Generalized Steiner Systems With Block Size
Three

and Group Size Four

Kevin Phelps
e-mail: phelpkt@mail.auburn.edu
and

Carol Yin

e-mail: yincaro@mail.auburn.edu
Department of Discrete and Statistical Sciences

Abstract

Generalized Steiner Systems, GS(2, 3, n, g), are equivalent to max-
imum constant weight codes over an alphabet of size g + 1 with dis-
tance 3 and weight 3 in which each codeword has length n. We
construct Generalized Steiner Triple Systems, GS(2,3,n,g), when
g=4.

1 Introduction and Background Information

A pairwise balanced design of order v (PBD(v)) is an ordered pair (S, B),
where S is a finite set of symbols with |S| = v, and B is a set of subsets
of S called blocks, such that each pair of distinct elements of S occurs
together in exactly one block in B. A group divisible design is an ordered
triple (P, G, B) where P is a finite set, G is a collection of sets called groups
which partition P, and B is a set of subsets called blocks of P, such that
(P,GU B) is a PBD. The number |P| is the order of the group divisible
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design. If a group divisible design has n groups of the same size, say g, and
blocks of the same size, say k, then we will briefly refer to this design as
a k— GDD of type g". The reader is referred to [3] and [6] for any other
words not defined in this paper.

A (g + 1)-ary constant weight code (n,w,d) is a code C C (Zg41)" of
length n and distance d, such that every v € C has Hamming weight w.
Clearly, for w = 3 and d = 3, we have that |C| < mg'—l). We can form
a maximum (g + 1)-ary constant weight code (n,3,d), d > 2, from a group
divisible design 3-GDD of type g, (P,G, B), in the following way. Let
P = (Zn41\{0}) x (Z44+1\{0}) with n groups, G, € G,

Ge = {£} x (Zg41\{0}),1 < £ < n and blocks [(a, i)(b, §), (¢, k)] € B,

a,b,¢,€ (Zn41\{0}) and ¢, j, k € (Zg4+1\{0}). Then for each block

[(a,), (b, 5), (c, k)], we form a codeword of length n by putting an 7, j and
k in positions a, b and c respectively and zeros elsewhere. Clearly this gives
us a constant weight code over Zg4, however, in general, the minimum
distance is either 2 or 3. In fact, if two blocks share a point in common and
cut across the same three groups, d = 2'is forced. If the minimum distance
is 3, then the code is a maximum constant weight (g + 1)-ary code (n, 3, 3),
and the group divisible design will be called a Generalized Steiner Triple
System. It appears that most constructions of 3-GDD of type g” in the
literature that we have read produce a constant weight code with d = 2
and so finding these that have d = 3 is a more difficult problem.

Formally, a Generalized Steiner Triple System, GS(2,3,n,g), is a
3-GDD of type g, such that the constant weight code formed from the
design has distance 3. Etzion [4] first introduced the name Generalized
Steiner Systems, GS(t, k, n, g) for group divisible designs k-GDD of type

g", such that the constant weight code formed from the design has dis-
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tance 1 + 2(k — t). Etzion [4] established a number of general results for
constructing.GS(¢, k, n, g) and completely solved the problem of finding a
GS(2,3,n,9) when ¢ = 2 and ¢ = 3 as well. Phelps and Yin [8] solved
the case for ¢ = 9 and have solved the general case ¢ = 3 (mod 6) with a
handful of possible exceptions for each g.

In this paper, we will prove that a GS(2,3,n,4) exists if and only if

=0 or 1 (mod 3), n > 6. We now give the background information
needed in establishing the main result for forming a GS(2, 3, n,4).

Although it is a slight abuse of terminology, we will say that a subset of
blocks of a 3-GDD of type g" has distance d whenever the corresponding
codewords formed from these blocks have distance d. Also, for notational
purposes, we will use Z; for the additive group modulo k consisting of the
integers {0,1,2,...,k — 1} and either ZZi or Zi4+1\{0} for the additive
group modulo k consisting of the integers {1,2,...,k}. We will use the
latter when we want to emphasize the fact that 0 cannot be included.

