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ABSTRACT. Let G be a finite group of order n > 2, (z1,...,2n)
an n-tuple of elements of G and A = (a;;) a square matrix
of order n such that a;; = ziz;. We investigate how many
different types of such matrices could exist for n = 2,3 and
we deal with some of their properties. We show that for every
group G the number of the ordered n-tuples corresponding to
the same matrix is a multiple of |G|.

Introduction

Let G be a group and (z1,z2,...,Z5) an n-tuple of elements of G, n > 1.
Let A = (ai;) be a square matrix of order n such that a;; = z;z;.

Of course if |G| < oo and z; # z; Vi # j, A is a diagonal submatrix of
the composition table of G.

The investigation of how many different types of such matrices could exist
and of their properties, were problems solved by Freiman ([F]) for n = 2, 3.
Then Brailovsky and Herzog [BH] have examined the case n = 2, showing
that the number p; of ordered couples of elements of G corresponding to
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the matrix A is a multiple of |G| and determining, for all ¢, the properties
of those groups for which p; = 0.

The aim of this paper is to extend these results and properties to the
case n > 3.

In the first chapter we prove the following result:
Theorem A. For every finite group G and for all n > 2, the number of
ordered n-tuples associated to the same matrix is always a multiple of |G|.
Our proof is independent of the one in [BH], related to the case n = 2.

Then we examine the case n = 3 and in the second chapter, using tech-
niques different from Freiman’s ones, we describe the 51 types of matrices
related to products of three distinct elements of a group. For each of them
we give the minimum order of those groups in which a certain matrix can
occur.

The remaining two chapters are devoted to the classification of those
groups in which the associated matrices have some peculiarities. We prove:

Theorem B. If G is a finite group, then p; > 0 for only one < if and only
if G is cyclic of order 3, 4, or 5 or an elementary abelian 2-group.

Theorem C. If G is a group whose matrices have always at least two equal
elements, then G is soluble. In particular, if |G| is odd, then G is abelian,
while if |G| is even, then G has a normal abelian 2-Hall complement.

1 Theorem A: Proof

Let A be a square matrix of order n, whose elements belong to the set
Q ={1,2,...,n%}. Let us associate to A a vector v4 = (v1,...,vn2) such
that for 4,5 € {1,2,...,n} it is v4 = a;; where h = n(i — 1) + 3.

Now let m4 be a function defined by setting

ma(h) = max{v | k < h} Vh € {1,2,...,n%}.

The matrix A is said to be canonical, if the following requirements are
satisfied:

a) the elements of A belong to the set {1,2,...,n%};
b) ann=1;
c) the function m = m4 has the following property

mh+1)<mh)+1Vh=1,2,...,n2 - 1.
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Given a square matrix M of order n, we can associate to it one and only
one canonical mairiz A by substituting its elements m;; with the numbers
of the set {1,...,7n2%} in such a way that conditions a) — c) are satisfied and
that equal numbers correspond to equal elements of M and only to such.

Let now G be a group and n € N, n > 1. Let X = (z1,22,...,25),
where z4,...,z, are elements of G and let A be the canonical matrix cor-
responding to the composition table of X. Such an A will be referred to as
the group-matriz of order n corresponding to X. By pa(G) we will denote
the number of different ordered n-tuples X of elements of G correspond-
ing to A. It is immediate to prove that two n-tuples (z,z2,...,z,) and
(y1,¥2,- .., ¥Yn) correspond to the same group-matrix if and only if for all 1,
J, r and s we have z;z; = Z,Ts <= %i¥j = Ur¥s.

We will prove that if G is a finite group, then p4(G) is a multiple of |G].

Let [z,y] = 271y~ lzy for z,y € G and let

Hx ={geG||[zi,g] = [z1,9] foralli=1,...n}.
Of course, Hx is a subgroup of G. Now let
Vx = {h € Hx | [:L',',h] € Hx, Vi}.
Then Vx is a subgroup of Hx.

Lemma 1.1. Let G be a finite group, A one of the group-matrices of order
n and X = (zi,...,zn) an ordered n-tuple of elements of G corresponding
to A. Let H = Hyx, V = Vx and T be a right transversal of H in G
containing 1¢. Finally set:

Qx = {(hz k), ..., (hz k') | h,h' € H,t € T}.
Then:
a) Each element of Qx corresponds to A.
b) Let h,h' € H and t € T. Then the equation
(z1,---,Zn) = ((hz1k'), ..., (hza B')E)

holds if and only if t = 1g, h € V and h' = z'h~'z; for all i =
1,...,n;

c) Let hy,ho,h3,hy € H and t',t"” € T. Then the equation
((hazih2)’, ..., (haZnho)") = ((hsz1ha)"”,.. ., (hsznha)'")

holds if and only if ' = t" and there emsts v € V such that hg = hyv,
ha =z v zshy, forall i=1,.

