set of two
pairwise disjoint one-factors of Kg: {XY,ZW,VU}, {YZ,WV,UX};
these form the colour classes of cardinality three. It is easy to check
that each colour class of cardinality two must take the form of an
image, under some power of the permutation (XYZWVU), of one
of the following: {XV,YW}, {XZ,YU}, {XV,ZU}, {XW,YV}. We
shall say that all such images of the first, second, third, and fourth of
these are of types a, b, ¢, and d, respectively. Using the fact that the
only permutations of X,Y,Z,W,V,U which fix the set of two one-
factors are those in the group ((XYZWVU), (YU)(ZV)), we find that
there are eleven possibilities for a proper edge-colouring of Kg with
the pattern 322%1'. The colour classes of cardinalities two and one
are given in the following table. The left-hand column describes the
types of the four classes of cardinality two. These results are easily
checked by the reader.

aaad {XZ, WU}, {XV,YW}, {YU,ZV}, {XW, YV}, {ZU}
aacd {XV, YW}, {XZ, WU}, {XW, YU}, {YV,2ZU},{ZV}
abce {XV,YW},{ZV, WU}, {XZ, YV}, {XW, YU}, {ZU}
abbd {XV,YW},{XZ,YU},{ZV, WU}, {XW, YV}, {ZU}

{YU,ZV}, {XZ, YW}, {XV, WU}, {XW, YV}, {ZU}
abed {XV,YW},{XZ,YU},{YV, WU}, {XW, ZU}, {ZV}
bbb,d {XZ YW}, {XV,YU},{ZV, WU}, {XW, YV}, {ZU}
bbec {XZ, YW}, {XV, YU}, {XW,ZV}, {YV, WU}, {ZU}
bbed {YW,XZ}, {WU,XV}, {XW, YU}, {YV,ZU}, {ZV}

{XV, YU}, {XZ, YW}, {YV, WU}, {XW, ZU}, {ZV}
bece {XZ, YW} {XW,YU},{YV, WU}, {XV,ZU}, {ZV}

Finally, consider the pattern 3!26. The colour class of cardinal-
ity three is the one-factor {XY,ZW,VU}. The remaining edges may
be partitioned into the following three 4-cycles: {XZ,ZY,YW, WX},
{XV,VY,YU,UX}, {ZV, VW, WU, UZ}; these are not, of course, col-
our classes, but we use them to facilitate the enumeration. We may
consider the three 4-cycles to be equivalent, since the powers of the
permutation (XUW)(YVZ) fix the colour class of cardinality three
and cyclically permute the 4-cycles. Using the fact that the only
permutations of X,Y,Z, U, V, W which fix the one-factor are those in
the group ((XY), (ZW), (VU), (XW)(YZ), (XU)(YV), (WU)(ZV)), we
find that there are ten possibilities for a proper edge-colouring of Kj
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with the pattern 3'2. The colour classes of cardinality two are given
in the following table. The left-hand column describes the number
of different colours in each of the three 4-cycles. All the cases are
straightforward to check, with the exception of the case 4/4/4, which
is more involved. It is trivial to check that the cases 2/2/3, 2/2/4
and 2/3/4 are impossible.

2/2/2 {XZ,YW},{XW,YZ}, {XV, YU}, {XU,YV},{ZV, WU},

{ZU, WV}

2/3/3 {XZ,YW},{XW,YU}, {XV,YZ},{XU, YV}, {ZV, WU},
{ZU, WV}

2/4/4 {XZ, WV}, {XW, 2V}, {XV, YU}, {XU, YV}, {YZ, WU},
{YW,ZU}
{XZ, WV}, {XW,ZU}, {XV, YU}, {XU, YV}, {YZ, WU},
{YW,ZV}

3/3/3 {XZ,YW},{XW,ZV},{XV,YU},{XU,YZ},{YV, WU},
{ZU, WV}

3/3/4 {XZ,YV},{XW,YZ},{XV,ZU},{XU, YW}, {YU, WV},
{ZV, WU}

3/4/4 {XZ,WU},{XW,ZU},{XV, YW}, {XU, YV}, {YZ, WV},
{YU,ZV}
(XZ, WV}, {XW, ZU}, {XV, YW}, {XU, YV}, {YZ, WU},
{YU,ZV}

4/4/4 {XZ, WV}, {XW,ZU}, {XV, YW}, {XU, YZ},{YV, WU},
{YU,ZV}
{XZ, WV}, {XW, YV}, {XV, WU}, {XU, YZ}, {YW, ZU},
{YU,ZV}

This completes the determination of N(")(13): we have N{7(13) =
141+4+1+6+11+10=34. a

3 Thecasesk=2and k=3

The first case is trivial; the second involves the theory of triple sys-
tems.