From the necessary and sufficient condition for a 3-GDD of type g"
that Hanani [5] established and by the observable fact that n > g + 2, we
have the following theorem for the existence of a GS(2,3,n, g).

Theorem 1.1 ([4]) The necessary conditions for the existence of a

GS(2,3,n,9) is that:
1. Ifg=0 (mod 6), then n > g + 2.
2. Ifg=3 (mod 6), thenn=1 (mod 2) and n >g+2.
3. Ifg=2o0r4 (mod6), thenn=0or1l (mod3)andn > g+2.
4. Ifg=1o0rb (mod 6), thenn=1 or3 (mod 6) andn > g +2.

As mentioned before, Etzion [4] completely solved the case for g = 3,

establishing that the necessary conditions were also sufficient. He also found
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some general results for forming GS(2,3,n,g), g > 5. For example, Etzion
pointed out that the codewords of a Hamming Code of length n over GF(qg),
¢ a prime power, is perfect, includes the zero codeword and hence the
codewords of weight 3 form a GS(2,3,n,¢ — 1). These Hamming codes
exist for each n = %. In the case we will consider, i.e. ¢—1 = 4 implies

5™~1

that ¢ =5 and n = 5=,

Also, it is easy to see that PBD closure also works for these designs and

is given below.

Theorem 1.2 For fized g, the set of all n for which there exists a
GS(2,3,n,9) is PBD closed.

Proof: We only need to consider two triples that share a point in common
to make sure that d > 3 between the two triples. Two triples can share a
point in common in two ways.

Case 1: The first way is for the two triples to cut across groups con-
tained in a block from the PBD. But, if this is the case, then the size
of this block, say m, is the order of a GS(2,3,m,g) and so by putting a
GS(2,3,m, g) on these groups, d > 3 is guaranteed for two triples of this
type.

Case 2: The second way for two triples to share a point in common is
for the triples to cut across two different blocks of the PBD, sharing one
group in common. Since this is a PBD, then the group from which the
point is shared is the only group in common to each: triple and so we have
that d > 3 for triples of these types as well.

Since these are the only two cases we need to consider, then we have

proved the theorem. 0

The rest of the paper is organized as follows. In Section two and three we

focus on the main constructions of these GS(2, 3, n,4) to be used in Section
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four. Specifically, in Section two, we give a product-type construction and
in section three, we give a construction using cyclic group divisible designs.
In section four, we settle the case g = 4 using the constructions from sections

two and three and conclude in section five with some various open problems.

2 Product Constructions

In this section, we present two product-type constructions, due to Etzion
[4], that will be very useful to us in constructing these GS(2,3,n,4). He
shows that these work for general g and found the t-partitions that he
needed for the cases he solved. We will be finding the t-partitions that are

needed specifically for g = 4. Etzion’s two product theorems are as follows:

Theorem 2.1 ([4]) If Q is a 3-GDD of type g™ and R = GS(2,3,n,9),
then there ezists a GS(2,3,mn,g), if Q can be partitioned into t sets
So,S1,...,St—1, such that t < n and the minimum distance in S;, r € Z;

s 3.

Theorem 2.2 ([4]) IfQ is a3-GDD of type g™ and R = GS(2,3,n+1,9),
then there erists a GS(2,3,mn + 1,9), if Q can be partitioned into t sets
So,51,...,8t-1, such that t < n and the minimum distance in S;, r € Z,

is 3.

Corollary 2.1 If Q is a 3-GDD of type g™ and R = GS(2,3,n+ p,g),
which contains a sub GS(2,3,p,g) then there ezists a GS(2,3,mn+p,g),
if Q can be partitioned into t sets So,S1,...,St—1, such that t < n and the

minimum distance in S, r € Z, is 3.

