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ABSTRACT. Let H be a fixed graph without isolated vertices,
and let G be a graph on n vertices. Let 2 < k< n—1bean
integer. We prove that if k < n — 2 and every k-vertex induced
subgraph of G is H-decomposable then G or its complement is
either a complete graph or a complete bipartite graph. This
also holds for k = n — 1 if all the degrees of the vertices of H
have a common factor. On the other hand, we show that there
are graphs H for which it is NP-Complete to decide if every
n — l-vertex subgraph of G is H-decomposable. In particular,
we show that H = K 53 where h > 3, are such graphs.

1 Introduction

All graphs considered here are finite, undirected and simple. Given two
graphs, H and G, where H has no isolated vertices, the graph G is H-
decomposable, denoted by H | G, if the edge-set of G is the union of edge-
disjoint isomorphic copies of H. We refer to the recent book of Bosak [2]
as a general reference for decomposition problems.

It has been proved by Dor and Tarsi [11] that for any fixed graph H hav-
ing a connected component with at least three edges, the decision problem
“does H | G is NP-Complete. On the other hand, it is shown by Caro
et al. in [7, 9] that the class of decomposition problems called “Random
H-decompositions” is solvable in polynomial time, and several structural
results were published by Beineke, Goddard and Hamburger, and many
others [3, 13]. Aigner and Triesch [1] and Caro [5, 6] raised the problem
of the possibility to determine the structure of a graph G in terms of the
information given on its induced subgraphs. Inspired by this question Caro
and Yuster [10] considered the following: Let F be a graph property (i.e. a
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family of graphs). For n > k > 1 a graph G on n vertices has the property
F(n, k) if every induced k-vertex subgraph of G has property F. In that
paper, the computational complexity of deciding whether G has F(n, k) is
discussed for a wide range of properties and values of k. Let H be a fixed
graph and let F¥ be the graph property of being H decomposable. The fo-
cus of this paper is to determine the computational complexity of F¥ (n, k),
and provide a structure for ' (n, k) whenever this family of graphs is easily
recognizable. For ease of notation we put H(n,k) = FH(n, k).

In order to present the results we need the following notations. For a
graph G = (V, E) denote by e(G) = |E(G)| the cardinality of the edge-set
of G, and denote by e, (G) the number of its edges modulo m where m > 1
is an integer. For a subset A C V denote by (A) the induced graph of G
with vertex-set A. For a graph H having h vertices with degrees dy, ... ,dp
we put ged(H) = ged(dy, ... ,dp). Our main tool is the following theorem
which is interesting in its own right.

Theorem 1.1 Let G be a graph on n vertices and let m > 2 and n —
2 > k > 2 be integers. Suppose that for any two subsets A,B C V with
|A| = |B| = k we have en({A)) = em({B)). Then, one of the following
holds:

1. G e {K,, K.}

2. Ge€ {Kipn-1,Kin_1} where kmod m =1.

3. Ge€{Kan—a,Kan—a} where m =2 and kmod 2 = 1.
Using Theorem 1.1 we prove:

Theorem 1.2 Let H be a fized graph on h > 3 vertices without isolated
vertices.

1. If gcd(H) > 2 and h <k <n—1 then H(n, k) C {K,, Ky}

2. If gcd(H) =1 and h <k < n—2 and H has more than two edges
then H(n, k) C {Kn, K,, Kl,n—l, Kl,n-l}-

3. If H has lwo edges (i.e. H = P3 or H = 2K;) then H(n,k) C
{Kﬂ) Kny Ka,’n—aa Ko,n-a}-

Furthermore, in all of the above cases we can decide if G € H(n,k) in
polynomial time.

Theorem 1.2 shows that H(n,k) has an easily recognizable structure
whenever k < n—2. This is not the case for H(n,n—1) (unless ged(H) > 1)
even for some very simple graphs H, as can be seen from the following
theorem.
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Theorem 1.3 Let H = K ;. where k > 3. Given a graph G on n vertices,
the decision problem “does G € H(n,n —1)” is NP-Complete.

We wish to emphasize that Theorem 1.1 essentially solves some problems
mentioned in [5,6] whose origin can be traced to an old paper of Kelley and
Merriell [12].