Theorem 3.1 g2 (v) =v(v —1)/2, N®(v) =1, v >2.

Proof The unique solution is all pairs. m|
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Theorem 3.2

v(v —1)/6, v =1 or 3 (mod 6),v > 3;
@ (v) = v(v +1)/6, v=0or 2 (mod 6),v > 6;
9 - (v*+v+4)/6, v=4(mod 6),v>4;

(v* —v+16)/6, v=>5 (mod 6),v > 5.

1, 3<v<Y;
NG (y) = 2, v=10,11 or 13;
5, v=12

Proof

(i) For v =1 or 3 (mod 6), v > 3, solutions are Steiner triple sys-

(ii)

tems on v elements (STS(v)). These contain v(v — 1)/6 triples.
For v = 3, 7, and 9, the solutions are unique; there are two
solutions for v = 13. These are all given below.

STS(3): 123.

STS(7): 123, 145, 167, 246, 257, 347, 356.

STS(9): 123, 456, 789, 147, 258, 369, 159, 267, 348,
168, 249, 357.

STS(13) #1: 123, 145, 167, 189, 1AB, 1CD, 246, 257,
98A, 29C, 2BD, 348, 35C, 36A, 37B, 39D,
479, 4AD, 4BC, 56D, 58B, 59A, 68C, 69B,
78D, 7TAC.

STS(13) #2: In STS(13)# 1, replace 36A, 39D, 56D, 59A,
by 36D, 39A, 56A, 59D.

STS(13)#1 has a cyclic automorphism; an alternative present-
ation is as the set of blocks generated by the orbit starters
{0,1,4} and {0, 2, 7} under the action of the mapping z — z+1
(mod 13). In this representation, STS(13)#2 is obtained by
replacing the blocks {0, 1,4}, {0,2,7},{2,4,9}, {7,9,1} by the
blocks {0,1,7}, {0,2,4}, {2,7,9}, {4,9,1}.

For v = 0 or 2 (mod 6), v > 6, solutions are obtained from an
STS(v+1) by deleting any element. Hence ¢'®(v) = v(v+1)/6.
The point transitivity of the unique STS(7) and STS(9) implies
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(iii)

that there is just one solution for v = 6 or 8. Similarly, since
STS(13)#1 has a cyclic automorphism, deleting any element
yields the same solution for v = 12. However, the automorphism
partitioning of STS(13)#2 is (1,2,5,6,8,D)(3,9,A)(4,B,C)(7)
and four further solutions are obtained by deleting, in turn,
one element from each cycle. In fact all five solutions are non-
isomorphic. Hence N®®(12) = 5. Further information concern-
ing the designs in parts (i) and (ii) of this proof may be found
in [3] on which much of the above is based.

For v = 4 (mod 6), v > 4, solutions are obtained by taking the
maximum number of triples which may be formed; the design
being completed with the missing pairs. Such a system is called
a maximum partial Steiner triple system (MSTS(v)) and con-
tains (v —2v—2)/6 triples [2]. With the (v+2)/2 missing pairs
this gives ¢®® (v) = (v2 +v +4)/6.

For v = 4, the unique solution is 123, 14, 24, 34.