4) 19x] = |GI[H: V.
e) If Y=(y1,...,y,,)eﬂx then Qy = Qx.
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Proof: a) For all h,h' € H and t € T the ordered n-tuple ((hz1/'), ...,
(hznh')) corresponds to A. In fact, set ¢ = [zx, h'A] for k = 1,2,...,n.
We get

K hxih' = zih'he™ 1R
and so

(hz:h')e(hz;h')t = (hz k') (hz,h')t <=
thzh' hah't =t ha K ha Wt <=
hziz;h'hc R’ = hz,z,h' he W <= 7T = z,7,.

It follows that the group-matrix corresponding to the new n-tuple is
precisely A.

b) We have z; = (ha;:h')t <= zi[xi, t 7] = zi[ai, A RR <= [z, 7] =
[z, A~Y)hh’ which is independent of 4, since A~! € H. Thus ¢t € H, and so
TN H = {1g} = 1 implies t = 1. But then z; = hz;h’, Vi, from which it
follows immediately [z;, h] = h~1h’ € H Vi. So h € V and b’ = z] 'h~1z;,
Vi.

c) Suppose (hizihe)! = (haziha)'', Vi. Then if t't"~! = ht, h € H,
t € T we have (hlzghz)m = haziha, so (h“hlz.-hgh)‘ = haz;hg.

Now let ¢! = [z;, h~1h,y]; since h~1h; € H, c is independent of i and
for all ¢, h—lhlzghzh = x;h‘lhlchzh. It follows:

(.'L','h_lhlchzh)t = hgz;hg, so z,-[a:,-, t](h”lhlchzh)‘ = :B,-[Z,', h§1]h3h4, that
is [zs,t] = [z4, k3 |haha(h~hicheh) ¢, which is independent of i. So t € H
and, as before, t = 1¢.

Therefore tt”~! € H and, T being a transversal, we get t' = ¢t"”. We de-
duce that hyz;hy = hazihs and this implies that z; = (hy 1hs)zi(hahg!) Vi.

Applying b) we get hy*hs =v € V and (hgh3!') = =] ly=1z;. It follows
hs =hv, hy = :D‘-_l‘v_lxghq, Vi.

Vice versa, if ¢’ = t” and there exists v € V such that hz = hjv, kg =
z; Lo=lz:hy, Vi, then the n-tuples are equal.

d) From c) it follows that in H x H x T the equivalence relation R

(h1, ha, t')R(hs, ha, t") <=> (haziho)’ = (hazihe)t', Vi=1,...,n

has equivalence classes containing |V| elements.
This means that:

_HxHxT, |HPG: H] _ )

so |Qx| = |G|[H: V].
e) We prove that, if Y € Qx then Qy C Qx and IQy| = |9x].
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First of all, let u,v € G such that ¢ = [z;u, v] is constant with respect to
i. Then ¢ = [z;, v]*[u,v] and so [z;,v] = (cfu,v]~1)*"" is independent of
and this implies that v is in H.

Vice versa for all u € G, v € H the commutator [z;u,v] is independent
of i.

Now let Y € Qx: we have y; = (hz;h’)t with Ak’ € Hand t € T,
i=1,...,n. Let k € G be such that d = [y;, k] is independent of i. If
d’ and k’ are elements of G such that d = (d’)* and k = (k’)%, it follows
that d = (d')¢ = [(hz;h')t, (K')}], so d' = [hz:h',K']. But h € H and we
can write hx; = z;hc, with ¢ independent of i, and from what we have
proved, it follows k' € H, that is k € H®. Therefore Hy C H!. A similar
argument shows that H* C Hy and then Hy = Ht, and T* is one of its
right transversals.

Now consider the n-tuple ((ky:1k')%,..., (kynk')*) € Qy. As k, k' € H*
we can suppose u € T*. Then k =t~ hot and k' = t~1h{t with ho,h} € H
andu=t"tt fort' e T.

Finally we get

(kyek')* = (R (hexsh')* (g)")" = (hohaih'hg)™ = (hohaih'hp)*".

As before, there exist h” € H and t” € T such that ¢t = A”t” and then
(hohzih'hy)t't = (hohz:h' hp)*"t" = ((h"~'hoh)zi(h'Kyh"))t" is a compo-
nent of an element in Qx.

It follows Qy C Qx.

Now, we compute |[Qy|. Because of d) it is necessary and sufficient to
compute |Vy |, where Vy = {k € Hy | [yi,k] € Hy}. We have Hy = H?,
k = h{ for a suitable ho € H, so [y;, k] = [(hz:ih')t, kY] = [hzik’, ho]t €
H* <=5 [ha:h/, ho) € H <= [hzs, hol™ [B, ho] € H <= [hay, ho] € H <>
[’L’E.',ho]h € H [:c,-h, hg] € H—= [:B,', h")’]h[h, ho]h' € H— [a:,-,h(',‘] €
H<+<>h} eV <> hyehVh™! <= ke (hVh 1),

But then Vi = (V*7")! has the same order as V.

Therefore [Qy| = |G|[H*: (V*)] = |G|[H: V] = |9x|.