The rest of this paper is organized as follows. In Section 2 we prove The-
orem 1.1 which provides us with the structure of graphs whose k-subgraphs
have the same number of edges (modulo m). In section 3 we prove The-
orem 1.2 thereby providing the structure for H(n,k) for k¥ < n — 2 and,
whenever ged(H) > 1, also for k = n — 1. In section 4 we turn to the case
k =n —1 and gcd(H) = 1 and provide hardness results for some simple
graphs H having this property. Section 5 contains concluding remarks and
open problems.

2 k-subgraphs with the same number of edges

In this section we prove Theorem 1.1. It is convenient to resolve the case
k =n — 2 and deduce from it the result for smaller values of k.

Theorem 2.1 Let G be a graph on n vertices and let m > 2 be an integer.
Suppose that for any two subsets A,B C V with |A| = |B| = n— 2 we have
em((A)) = em({B)). Then, one of the following holds:

1. Ge {K,, Kp}.
2. Ge€ {Ki,0,K1,0} where amod m =2.
3. G € {Kap,K,p} where m =2 and a # b mod 2.

Proof: If n < 3 the claim is trivially true, so we assume n > 3. For
t=0,...,m—1 define D; = {v € V| deg(v) mod m = i}. We need the
following two lemmas.

Lemma 2.2 Each (D;) is either a complete graph or an empty graph.

Proof: Assume that some D; is neither a complete nor an empty graph.
Hence D; has three vertices u,v,w such that (u,v) € E but (v,w) ¢ E.
But then deleting » and v from G changes the number of edges by 2i —
1 mod m while deleting v and w from G changes the number of edges by
2i mod m. Thus e, ({(V'\ {u, v})) # en({(V\ {v, w})), which contradicts our
assumption. a

Lemma 2.3 There are at most two distinct indices i,j such that |D;| > 0
and |D;| > 0.
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Proof: Assuming the contrary, let 4,7,k be distinct integers such that
none of D;, D;, Dy, is an empty set. Since every graph with at least two
vertices has two vertices with the same degree, we may assume |D;| > 1. By
Lemma 2.2 each (D;), (Dj), (D) is a complete graph or an empty graph.
Suppose first (D;) is complete and that some v € D;, w € Dj, (v,w) € E.
Then with A = V \ {u,v} for some u € D; and with B = V' \ {v,w}
we get €,((4)) = e(G) — (2i —1)modm # e(G) — (i+j— 1) modm =
em({B)), a contradiction. Suppose next that (D;) is an empty graph and
for some v € D;, w € Dj, (v,w) ¢ E. Defining A and B as above we
again have e, ({A)) # e ({B)) which is a contradiction. By symmetry the
same conclusions hold for D; versus Di. Hence if (D;) is complete we may
assume there exist u € D;, v € Dj, w € Di such that (u,v) ¢ E and
(u,w) ¢ E. Putting A=V \ {u,v} and B =V '\ {u,w} we get en((4)) =
e(G) — (i + 7) mod m # e(G) — (i + k) mod m = en({B)). If (D;) is an
empty graph we may assume there exist u € D; v € D;, w € D such that
(u,) € E and (u,w) € E. With A=V \{u,v} and B =V \ {u,w} we get
em({A)) = (@) —(i+j—1) mod m # e(G)—(i+k—1) mod m = e ({(B)).O

We now return to the proof of Theorem 2.1. Suppose first that we only
have one index i with [D;| > 1. Then by lemma 2.2 G € {K,,, K.}, and we
are done. Otherwise, by lemma 2.3, we have exactly two indices ¢, 7 with
|Di] = @ = 2 and |Dj| = b > 1. Observe that the proof of Lemma 2.3
implies that if (D;) is complete, then there are no edges between D; and
Dj, and if D; is the empty graph, all possible edges between D; and Dy
exist. By reversing the roles of i and j in the proof we also get that if (D;)
is complete so is (D;) and thus G = K, U K, or else both (D;) and (D;)
are empty graphs in which case G = K, 3.