For v = 10, it is well known that there are two solutions. We
briefly indicate how these may be derived. Firstly, recall the
definitions of b, and f,. Now note that b, + b3 = 19 and b, +
3b; = 45 giving by = 6, b3 = 13. Since f, +2f; = 9, fy is
odd. It follows that, for nine of the elements fo = 1, f3 = 4;
whilst for the tenth element, f, = 3, f3 = 3. Hence any solution
contains the pairs Al, A2, A3, 45, 67, 89, and the triples A47,
A69, A58. Now consider the elements 1, 2, and 3 and how
these are distributed in the remaining ten triples. There are
two possibilities. The first possibility is that 123 is a triple and
that there are three triples containing each of 1, 2, and 3. Now
consider the one-factorization of the complete graph Kg with
vertex-set {4,5,6,7,8,9}. Two of the one-factors can be taken
to be 45, 67, 89 (pairs) and 47, 69, 58 (triples with A). Assign the
three further one-factors respectively to the triples containing
1, 2, and 3. This gives as the completion 123, 148, 156, 179,
249, 257, 268, 346, 359, 378.

The second possibility is that there are three triples, each con-
taining one of 12, 13, and 23, and two triples containing each of
1, 2, and 3. There remains a tenth triple and it is easily verified
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(iv)

that the completion is 468, 128, 134, 236, 156, 179, 257, 249,
359, 378.

For v = 5 (mod 6), v > 5, solutions are obtained again by
taking an MSTS(v) and completing with the missing pairs. In
this case the number of triples is (v? —v — 8)/6, and there are 4
missing pairs which are isomorphic to ab, bc, cd, da [2]. Hence
g®(v) = (v —v + 16)/6.

For v = 5, the unique solution is 123, 145, 24, 25, 34, 35.

For v = 11, there are two solutions whose derivation we sketch.
The four pairs are 12, 23, 34, 14. Two of the triples contain 13
and 24, respectively; also there must be three triples containing
each of 1, 2, 3, and 4. Since there is a total of 17 triples, this
leaves three triples to be formed from the elements 5, 6, 7, 8,
9, A, and B. It is easily seen that, in order for the design to
be completed, each of these elements must occur in one of the
three triples. There are two possibilities.

The first of these is 567, 589, 6 AB, and the system is completed
by 135, 246, 168, 17A, 19B, 254, 279, 28B, 369, 37B, 38A, 45B,
478, 49A.

The second possibility is 567, 589, 5AB, and the system is com-
pleted by 135, 245, 168, 17A, 19B, 26A, 279, 28B, 36B, 378, 394,
469, 47B, 48A. Note that the pairs occurring with the elements
1, 2, 3, 4, and 5 are again one-factors of the one-factorization
of K with vertex-set {6,7,8,9,A,B}.

It is clear from their construction that the two designs for v = 10
in part (iii) are non-isomorphic as are the two designs for v = 11
in part (iv). Any MSTS(v) with » = 10 or v = 11 is isomorphic
to one of these designs. They are all listed in [2], from which
further information may be obtained. w]

4 The remaining cases with k£ =4

The combined results of Sections 2 and 3 leave only the determination
of NW(v),9 < v < 13, N®(12), N®)(13) and N®)(13). We next deal
with the cases with k = 4, beginning with the largest value, v = 13.
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Theorem 4.1 ¢ (v) =13, NW(v) =1, 11 <v < 13.

Proof

(1)

For v = 13, the unique solution is the projective plane PG(2, 3).
The lines of the plane are 123A, 456A, 789A, 1478, 258B, 369B,
159C, 267C, 348C, 168D, 249D, 357D, ABCD. An alternative
presentation of this design is as the set of blocks generated by
the orbit starter {0,1,4,6} under the action of the mapping
z+ z+1 (mod 13).

PG(2,3) has a cyclic automorphism. The unique solution for
v = 12 is obtained by deleting a single point, say D, from the
lines listed in part (i).

Similarly for v = 11, a solution is obtained by deleting two
points, say C and D, from the lines listed in part (i), thus obtain-
ing a linear space of order 11. All linear spaces of order 11 are
classified in (4] where the uniqueness of one having 13 lines is
confirmed. (m]

Theorem 4.2 g (v) =12, NW(v)=1,9<v <10

Proof

(i)

Let v = 10. It is known that g9 (10) = 12, [6]. So by +b3+by =
12 and b, + 3b; + 6b; = 45; there are two possible solutions.
The first of these is b, = 3, b3 = 4, by = 5. Consider the five
blocks of cardinality 4. It is easily verified that no element can
occur in three or more of them and hence every element must
occur twice. The blocks are 1234, 1567, 2589, 368A, 479A.
Further f, + 2f; = 3; consequently, either f, =1, f3 = 1, or
fo =3, fs = 0. Since by = 4, it follows that at least one element
has f; > 1; hence there is no solution corresponding to this
possibility.