Now, in view of Qy C Qx, it follows that Qy = Qx.

Theorem A. For each group matrix A of order n, the number p4(G)
of ordered n-tuples X = (z1,...,z,) of elements of G, associated to the
matrix A, is a multiple of |G]|.

Proof: Let U, be the set of the ordered n-tuples X associated to A. For
each X € Uy, by the previous Lemma 1.1 a), 2x a subset of Uy.

Besides, from 1.1.e), it follows that if X,Y € U4 and Z € Qx NQy then
Qx =Ny =Nz.
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We obtain in this way a partition of U and, as |G| divides [Qx|, we get
that |G| divides p4 = |U4|.

2 The case n=3

Let A be a square matrix of order 3, whose elements belong to the set
Q ={1,2,...,9} satisfying the conditions a), b), c) of the previous chapter.
Besides, we require the following condition:

d) no element can be repeated in each row and column of A.
We observe that condition c) implies
mh+j) <m(h)+3, Vi=1,...,9-h,

SO
vnt; S m(h) + 5.

Every such matrix A can be represented by the number n(A) with 9
digits, which is obtained by writing consecutively the 9 elements of the
vector v4. We define n(A) as the representative number (or schema) of
A. A suitable algorithm shows the existence of 588 matrices which satisfy
conditions a) — d).

Given a square matrix M of order 3 corresponding to an ordered triplet
(z,9, 2) of different elements of a group G, we can associate one and only
one canonical matrix A by substituting its elements m;; with the numbers
of the set {1,2,...,9} in such a way that conditions a) — d) are satisfied
and that equal numbers correspond to equal elements and only to such.

The matrix A is necessarily one of the 588 mentioned above.

Example: Let G = S3, a = (1,2), b = (1,2, 3). Denoting by i the identity,
the multiplication table M of the triplet (b,?,a) and its canonical matrix

A are:
b2 i ab? 1 2 3
M=[|: b abl, A=1(2 4 5
ab ab® i 5 3 2

va =(1,2,3,2,4,5,5,3,2) and n(A) = 123245532.

In general, if we permute the 3 elements z, y, z of G, we produce at
most 6 different canonical matrices, which can be obtained from A in the
following way: if @ € S3 and A = (a;;), put A’ = (@ai),a()) &7 = 1,2,3.
Then we give the canonical form to A’ and get A®. So if A corresponds to
the ordered triplet (z;,z2,z3) of different elements of G, A* corresponds
to the triplet (Zo(1), Za(2) Ta(3))- Following Freiman'’s notation we call A*
isomorphic to A. As representative of the set {A® | a € S3} we can choose
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that matrix whose representative number is the minimum and we call it
the normalized canonical matriz.

With a suitable selection we can find 125 normalized canonical matrices
and by elimination of those not derived from groups, we get 51 matrices,
among which 6 are symmetric and 45 are not. Freiman himself gives for
each of them a triplet of elements of a group from which the matrix derives.

Matrices Ax, A =1,2,...,51, are the so-called group-matrices: they are
described in the following list using their representative schemas, and they
are divided into 7 sections according to the number, from 3 to 9, of distinct
elements. The list has a double enumeration: the first one from 1 to 51,
the second denotes the place occupied by the schema in Freiman’s list (see
the following Remark). For each matrix we also give a group of minimal
order containing a triplet with which the matrix is associated. We use the
following symbols:

h: ky, denotes the group of order kh whose presentation is the following:
<ab|la*=bF=1a"=a">,

Zy, and Dy, denote respectively the cyclic group of order n and the
dihedral group with 2n elements.

The matrices with an x are symmetric.

These data are obtained by examining one by one the groups of small
order with a computer. In particular we found that 24 is the minimum
order of an abelian group (Cg x C,) in which all the 6 symmetric matrices
appear and we reach the same result from a theoretical point of wiew in
chapter 3.

Remark: All groups in the following list have transitive representations
of degree less or equal 8, with the exception of 11: 53 which has a repre-
sentation of degree 11. Considering the fact that if a matrix A, appears
in a subgroup, it appears of course in the group too, we can state that in
Sg x (11: 53) we can construct all the 51 matrices (remark: Sg x (11: 53)
has order 8!55 = 2,217, 600).
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8*
9
10
11*
12
13
14
15

16
17
18
19
20*
21
22
23
24
25
26

(4%)
(105)

(1*)
(29
(4)
(5)
(142)

(3*)
(1)
(6)
(8)
(83)
(117)
(163)
(198)

(3)
(9)
(16)
(17)
(15*)
(66)
(85)
(153)
(185)
(196)
(210)

123231312
123312231

123214341
123214342
123214431
123214432
123341432

123214345
123214351
123214351
123234345
123245532
123314251
123342415
123345512

123214356
123214456
123214561
123214562
123245356
123245364
123245536
123341564
123345264
123345462
123345614