Assume first that G = K, U K. If b > 2 then for u,v € D;, w,z €
D; we may choose A = V \ {3,2}, B =V \{w,2}, C = V\ {y,w}
and since we must have e, ({A)) = en((B)) = en({(C)) we must have
2i —1modm = 2 — 1 modm = i 4 j mod m. This is only possible if
m=2and a# bmod 2. If 5 =1 Then G = K, U K; and by the above
reasoning we infer that 2¢ — 1 mod m = i hence ¢ mod m = 1 which implies
amod m = 2.

If G = K, ) we note that if G has the property that every two n—2-vertex
subsets A and B have e, ((A)) = e ((B)) then G also has this property.
Hence either G = K,; with amod m = 2 or G = K, with m = 2 and
a # bmod 2. (]

Proof of Theorem 1.1: We apply induction on », fixing k and m. Clearly,
for n = k+2 the claim reduces to Theorem 2.1. Also, for k = 2 the claim be-
comes trivial, so we assume k > 3 and n > k+3. We first show that, subject
to the conditions of Theorem 1.1, G € {K,, Ky, K1, n—1 K1,n-1, Kan—as
Kan—a}. Sincen—12>k+2, we have that for every n — l-subset ACV,
all its k-subsets have the same number of edges modulo m. Hence by
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the induction hypothesis, (A) € {Kn—1, Kn—1, Kin—2, K1 n—2, Ko’ n—1-a’,
K.,:,n_ —a’}- An easy ch check shows that G itself must belong to the family
{Kn, Kny K1n—1, K1n—1, Kajn—as Kan—a}. But now case 1 follows trivially,
and for case 2 observe that if a k-subset A does not contain the center of
the star K »_ then e, ({(A)) = 0, while a k-subset B containing the center
has e,,({B)) = k — 1. Hence, k mod m = 1. By taking complements (as in
the last part of the proof of Theorem 2.1), the second possibility in case 2,
namely K 51, holds only if k mod m = 1.

For case 3, if G = Ky n_q, We may assume 2 < a < n —a. Write
k = ki1 + ko where 0 < k; < a, 0 < k2 < n — a which is possible as
n > k+3,a>2and n—a > 2. Now, consider the k-subsets A, B, C having
bipartitions A = AU As, |A1| = k1, |A2| = ko, B= B1UB3, |B1| =k -1,
|B2| = k2 +1, C = C1UCy, |Ci| = k1 + 1, |Cs| = k2 — 1. By equating
em({B)) and e, ({B)) we obtain the condition 2(k; — k2) mod m = 0. By
equating e, ({A)) and e, ({B)) we obtain the condition k; —k, mod m = 1.
This implies that m = 2 and k mod 2 = k; + k2 mod 2 = k; — k2 mod 2,
hence & mod 2 = 1. The second possibility in case 3 is solved, as before, by
taking complements. This completes the proof of Theorem 1.1. ]

3 The local decomposition property

Proof of Theorem 1.2: We begin with the case ged(H) > 1. We apply
induction on n, while k is fixed. The basis of the induction is n = k + 1.
Suppose that G is neither the complete nor the empty graph. Then there
exist vertices u, v, w such that (u,v) € F but (u,w) ¢ E. The degree of u
in (G \ v) differs by one from the degree of  in (G \ w). Thus in one of
these graphs ged(H) does not divide the degree of u, and hence it is not
H-decomposable. Assuming we have proved our claim for n — 1, we prove
it for n. The induction hypothesis implies that every n — 1-subset induces
Kpn_1 or K,,_;. Thus it immediately follows that G € {K,, K,}.

Suppose now that ged(H) = 1. Since every induced k-subgraph of G
has an H-decomposition it follows that for every two k-subsets A, B C V,
ee(t)((A)) = ec(an)((B)). Hence by Theorem 1.1 we infer that if e(H) = 2
then G C {Kn, Kn, K n—a, Kan—a}, otherwise G C {Kn,Kn, K1n—1, K1n—1}-

We now need to show that, given a graph G, we can tell in polynomial
time if G € H(n, k). We show this according to the structure of G.

e If G is the empty graph K, every k-subgraph of it is trivially H-
decomposable.

e If G = K, then every k-subgraph is K}, and we need to deter-
mine whether K is H-decomposable. A necessary condition (which
is easily checked) is e(H) | (") This condition is also sufficient if
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k > ko = ko(H), by Wilson’s Theorem [14]. For k < ko the problem
is solved in constant time, as H is fixed.