The second possibility is b, = 0, b3 = 9, by = 3. Further,
2fs + 3fs = 9; consequently either f; =0, f; = 3, or f3 = 3,
fu« = 1. This can occur only if one element, say A, occurs in all
three blocks of cardinality 4 and all other elements occur once.
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The blocks of cardinality 4 are 123A, 456A, 789A. If we now
delete element A, we have left twelve triples on 9 elements; this
is the unique STS(9). So the system is completed by 147, 258,
369, 159, 267, 348, 168, 249, 357. Observe that the solution
may be regarded as adjoining an extra point to each block of
one parallel class of the unique STS(9), or by deleting three
collinear points, and the line containing them, from PG(2,3)
given in part (i) of Theorem 4.1.

Let v = 9. It is known [6] that g'*'(9) = 12. So by + b3 + b, = 12
and b, + 3bs + 6b, = 36; again there are two possible solutions.
The first of these is by = 6, by = 2, by = 4. It is easily verified
that it is not possible to construct four blocks of cardinality 4 on
9 elements. So we are left with only the second possibility, b, =
3, b3 =7, by = 2. Now consider the two blocks of cardinality 4.
If they are disjoint, that is, 1234 and 5678, then it is possible
to form at most four triples, all containing the element 9. So
the two blocks of cardinality 4 must be 1234 and 1567. Now
the elements 2, 3, 4, 5, 6, and 7 must occur with five other
elements and so each must occur in a pair. These can be taken
to be 27, 35, 46. The triple 189 is then forced and the system
is completed by 258, 368, 478, 269, 379, 459. Thus this design,
which was given in [6], is unique. 0

5 The case k=5, v=12

We prove that the design given in [6] is unique.

Theorem 5.1 ¢®(12) = 18, N©®(12) = 1.

Proof Recall that the number of blocks of cardinality n, n > 2,
is denoted by b,. The proof proceeds by various stages. The first
of these is to prove that by = 1. Assume otherwise. There are two
possibilities to consider. The first is that there are two disjoint blocks
of cardinality 5, 12345 and 6789A. Then the pairs 77, 1 < i < 5,
6 < 7 < 10 must occur in separate blocks; thus g©®(12) > 2+25 = 27,
a contradiction. The second possibility is that there are two blocks
of cardinality 5 intersecting in a point, 12345 and 16789. In this case,
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the pairs ij, 2 <1 < 5, 6 < j <9 together with the pair 1A must
occur in separate blocks; thus ¢{®(12) > 2+ 16 + 1 = 19, another
contradiction. So bs = 1. Let B; = 12345.

The next stage is to determine the values of b,, b3, and by. First
count blocks and then pairs covered to give by + b3 + by =18 -1 =
17 and b, + 3b; + 6b; = 66 — 10 = 56. There are three solutions:
(ba,bs,b) = (8,2,7) or (5,7,5) or (2,12,3). Now consider the 35
pairs ij, i € By, j € B} = {6,7,8,9,A,B,C}. Because each block
of cardinality 2, 3, or 4 can contain only one value of ¢ € B, the
maximum number of such pairs contained in blocks of this cardinality
is 1, 2, or 3, respectively. Hence, if by = 8, b3 = 2, by = 7, only
8+4+21=33 pairs can be covered. If by =5, by = 7, by = 5, only
5+14+15=34 pairs can be covered. If by = 2, by = 12, by = 3, then
2+424+49=35 pairs can be covered. So this last solution is the only
possibility, and every block must contain an element of B,, that is,
must intersect the block of cardinality 5.

Now consider the possibilities for the three blocks of cardinality
4. Denote these three blocks by B,,Bs,B,;. Let j € Bj. Then
j € By U B3 U By; otherwise there would be six pairs of elements
of B! with j and only five elements of B, with which to assemble
them in triples. This leaves just two possibilities: the first of which is
678 C B,, 69A C Bs, 7TBC C By; the second possibility is 678 C B,,
69A C B,, 6BC C B,.