Z3 27
S3

28
Ega 29
Zg 30
Dg 31
Dy 32
Aq 33

34
Zs 35
S3 36
8: 25 37
Zs 38
Ss 39
Dyo 40
5:4, 41
5: 49 42

43
Ss 44
A4 45
Dy 46
8:23
pA 47
Qs 48
3: 45 49
Sa 50
8: 23
SLy(3) 51
8:23

(370)

(18)

(67)

(89)

(101)
(102)
(154)
(175)
(186)
(197)
(208)
(211)
(215)
(221)
(222)
(289)
(290)
(313)
(371)
(380)

(104)
(223)
(202)
(382)

(573)

123435614

123214567
123245367
123245567
123245671
123245672
123341567
123342567
123345267
123345467
123345567
123345617
123345637
123345672
123345674
123415671
123415672
123431567
123435617
123435672

123245678
123345678
123415678
123435678

123456789

7: 32

Together with the 51 matrices corresponding to triplets of different ele-
ments, we can consider those corresponding to triplets of either partially
or totally equal elements. In a canonical way we obtain 5 matrices, whose

representative schemas are:

a) 111 111 111
b) 112 112 221
c) 112 112 223
d) 112 112 331
e) 112 112 334
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We observe that a) corresponds to the case of 3 equal elements, b), c),
d), e) correspond to the case of only two equal elements. These 5 matrices
are in bijection with those of order 2 derived from couples of elements of a
group, studied in [BH]. We denote those matrices by By, B;, Bz, Bs and
B,.

Remark: 1. In the sequel we will denote by p;, i =1,...,51, the number
of triplets of the group G corresponding to a group-matrix isomorphic to
the matrix A;.

2. As in [BH] we can try to compute the number u of the ordered
triplets (a, b, ¢) of elements of G (distinct or not) but with the same square:
a? = b2 = 2. The corresponding matrices Ay are those with A\ € V =
{2,3,5,9,13,18,42} and also By, B, Bs.

For each z,y € G we define an equivalence relation by setting z ~ y <=

z? = y2. Let [ay),..., [as] be the equivalence classes and let 6(a?) = |[a;]].

In the triplet (a,b c) we have b ~ ¢ ~ a, so from each class [a;] we get

(62(a?))? triplets and in all

8
u= Z 02(a?).
i=1

Now, there are |G| triplets of type (a, a, a); besides from [BH] with trivial
arguments it follows that the number of triplet (a, a, b) corresponding to B,
is 3k,|G|, where k;, is the number of conjugacy classes of involutions, while
the number of matrices of type Bz is 3(kr — 1 — k2)|G| where &, is the
number of real characters. In all we get (3k, — 2)|G]| triplets corresponding
to matrices of type By, B;, Bs.

If we compute the number of matrices of type A, A € V we obtain:

Y oa =3 0x(eD)0a(ad) ~ 1)(02(e) ~2)

AEV i=1

and so
d_pa=u= (3 ~2)G|.
Aev
Notice that if o(z) is odd, it is 22 = y? <= y = z, so the class [z] cannot
provide a triplet of distinct elements. Then the sum is extended over those
classes containing elements of even order.

In any case, while }°;_;(62(a?))? = k,|G], (see [BH]), it seems not easy
to determine a formula for u using characters.
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3 Groups with special types of group-matrices

We will characterize those groups for which either only some of the 51
matrices, corresponding to triplets of distinct elements, appear or some of
them are missing.

Proposition 3.1. Let G be a group with |G| > 2. Then:
a) G is abelian if and only if p; > 0 only for i € {1,3,4,8,11,20}.

b) If G is finite, then |G| is even if and only if p; > 0 for some i €
{2,3,4,5,6,8,9,10,13,16,17,18,19, 21, 23, 24, 26, 28, 31,41, 42, 43,49}
(on the principal diagonal one can always find at least 2 equal ele-
ments).

¢) If G is finite, then it is abelian of odd order if and only if p; =0 for
all i ¢ {1,11,20}.

Proof: a) If the 3 elements commute, the multiplication table is symmetric
and the matrix A; too. Analyzing the list, we discover that the symmetric
matrices are only those corresponding to numbers 1, 3, 4, 8, 11, 20. Vice
versa, if the matrices corresponding to triplets of distinct elements of G are
isomorphic to those 6 only, then G is abelian.

b) If |G| is even, there exists u € G such that u? = 1g = 1%. Therefore
if ¥ € G is another element, the matrix A; corresponding to the triplet
{1g,u,v} has at least two equal elements on the principal diagonal.

Vice versa if one of the matrices of G has two equal elements on its
diagonal, then we can find in G two elements z,y, = # y such that z2 = 3.
If |G| were odd, then z = y, a contradiction. So |G| is even. Examining
the list, we find 23 matrices with at least 2 equal elements on the diagonal,
those appearing in the statement of this proposition.

It follows that |G| is odd if and only if none of its matrices is of these
types.

¢) follows from a) and b).