¢ If G = Ky,_1 = K,_1U K, we need both K; and K;_; to be H-
decomposable. Each is determined as in the previous case.

¢ If G= K;ypn_; we must have H = Ky p,_; with h—1|n —k —1. This
is clearly a necessary and sufficient condition which can be easily
verified.

e If G = Kan—o and H = P; = K2, we must have, by Theorem 1.1
that ¥ mod 2 = 1. Thus every k-subgraph of G is either the empty
graph or it is complete bipartite with an even number of edges. In
both cases it is H-decomposable according to a theorem of Caro and
Schénheim [8] which states that a graph is P; decomposable if every
connected component has an even number of edges.

e If G=K,UK,_4, a <nf2 and H = P3 we again must have k odd.
Every k-subgraph of G is a union of an even and an odd clique where,
according to (8], each must have an even number of edges in order
to ensure P3 decomposition. Thus each clique must have 0,1 mod 4
edges. This is only possible for a = 1.

o If G = Ky n—q,a <nf2and H = 2K> we have, as before, that k must
be odd. By Caro’s Theorem [4] a graph G has a 2K, decomposition iff
e(G) is even, A(G) < ¢(G)/2 and G # K3U K3. Thus, we must have
n—a < k —1, and since k < n — 2, we must also have 4 < a < n/2.
These conditions are also sufficient, by applying Caro’s Theorem.

¢ If G=K,UK,_,, a <n/2and H = 2K then by a parity argument
kmod 4 = 1 since only in this case it is true that for every choice
of 0 <k <£a,0< ky £n—a, ki + ko = k we get the necessary
condition (%) + (*#) mod 2 = 0. In view of the forbidden K3 U K>
either £ > 9, kmod 4 =1 and a < n/2 is unrestricted, or k = 5 and
a=1. 0

As an immediate corollary of Theorem 1.2 we have:
Corollary 3.1 Let H be a fized graph without isolated vertices. Deciding
membership in H(n,k) can be done in polynomial time for 1 <k <n-—2.

If gcd(H) > 1, deciding membership in H(n,n — 1) can also be done in
polynomial time.
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4 Hardness of n — 1 decomposition of stars

Corollary 3.1 leaves open the complexity of deciding membership in H(n,n—
1) for graphs having gcd(H) = 1. The purpose of this section is to show
that this problem is probably much harder, as it is NP-Complete even for
a simple family of graphs, namely the stars with three or more edges. Note
that for the star with two edges, P3, we have the Theorem of Caro and
Schonheim [8], mentioned in the previous section.

Proof of Theorem 1.3: Our first ingredient is the construction of a (fixed)
graph Hj with the following properties:

1. Hj has 3k+2 vertices, one vertex has degree 1 and the rest have have
degree k — 1 mod k.

2. Hj has a K ; decomposition.

Hy is constructed as follows. The vertex set of Hy is {ay, ... ,ak, b1, ... , by,
€1,... ¢k, u,v}. The vertices {ay,...,ax,b1,...,bx} induce a clique Kox.
It is well known (e.g. Wilson’s Theorem) that Ky is K\ x-decomposable.
We now add to Hy k copies of K x whose roots are the a;’s as follows: a;
is connected to all ¢y, ... ,ck. ay, for i = 2,...,k is connected to u and v
and to all cy,.. . , ¢k but not to ¢;. Our construction shows that Hy is K x-
decomposable. The vertex c; has degree 1. The vertices ay,... ,ax have
degree 3k — 1, the vertices by, ... ,bx have degree 2k — 1, and the vertices
C2,... ,Ck, U, v have degree k — 1.

Denote by Hi . for 1 < ¢ < k—1 the union of ¢ copies of Hj, that intersect
only in the unique degree 1 vertex of Hx. Thus, Hy, has (3k + 1)t + 1
vertices, all vertices but one having degree k — 1 mod k, and one vertex
(the “unifier”) has degree t. Clearly, Hy, is K x-decomposable.