For the first possibility, we may assume that B, = 1678. Then
289, 38A, 48B, 58C are triples; then B; = 469A and By = 27BC. This
forces the triples 1AC, 36C, but the pair 9C cannot now be extended.

For the second possibility, let B, = 1678, By = 269A, B, = 36BC.
This immediately forces the pairs 46, 56. The system is completed
by writing down a one-factorization of the complete graph Kg with
vertex-set {7,8,9,A,B,C} in which the edges {78,9A,BC} belong
to different one-factors. It is straightforward to verify that, up to
isomorphism, this can be done uniquely. One such completion is by
the triples 19B, 1AC, 27B, 28C, 379, 38A, 47A, 48B, 49C, 57C, 589,
5AB. a
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6 The case k=15, v=13.

This is a particularly interesting case in that we obtain non-isomorphic
solutions having different block structures.

Theorem 6.1 ¢©®)(13) = 19, N®)(13) = 3.

Proof The proof initially follows the same general strategy as the -

previous theorem. First, as in the last section, it is not possible
to have two disjoint blocks of cardinality 5. Next, assume that the
system contains two blocks of cardinality 5 that intersect in a point,
12345 and 16789. Then the pairs ij, 2 < i < 5, 6 < j < 9 occur
in separate blocks, and this produces 2 + 16 = 18 blocks. None of
the pairs 1A, 1B, 1C, 1D can occur in any of these blocks, and so
the nineteenth block must be 1ABCD. The system is completed by
assigning one of the elements A, B, C, D to each of the pairs ij,
2<1<5,6<7<09, to form a transversal design on three groups
({2,3,4,5},{6,7,8,9},{A,B,C,D}) of cardinality 4 (TD (3,4)). It is
well known that this is equivalent to both a Latin square of side 4
and a one-factorization of the complete bipartite graph K, 4. It is also
well known (for example, see [1]) that there are two non-isomorphic
solutions, and the completions are listed below.

#1 26A, 27B, 28C, 29D, 36B, 37A, 38D, 39C, 46C, 47D, 48A,
49B, 56D, 57C, 58B, 59A

#2 In #1 above, replace 48A, 49B, 58B, 59A by 48B, 49A,
58A, 59B.

It remains to consider the case where the system contains only one
block of cardinality 5, B; = 12345. Then by + b3 + by = 19 -1 =
18 and by + 3b; + 6by, = 78 — 10 = 68. There are three solutions:
(ba, b3,b4) = (8,0,10) or (5,5,8) or (2,10,6). By considering the 40
pairs ij, ¢ € By, j € B = {6,7,8,9,A,B,C,D} and the maximum
numbers of these which can occur in blocks of cardinality 2, 3 or 4, the
first two possibilities can be eliminated. So b, = 2, by = 10, b, = 6,
and every block must contain an element of B, .

Now, for an element ¢ € B;, consider the number of blocks of
cardinality 2, 3, or 4 in which 7 occurs. Using the notation intro-
duced earlier, f, + 2f3 + 3f; = 8. Since f, < b,, there are five
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solutions: (fs, f3, f1) = (0,4,0) or (0,1,2) or (1,2,1) or (2,3,0) or
(2,0,2). Let the number of elements ¢ € B; whose frequency distri-
bution is respectively each of these solutions be p,,, 1 < n < 5. Then
Pa3+2p4+2ps = 2, 4p; +p2+2p3+3py = 10 and 2ps+p3+2p; = 6. There
are three solutions: (p;,ps,p3,P4,ps) = (2,2,0,0,1) or (1,3,0,1,0) or
(1,2,2,0,0).

For the first solution the structure of the 18 blocks is as follows,
where - signifies an element j € Bj.

5.
5.