Lemma 38.2. If G is a group, but not an elementary abelian 2-group, then
P1+pa+pu >0

Proof: Let G be a group and consider the cyclic subgroup (a}, where o(a) >
2. Let z = @', y = @/, z = a” be distinct elements. Their multiplication

table is . L
a2l a3+3 az+h
aiti g2 gith

aith  gith g2k
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and it is symmetric. If we consider the triplet {1 = 1¢,a,a~!} the corre-
sponding matrix is symmetric of type:

that is, according to the previous notation:

1 2 3
2 al
31 8

with o € {3,4} and B € {2,4,5} (but if @ = 3 then 8 # 5).

Examining the 6 symmetric matrices we get that only 3 of them are of
this type and precisely: A;, A4 and Aj;. This means that at least one of
them appears among the matrices of G, so p; + ps + p11 > 0.

Remark: By Theorem 3.5 this result is the best possible.
Lemma 3.3. Let G be a group with |G| > 2.

a) if py > 0 then G possesses a subgroup of order 3,

b) if ps > 0 then G possesses an elementary abelian subgroup of order
4,

c) if ps > 0 then G possesses a cyclic subgroup of order 4.

Proof: a) Let p; > 0 and let z, y, z be 3 distinct elements of G corre-

1 2 3
sponding to the matrix A; =2 3 1}.
31 2

It is easy to verify that the 3 elements commute, and z3 = 3® = 23. Thus
(zy~1)3 = 1¢, so G possesses a subgroup P of order 3.

b) Let ps > 0 and z, y, z be distinct elements of G associated to the ma-

3 4 1
abelian subgroup of order 4 which is generated by {zy~!,zz71}.
c) Let ps > 0 and z, y, 2 be distinct elements of G associated to the
1 2 3
matrix {2 1 4}.
3 4 2
They commute and z2 = y2, 22 = zy, so 2! = (xy)? = z*.

1 2 3
trix (2 1 4. They commute and 22 = y2 = 22, so G has an elementary

107



It follows (zz~!)* = 1, and since z2 # 22, G possesses a cyclic subgroup

of order 4.

Corollary 3.4. Zg x Z4 is the abelian group of minimal order which
possesses all the 6 symmetric matrices.

Proof: Asp; > 0, it follows that G has an element of order 3 and, as ps > 0,
G possesses an elementary abelian subgroup of order 4, so |G| > 12; p4 > 0
implies the existence of an element of order 4, so |G| > 24. Thus the group
G = Zg x Z, is minimal with the required property as |G| = 24 and

P1 = 24,p3 = 144, py = 288, pg = 4032, p11 = 504, pao = 6624.

The following theorem characterizes those groups for which there exists
one and only one 7 such that p; > 0.

Theorem 3.5 (Theorem B). Let G be a finite group such that |G| > 2.
If p; > 0 for only one i, then i € {1,3,4,11}. Besides:

a) i =3 <= G is an elementary abelian 2-group.
b) i =1 4= G is cyclic of order 3.
¢) i =4 <= G is cyclic of order 4.

d) i =11 <= G is cyclic of order 5.

Proof: If G is an elementary abelian 2-group, then z2 =1 for all z € G,
so its matrices are not only symmetric but they have 3 equal elements on
the diagonal. But there is only one matrix with these features and it is
equivalent to itself. So all matrices of G coincide with A3. Now Lemma
3.2 assures that the only other possibilities are A;, A4 and A;;. Having
established this, we argue as follows:

a) We have already proved that if G is an elementary abelian 2-group,
we get only ps > 0. Vice versa, if in a group G all matrices are isomorphic
to As, then z2 = 1% =16, Vz € G, so G is elementary abelian.

b) If G ~ Z3, then p; = 1 and p; = 0 for i > 1. Vice versa, let G be a
group such that p; = 0 for all i # 1. Proposition 3.1 and Lemma 3.3 assure
that G is abelian of odd order and it possesses an element a of order 3. Let
z = 1¢ and y = a; for every 2 we must have yz = 1¢, so z € (y). It follows
G = (a), cyclic of order 3.

¢c) If G ~ Z4 then py # 0 and p; = 0 for ¢ # 4. Vice versa, let G be
a group such that p; = 0 for 7 # 4; then G is abelian and it possesses
an element a of order 4. If z = 15 and z = a, then for all y € G it is
either ¥2 = z%(= 1¢g) or y? = 2z2. In the first case we get either y = 1 or
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y = zy = 22 and in the second case we get yz = z2 = 1. In both cases
y € (2) and consequently G = (z) is cyclic of order 4.

d) If G ~ Z5 then p;; # 0 and p; = O for i # 11. Vice versa, let G be
a group such that p; = 0 for 7 # 11. First of all G is an abelian group of
odd order. Let a be a non-trivial element of G, with o(a) = p, p prime.
Because of a), b), ¢), it is p > 5. If it were p > 5, putting z = a, y = a?,
z = a*, the corresponding matrix would be of type Az, a contradiction;
so necessarily G is an abelian 5-group. On the other hand set z = 1¢ and
y =a; then z = 1gz=z2 =9%, Vz€G, s0 z € (3% = (y). It follows that
G=(y) = Zs.
Remark: The matrix A3 does not characterize a triplet of elements of order
2 which commute. In fact, let G = (a,b | a* = b? = 1¢ = [a, b]) =~ Z4 x Zy;
the triplet {a, a3, ab} corresponds to the matrix As, the 3 elements commute
and they have the same squares.