We recall that by the theorem of Dor and Tarsi, deciding if a graph G
is K1 x-decomposable (k > 3 fixed) is NP-Complete. We perform a poly-
nomial transformation from this problem to our problem by constructing
a graph G’ having the property that G has a K i decomposition iff the
deletion of every vertex from G’ induces a subgraph which has a K x de-
composition. Given the input graph G, we first test if k| e(G). If this is not
the case then G is not K x decomposable and we are done. So we assume
k| e(G). We construct G’ as follows:

For each vertex v of G with degree t mod k we add to G a copy of
Hj k—1-¢ by identifying v with the unifier vertex of a copy of Hi k—1-¢.
(Note that if v already has degree k¥ — 1 mod k we do not attach anything
to it). Note that after this modification v has degree k — 1 mod k, and the
newly added (3k + 1)(k — 1 — t) vertices also have degree k — 1 mod k. We
do this for every vertex v and obtain the graph G”, which we shall later
use to define G’. Note that G” is constructed in polynomial time, and has

121



n" < n(3k+1)(k—1) vertices, where n is the number of vertices of G. Every
vertex of G” has degree k—1 mod k, and since G” is the edge-disjoint union
of G and copies of Hy, it is K1 x-decomposable if G is. We claim that the
converse is also true. Consider a K x-decomposition of G”, and a copy of
Kk in such a decomposition. The edge that is adjacent to the degree 1
vertex of Hy is a bridge in G” in every occurrence of Hy in G”. Since Hy is
K x-decomposable it follows that each copy of K}  in the decomposition
of G” is either entirely within G or entirely within one of the added copies
of Hi. Hence, G is also K x-decomposable. Note also that n” mod k = 0.
To see this, note that the sum of the degrees of the vertices of G” must
divide 2k and is also n”(k — 1) mod k. The graph G’ is defined by adding
to G” a new vertex z, and connecting it to all vertices of G”. Thus, = has
degree 0 mod k. Put n’ =n" +1.

Suppose first that G is not K x-decomposable. Then, G” is also not
K x-decomposable, and G” = G’ \ z is an n’ — 1-vertex induced subgraph
of G’. Now, suppose G is Kjs-decomposable. Thus, G” is also Ky i-
decomposable. We claim that for each vertex v € G', G’ \ v is Ky
decomposable. This is clearly true if v = z. Otherwise, v € G”. We
construct a K x-decomposition of G’ \ v from a given decomposition of G”
as follows. We replace each occurrence of v in the decomposition for G”
by z. We have used deg(v) edges of z in this way. We still remain with
n” —1 — deg(v) unused edges of z. But n” mod k = 0 and deg(v) mod k =
k —1 hence k | n” — 1 — deg(v), and we can decompose these edges into
copies of K k.

Finally, we note that the H(n,n — 1) recognition problem is in NP for
every graph H by providing n distinct decompositions, one for each n — 1
induced subgraph. (]

Note that the proof of Theorem 1.3 also shows that G’ is K x-decomposable
if G” is and hence if G is. This means that the following “intersection” prob-
lem is also NP-Complete: Given a graph G, is it, and all its n — 1-vertex
induced subgraphs, K x-decomposable (k > 3).

5 Concluding remarks and open problems

We note that for some simple graphs H, deciding whether G is H-decomposable
can be done in polynomial time. This holds, for example, whenever every
connected component of H is an edge or when every connected component
of H is a path of length 2. Although the Theorem of Dor and Tarsi shows
that H-decomposition is NP-Complete whenever H has a connected com-
ponent consisting of more than two edges, (for example if H is a triangle), it
can be seen from Theorem 1.2 that H(n,n— 2) is easily recognizable for all
graphs, and even H(n,n — 1) is, assuming ged(H) > 1. A triangle provides
a good example where decomposition is difficult, but local decomposition
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is easy, for all values of k.

It is interesting to find the complexity of deciding membership in H(n,n—
1) for graphs other than stars (for which it is NP-Complete) and for graphs
other than the ones where H-decomposition is polynomial, or that have
gcd(H) > 1 (for which it is polynomial).
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