QO = =
NN NN
Ot Ot b W W W

Let the triples containing the element 1 be 167, 189, 1AB, 1CD and
the blocks containing the element 3 be 368, 37AC, 39BD. This leaves
only eight possible triples from Bj with which to complete the quad-
ruples and these form two mutually exclusive collections of 4 triples,
namely, (i) 69A, 6BC, 78B, 8AD, and (ii) 69C, 6AD, 78D, 8BC.
Since these two collections are isomorphic under the permutation
(AC)(BD), which also fixes the blocks of the system constructed so
far, it suffices to consider just the first of these collections of 4 triples.
This gives quadruples 469A, 478B, and thus a triple 4CD; this is a
contradiction. So the first solution does not lead to a completed sys-
tem. We proceed similarly in the case of the second solution. The
structure of the 18 blocks is as follows.

2. 9..

9. )

e e
Tt o W NN
Ct O s s W W

Exactly the same argument as before eliminates this case.
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The third solution does lead to a system. Again, consider the
structure of the 18 blocks.

2.
5.

e e
T T NN
N R R W W

ot

Let the triples containing the element 1 be 167, 189, 1AB, 1CD, and
the blocks containing the element 3 be 368, 37AC, 39BD. The design
can now be uniquely completed with the quadruples 46BC, 48AD,
269A, 578B: the triples 479, 27D, 28C, 56D, 59C, and the pairs 2B, 5A
are forced. To our knowledge, this design has not appeared previously
in the published literature. m]

7 The case k=6,v=13
This final case is surprisingly complex.
Theorem 7.1 ¢'®)(13) = 24, N(®}(13) = 9.

Proof The system contains a block of cardinality 6, B, = 123456.
From [7],

Z( 5 )+Z<) A1) = (v — k)(Bk —v +1)/2

A(1) A(0)

where A(n), n = 0,1, is the set of blocks, X, such that |[X N B;| =n
and k; are the other block lengths. The maximum value of the right-
hand side of the equation is 23 — 21 = 2. It therefore follows that
there are no further blocks of cardinality 6, no blocks of cardinality 5,
and at most two blocks of cardinality 4, which must intersect B,.
Count blocks and pairs covered to give by + b; + b, = 24 — 1 = 23 and
b, + 3b; + 6by = 78 — 15 = 63. There are two solutions: (by, b3, by) =
(6,15,2) or (3,20,0). But the latter possibility can be eliminated.
Since there are no quadruples, and for each ¢ € B;, the number of
pairs ij, j € B} = {7,8,9,A,B,C,D} is 7, there must be at least
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one such pair which can not be covered by the triples. Since b3 = 3,
there are not enough pairs to cover all the uncovered pairs for i € B;.
Therefore b, = 6, b; = 15, by = 2. Moreover, as in the previous two
theorems, every block must contain an element of B,.

Now consider the possibilities for the two blocks of cardinality 4.
There are three of them; (i) B, = 1789, B; = 1ABC, (ii) B, = 1789,
B, = 2ABC, (iii) B, = 1789, B; = 27AB. The first of these can be
easily eliminated. The pairs jD, 7 < j < 12, must be assigned the
elements 1, 2, 3, 4, 5, and 6 in some order. But this gives a repeated
pair containing the element 1. The argument for possibility (ii) is
similar. Assign triples 1AD, 27D, 3BD, 48D, 5CD, 69D. There then
must be pairs 1B, 1C, 28, 29. This leaves only two pairs but there
must be at least one containing each of the elements 3, 4, 5, and 6.
Again there is a contradiction and so only possibility (iii) remains:
B, = 1789, B; = 27AB.

It is now necessary to determine how the system may be com-
pleted. A number of preliminary comments are in order. First we
note that, if any two solutions are isomorphic, then the block B is
stabilized and the two blocks of cardinality 4 must either be stabilized
or map to each other. On the set {1,2,7,8,9,A,B}, there are only
six such mappings: the identity I = P,, the transpositions (89) = P,
(AB) = P, and the permutation (89)(AB) = P, stabilize both B,
and Bs; the permutations (12)(8A)(9B) = P, and (12)(8B)(9A) = F5
map each block to the other. Hence any isomorphism between two
solutions must be an extension of one of these permutations to the
set {n:1<n<13,n€Z}.

Secondly, we list the pairs of elements of Bj which remain to be
covered and partition them into four sublists L1 to L4.