Proposition 3.6. Let p be a prime > 3 and G be a group of order p.
Then py; = 6(8), p20 = 6(5) — 6(3), and p; = 0 Vi # 11,20.

Proof: Because of Lemmas 3.1 ¢) and 3.3 a), necessarily p; = 0 for all
i % 11,20. Now let a be a generator of G and let (a%, a,a*) be a triplet of
distinct elements of G. The matrix A;; corresponds to them if and only if
i+ j =2k (mod p). It follows i = 2k — j (mod p), so there exist p(p — 1)
solutions (mod p) with different elements. Exchanging k with ¢ and with
J we obtain that the number of these matrices is 3p(p — 1), as required.
Since the total number of triplets is 6(£), the conclusion follows.

Remark: It can be shown that for the two non isomorphic groups of order
25 we have py; = 1800 and pyy = 12000. Hence the list of matrices does
not characterize a group.

4 On the matrix Ag;
Now let us examine the matrix As;, whose 9 elements are all different:
of course if there exists a subgroup H < G such that ps;(H) # 0 then
p51(G) #0.

But also if there exists N a G such that ps,(G/N) # 0 then ps;(G) # 0.

In fact, given 3 elements z; € G, i = 1,2,3 such that (z;N)(z;N) #
(z+N)(z,N), we must have z;z; # z,z,. This is not true for the other
matrices. For example p3(Q6) = 0, while p3(Q16/Z(Q16)) = p3(Ds) # 0.
Remark: The alternating group A4 is the smallest group G such that
P51(G) # 0 (see for example the triplet {(1,2,3), (2,3,4), (1,4)(2,3)}).

We deduce that for every group G involving Ay it is p5; # 0.

Theorem 4.1. If G is a finite group such that ps;(G) = 0, then G is
soluble.
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Proof: Deny and suppose that G is non-soluble. So G possesses two sub-
groups H and K such that K <H and H/K is a non abelian simple group.
By previous remark it is sufficient to prove the statement for every simple
group, in particular for all minimal simple groups, which are (see [Hu I])

(a) PSL2(2P), p prime;

(b) PSL5(3?), p prime;

(c) PSLa(p), p prime, p > 3, p> +1 =0 (mod 5);
(d) PSL3(3);

(e) Sz(27), p an odd prime.

We will examine each case separately:

(a) Dickson’s theorem (see [Hu I]) assures that a Sylow 2-subgroup V' of
PSLy(2P) is elementary abelian of order 2P. Besides the group PSL»(2°)
contains the semidirect product of V' by a cyclic subgroup T of order 27 —1,
which acts transitively on the subgroups of order 2 of V. Say z is a generator
of T, we can find a suitable basis {a1,a3,...,ap} of V such that

af =aiy1,i=1,...,p— 1,03 = aja}? ...a:",hi € {0,1}.

Then, for all ¢ > 1, it is za; = a;—1z and besides xa; = wz, where w =
a'l" ...a:ila,,. It follows that w € V, 1g # w # a;, so we get also a,w #
1c. Besides 22 # 1¢ and z € V. So the triplet (a1, z, a1z) corresponds to
the matrix As;.

(b), (c) Because of Dickson’s theorem, these groups contain the alterna-
ting group Ay, so ps1 # 0.

(d) A Sylow 2-subgroup of PSL3(3) is isomorphic to the following group
(see [Hu I):

(a,b]|a®=b*=1,a"=dd)
for which the triplet {a,b, ab} corresponds to the matrix As;.

(e) The group Sz(2P), ¢ = 2m+ 1, has a cyclic subgroup U of order 29 4
2m+141 (see [Hu III] p. 190) whose normalizer N has order 4(29+2™+!4+1)
and N/U is cyclic. Say u is a generator of U, there exists £ € N such that
o(t) = 4 and ut = u9. The elements u, u?,u?,u%*! are all distinct and the
same holds for 1g, t~! = 3, t2 which do not belong to U. As N = [U](t),
the elements of the form u?t* are all distinct for k € {0,1,...,27 + 2m+1}
and k € {0,1,2,3}. Then As; is the matrix corresponding to the triplet
{u,t™!,ut™'}. This holds in particular if ¢ = p is an odd prime.

Concluding, for all minimal simple groups it is ps; 7 0 and the same
holds for all non-soluble groups.

Lemma 4.2. Let G be a finite group such that ps1(G) = 0. Then
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a) if G is a p-group, with p an odd prime, then G is abelian;

b) for all odd prime divisors p of |G|, the Sylow p-subgroups of G are
abelian.