(L1) CD

(L2) 7C, 8C, 9C, AC, BC
(L3) 7D, 8D, 9D, AD, BD
(L4) 8A, 8B, 9A, 9B

There are four cases to consider.
(I) There are triples 1CD, 28C, 29D, which force pairs 1A, 1B.

(II) There are triples 3CD, 1AC, 1BD, 28C, 29D and precisely one
triple containing the element 3 and a pair from sublist L4.
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(III) There are triples 3CD, 1AC, 1BD, 28C, 29D, 38A, 39B.
(IV) There are triples 3CD, 1AC, 1BD, 28C, 29D, 38B, 39A.

In cases I, IT and IV the pair 37 is also forced. This exhausts all
possibilities. Also, a solution obtained from any one of the cases can
not be isomorphic to a solution obtained from any other case. Clearly
this is true of case I. In case II the element 3 occurs three times in
the pairs, whereas it occurs only once in cases III and IV. To see that
cases IIT and IV yield non-isomorphic solutions, observe that there is
no extension of the permutations P,, 0 < n < 5, which interchanges
the triples of the two cases. All solutions modulo permutation of the
elements 3, 4, 5, 6, in case I and the elements 4, 5, 6, in the other
cases are given and isomorphs are then rejected.

(I) There are six solutions.

(a) 38A, 3BD, 37D, 48B, 4AD, 49C, 59A, 5BD, 57C, 69B,
6AC, 68D, 39, 47, 58, 67.

(b) 38A,3BC, 37C, 48B, 4AD, 49C, 594, 5BC, 57D, 69B, 6AC,
68D, 39, 47, 58, 67.

(c) 38A, 3BD, 37C, 48B, 4AD, 49C, 59A, 5BC, 58D, 69B,
6AC, 67D, 39, 47, 57, 68.

(d) 38A, 3BD, 39C, 48B, 4AD, 47C, 594, 5BC, 57D, 69B,
6AC, 68D, 37, 49, 58, 67.

(e) 38A, 3BD, 39C, 48B, 4AD, 47C, 59A, 5BC, 58D, 69B,
6AC, 67D, 37, 49, 57, 68.

(f) 38A, 3BD, 39C, 48B, 4AC, 47D, 59A, 5BC, 58D, 69B,
6AD, 67C, 37, 49, 57, 68.

To determine which of the above solutions are isomorphic it is
necessary to consider whether any extensions of the permuta-
tions P,, 0 < n < 5, are isomorphisms or automorphisms of the
systems. The same procedure is used in possibilities II, IIT and
IV below. For each possibility the extensions are given together
with their actions on the solutions. Details, although tedious,
are easily checked by the reader.
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P,: stabilizes all solutions. )

P,(CD)(35)(46): stabilizes a, b, e, f; interchanges ¢ and d.
P,(34)(56): interchanges a & f, b & e, c & d.
P;(CD)(36)(45): stabilizes c, d; interchanges a & f, b & e.

Hence there are three non-isomorphic solutions corresponding
to this possibility.

(IT) There are six solutions.

(a) 39B, 47C, 4AD, 48B, 59C, 57D, 584, 6BC, 68D, 69A, 37,
38, 3A, 49, 5B, 67.

(b) 38B, 47C, 4AD, 49B, 59C, 57D, 58A, 6BC, 68D, 69A, 37,
39, 3A, 48, 5B, 67.

(c) 38A, 47C, 4AD, 49B, 59C, 57D, 58B, 6BC, 68D, 694, 37,
39, 3B, 48, 5A, 67.

(d) 39B, 47C, 48D, 494, 59C, 5AD, 58B, 6BC, 67D, 684, 37,
38, 3A, 4B, 57, 69.

(e) 39A, 47C, 48D, 49B, 59C, 5AD, 58B, 6BC, 67D, 68A, 37,
38, 3B, 4A, 57, 69.

(f) 38A, 47C, 48D, 49B, 59C, 5AD, 58B, 6BC, 67D, 69A, 37,
39, 3B, 4A, 57, 68.

P,: stabilizes all solutions.