Proof: a) Let G be a non-abelian p-group and let a,b € G such that
[2,b] # 1¢ and H = (a,b). Let us consider the quotient P = H/T'3(H).
Then P is nilpotent of class 2 and it is generated by 2 elements, which we
denote also by a and b. The triplet (a, b, ab) corresponds to the matrix As;.
In fact, if we put z = [a, b], the 9 products are:

a?, ab, a®b; abz, 6'2, ab?z; a%bz, ab?, a2b%2.

As |P| is odd and a and b generate P, we get neither b € (a,P’) <
{(a, ®(P)) nor a € (b, P’). Consequently those 9 products are distinct and
the corresponding matrix is Ag;. But then ps;(G) # 0. Thus if p5; = 0,
then G is abelian.

b) follows from a) as the property ps1 = 0 is inherited by subgroups.

Now we state Theorem C, whose proof derives from the following Propo-
sitions 4.3 and 4.4.

Theorem C. Let G be a finite group whose matrices have at least two
equal elements. Then G is soluble. In particular if |G| is odd, then G is
abelian and if |G| is even, then G has a normal abelian 2-Hall complement.

Proposition 4.3. Let G be a finite group such that ps1(G) = 0. If |G| is
odd, then G is abelian.

Proof: By induction on |G|. Because of Lemma 4.2, it is sufficient to prove
that all Sylow subgroups are normal in G.

Let P be a minimal normal subgroup of G. Because of the inductive
hypotesis, G/P is abelian, so G’ < P. If there is another minimal normal
subgroup different from P, then G is abelian.

Now let us suppose that P is unique: as P is a p-subgroup, choose S a
Sylow p-subgroup containing it (which is normal in G and abelian) and let
M be a p-complement of S in G. If P # S, PM is abelian and, containing
P, is normal in G. But in this case, every Sylow subgroup is normal in G.
Now let P = S. If M is not a g-group, for a prime ¢, M is the product of two
Hall subgroups M; and M»: so Vi=1,2itis G # PM; 4G, PM; is abelian
and each of its Sylow subgroups (and therefore every Sylow subgroup of G)
is normal in G.

If M is a g-group, ¢ prime, then PM?1 is a normal and abelian subgroup,
so M14G. If M? # 1¢, then M would contain a minimal normal subgroup
different from P, a contradiction. It follows that |M| = ¢ and |G| = p%g.
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Suppose that G is non-abelian and first of all let « > 1. As P is minimal
normal, if z € P and y € Q, it is z¥ = z[z,y] & (z). We easily verify that
the triplet (y, z, yz) corresponds to the matrix As;. In fact the 9 products
are:

v%,yz,y%z; yar, 22, yz?r; yar, yz?, P2
where r = [z,y] and rz = zr as r,z € P elementary abelian, and they are
all distinct. But this is in contradiction with the hypothesis on G. So it
must be @ = 1 and |G| = pq with p > ¢, p > 3; besides p =1 (mod q) (if
p = 3 then |G| = 6, a contradiction).

As before, suppose z € P, y € M: then zV = z* where ¢ (mod p) is the
multiplicative order of <. The 9 products of the triplet (y,z, yz) are:

¥%,yz, %392t 2%, yztt % e, o P
As g is odd, it is 1 #£ —1, besides 7 # 1. Not to get As; we have only one
possibility, that is i = 2, s0 29 =1 (mod p). But then we choose 3’ = y?
instead of y so z¥' = z* and the 9 products of the triplet (v/,z,%'z) are
distinct, a contradiction. It follows that G must be abelian.

Proposition 4.4. Let G be a group of order 2™n, with n odd and different
from 1, and suppose that ps;(G) = 0. Then, for all odd prime p, the Sylow
p-subgroups are normal in G.

Proof: Because of Theorem 4.1, G is soluble, so it possesses a Hall subgroup
M of order n, which is abelian by the previous Proposition 4.3, so it sufficies
to prove that M is normal in G. Let G be a minimal counterexample; using
an argument similar to that of the previous proof, we can reduce to the case
of G = PM, where P is the only minimal normal subgroup of G, it has
order 2™ and n is an odd prime. Let y be a generator of M and let z be
a nontrivial element of P, so that |z| = 2. If r = [y,z] € (z), then (z)
would be normal in G, so (z) = P and hence P < Z(G) and G is abelian, a
contradiction. Thus m > 1 and r € (z), so the triplet (v, z, yz) is associated
to the matrix Asj, a contradiction. It follows that M «G.

Proposition 4.5.
a) If G is a dihedral group (even infinite) then ps;(G) = 0.
b) If G is a generalized quaternion group, then ps:(G) = 0.

Thus the nilpotency class of G is not bounded by the condition ps; (G) = 0.
Proof: a) Let G be the infinite dihedral group:

G={(ab|b®=1,a*=a"1).
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Its elements are of the form a*b¢, where i € Z and € € {0,1}. A triplet
of distinct elements of G is, for example, {a‘b, a7b#, a¥b*}.

For € = =1, it is (a’b)? = (a’#*)?, and for e = u = 0 it is a*a’ = a7a’
so the associated matrix is not Ag;. It follows that ps1 = 0.