P;(CD)(465): maps a to f, b to e, ¢ to d.
P,(56): interchanges a & d, b & e, c & f.
Ps(CD)(45): stabilizes b; interchanges a & c.
Ps(CD)(46): stabilizes e; interchanges d & f.

Hence there are two non-isomorphic solutions corresponding to
this possibility.
(III) There are six solutions.
(a) 47C, 48D, 494, 59C, 57D, 58B, 6BC, 6AD, 37, 4B, 5A, 67,
68, 69.

(b) 47C, 4AD, 48B, 59C, 57D, 6BC, 68D, 69A, 37, 49, 58, 5A,
5B, 67.

(c) 47C, 4AD, 59C, 57D, 58B, 6BC, 68D, 69A, 37, 48, 49, 4B,
5A, 67.
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(d) 47C, 48D, 494, 59C, 5AD, 58B, 6BC, 67D, 37, 4B, 57, 68,
69, GA.

(e) 47C, 48D, 59C, 5AD, 58B, 6BC, 67D, 69A, 37, 49, 4A, 4B,
57, 68.

(f) 47C, 4AD, 48B, 59C, 58D, 6BC, 67D, 69A, 37, 49, 57, 5A,
5B, 68.

F,: stabilizes all solutions.

P3(CD)(45): stabilizes a.

P;(CD)(46): stabilizes f.

P3;(CD)(465): maps b to e, ¢ to d.
P,(56): interchanges a & f, b & d, c & e.
P5(CD)(465): maps a to f.

P;(CD)(45): interchanges b & c.
P;(CD)(46): interchanges d & e.

Hence there are two non-isomorphic solutions corresponding to
this possibility.

(IV) There are four solutions.

(a) 47C, 48D, 49B, 59C, 57D, 58A, 6BC, 6AD, 37, 4A, 5B, 67,
68, 69.

(b) 47C, 4AD, 49B, 59C, 57D, 584, 6BC, 68D, 37, 48, 5B, 67,
69, GA.

(c) 47C, 48D, 49B, 59C, 5AD, 6BC, 67D, 68A, 37, 4A, 57, 58,
5B, 69.

(d) 47C, 4AD, 49B, 59C, 58D, 6BC, 67D, 68A, 37, 48, 57, 5A,
5B, 69.

Fy: stabilizes all solutions.
P;(CD)(45): stabilizes a.
P;(CD)(46): stabilizes d.
P;(CD)(465): maps b to c.
Py: interchanges a & d, b & c.
P;(CD)(45): stabilizes b.
P;(CD)(46): stabilizes c.
P;(CD)(465): maps a to d.
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Hence there are two non-isomorphic solutions corresponding to
this possibility.

To summarize, there are, in total, precisely nine non-isomorphic
solutions: Ia, Ib, Ic, Ila, IIb, IIIa, IIIb, IVa, IVD. m]
8 Conclusion

We record the values of N (v), and, for completeness, of g'¥)(v),
2 < k < v < 13 in the tables below. The latter values are taken
from [6].

k/v 2 3 4 5 6 7 8 9 10 11 12 13
2 111111111 1 1 1
3 1111111 2 2 5 2
4 1 111211 1 1 1
5 11113 1 1 1 3
6 1 111 4 3 6 9
7 111 1 4 7 34
8 11 1 1 4 9
9 1 1 1 1 4
10 1 1 1 1
11 1 1 1
12 1 1
13 1

Table of values of N (v), v <13
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kfv 2 3 4 5 6 7 8 9 10 11 12 13
2 1 3 6 10 15 21 28 36 45 55 66 78
3 1 4 6 7 7 12 12 19 21 26 26
4 1 5 8 10 11 12 12 13 13 13
5 1 6 10 13 15 16 16 18 19
6 1 7 12 16 19 21 22 24
7 1 8 14 19 23 26 28
8 1 9 16 22 27 31
9 1 10 18 25 31
10 1 11 20 28
11 1 12 22
12 1 13
13 1

Table of values of g*)(v), v < 13

It would be good to know the values of N(*=%(v) for v > 14,
particularly as the ultimate value is the number of non-isomorphic
edge-colourings of the complete graph Kj. It may also be possible to
extend the above results to v = 15.
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