We have already observed that the class of groups G with ps; = 0 is
closed under epimorphism, so for finite dihedral groups we get ps; = 0.

b) Let G =~ Qont1 2 (a,b| a®" = b = 1,0 = 12,0 = a~1).
Its elements have the form a*b¢ with i € {0,1,...,2" —1} and € € {0,1}.
As before we get ps; = 0.

Remark: We observe that for the group G of order 16
G=(abla®=b0>=1,0"=4d?

it is ps1 # 0, so ps; = 0 does not hold for all metabelian 2-groups. However
the totality of known examples with ps; = 0 is metabelian. We conjecture
that this is always true for nonabelian 2-groups. To support our conjecture,
we have the following two partial results.

Proposition 4.6. Let G be a 2-group with derived length at least 3. Then
Pag +ps1 # 0.

Proof: Let B be a basis for G. If for every pair of elements z;,z; of B it
were [z;,z;] € Z(G’), then G’ would be abelian; in fact every commutator is
a product of conjugates of commutators [z;, z;] € Z(G’)<G, so G’ = Z(G"),
a contradiction.

Therefore there exist a,b € B and ¢ € G’ such that d = [a,b] ¢ Z(G")
and [d, c| # 1g. The element c cannot centralize at the same time a and
b, otherwise [c,d] = 1¢. If [a,c] = 1¢ then [ad,¢] = [d,¢] # 1¢ and
[ad, b] = [a,b]%[d,b] = d® & Z(G"), so we can substitute a with ad. Now
consider the matrix A corresponding to the triplet (a,b,c); first of all it
is a;; # aj Vi # j because the 3 elements do not commute. Besides, B
being a basis and a,b € B, they are not conjugate (if it were b = a9, for
a suitable g € G, it would be b = afa, g] € oG’ C a®(G), so, in G/P(G)
the elements a®(G) and b®(G) would not be independent). So it cannot
be either ac = cb or ca = be. Of course, as ¢ € ¢, it is not conjugate to a
or b, which do not belong to G’. So ac # ba, ca # ab, bc # ab, cb 5 ba.

Besides it is a?,5%,¢2 € ®(G), while ab,ac,bc,ba,ca,ch ¢ ®(G) and
{a?,b%, 2} N {ab, ac, be, ba, ca, cb} = 0.

This means that, if ps; = 0, then |{a?, b%, ?}| < 2, 5o, either a2 = b2 = ¢2
and the corresponding matrix is A4z, or [{a?,b? c?}| = 2 and Ay is the
unique matrix with 8 distinct elements and 2 equal squares. Consequently
Pa2 + Pag + ps1 # 0.
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Now we show that we can choose a, b, ¢ such that a2 = b2 = ¢2 is not
satisfied.

Set H = (a,b) with a® = b? and S = (a?); then S < Z(H) so S« H. If
H/S is not abelian, then it is dihedral and consequently o(baS) > 2 and so
(ba)? # b2. Besides [ba,b] = [a,b] = d, and if it were [ba,c] = 1¢ we would
have, as above, [bad, ¢] = [d, c] # 1¢. Substituting a by ba (or by ab = bad)
we get the right triplet. If H/S is abelian, then H’ < S, H is nilpotent of
class 2 and H' = (d).

If |H/H'| > 4 we get H/H' = (bH') x (b~'aH') where |bH'| > 2 and
|(b-'aH')| =2 as d(b~1a)? =1.

So (b~a)? # b% and [b~'a,b] = [a,b] = d and we argue as above.

Finally let |[H/H'| = 4. As H/S is abelian and dihedral we have |H/S| =
4. In view of H’ < S we conclude that H' = S or (d) = (a?).

Thus a? = d, i odd. If ¢ = a?, then c € Cy(a?) = Cy(d') and i being
odd this implies that [c,d] = 1, contradicting our assumption. So ¢ # a2
and the triplet (a, b, c) satisfies |{a?, b%, c*}| > 2 yielding psg + p51 > 0.

Corollary 4.7. If the maximal number of distinct elements in the group-
matrices of G is not bigger than 7, then di(G) < 2.

Proof: The property is inherithed by subgroups. If |G| is odd, then G is
abelian as ps; = 0 (see proposition 4.3). If |G| = 2%, then by Proposition
4.6 G is either abelian or metabelian. If |G| is even, then by Proposition 4.4
the 2’-Hall subgroup M is normal and abelian and each 2-Sylow subgroup
P is at most metabelian (see Theorem C). If G is not metabelian, then P
is not abelian and we can find a, b, c € G such that a,b € P, d = [a,b] # 1¢
and ¢ € G’ such that [d, ¢] # 1¢. As P is metabelian and G’ < P'M, c¢ P
soc=cdd,d e P, € M. But [¢c”,d] = [¢”,d] and we can suppose
c=¢". Of course it is ¢ & {a?,b?} and so we get either the matrix A4 or
Asi, a contradiction. So G is metabelian.
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