Proof: Pull out the subsystem GS(2,3,p, g) of order p. The construction
then proceeds as in the case p = 1 (Theorem 2.2). |
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In the case ¢ = 4, we will need a t-partition for Theorem 2.1 and
Theorem 2.2 when m = 3 and m = 4. This can be done by using the

following two lemmas.

Lemma 2.1 There ezists a 3-GDD of type 43 and a partition of Q into
t sets So,S51,...,5t-1, such that t < 4 and the minimum distance in S,,

rGZt is 3.

Proof: We form a 3-GDD, of type 43, (P, G, B) of order 12 as follows. Let
P = {1,2,3,4} x ZZ3, G; € G, G; = (Zs\{0}) x {1}, 1 < i < 3. The

following four sets form our {-partition.

So = {l(1,1),(1,2),(4,3)),[(2,1), (3,2),(3,3), [(3, 1), (4,2), (1,3)],
[(4,1),(2,2),(2,3)]}

S1o= Al(11),(2,2),(1,3)],[(2,1),(4,2),(2,3)) (3, 1), (3,2), (4,3)],
((4,1),(1,2),(3,3)]}

Sz = {l(1,1),(3,2),(2,3)],((2,1),(1,2),(1,3)}, [(3, 1), (2,2), (3,3)],
[(4,1),(4,2),(4,3)]}

Ss = {l(1,1),(4,2),3,3),((2,1),(2,2),(4,3)1.[(3, 1), (1,2), (2,3)],
[(4,1),(3,2), (1,3)]}

So, we get t < 4. 0

Lemma 2.2 There ezxists a 3-GDD of type 4* and. a partition of Q into
t sets So,S1,...,St—1, such that t < 10 and the minimum distance in S,,

r€Z, is3.

Proof: We form a 3-GDD of type 4%, (P, G, B) of order 16 as follows. Let
P = {1,2,3,4} x ZZ4, G; € G, G; = (Zs\{0}) x {i}, 1 < i < 4. The

following ten sets form our ¢-partition.
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So

S1

S2

Ss3

S4

Ss

Se

S7

Sg
So

{[(1,1),(1,2), (1,3)1,[(2,1),(2,2),(2,3)),[(3,1), (3,2), (1, 4]},
((4,1),(3,3), (2,91}

{[(1,1),(2,2), (1,91 [(2,1), (1,2), (1,3)}, [(3,1), (1,3), (4, 4]},
[(4,1),(3,2),(2,3)]}

{[(1,1),(2,3),(2,9),[(2,1), (1,3),(1,4)),[(3,1), (1,2), 3, 3)},
[(4,1),(2,2), 3,91}

{[(1,1),(3,2), (8,3)1, [(2,1),(4,2), (4, 3)), (3, 1), (2,3), (3, 4)],
((4,1),(1,2), (4,41}

{[(1,1),(4,2), (3,9, [(2,1),(3,2), (4,4, [(3,1),(2,2), (4,3)]}
{[(1,1), (4,3), (4,4)),[(2,1),(3,3), (3,4, [(3, 1), (4,2), (2, 4)]}
{[(4,1),(4,2),(1,3)1,[(1,2), (2,3), (1,41, [(2,2), (3,3), (4,4)],
(3,2), (4,3), (2,41}
{{(4,1),(4,3),(1,4),[(2,2),(1,3),(2,4),[(4,2), (2, 3), (4, )]}
{{(1,2), (4,3), (3,4)),[(4,2), (3,3), (1, 9)]}
{1(3,2),(1,3),(3,4)]}

So we get t < 10.

o

It is worth noting that we will be using Lemma 2.2 along with Theorems

2.1 and 2.2 when n > 17 and so the fact that we get that ¢ = 10 < 17 is

sufficient.
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3 Cyclic Group Divisible Designs

In this section, we present a general construction that uses cyclic group
divisible designs [6]. A group divisible design, (P, G, B) is said to be cyclic if
it has an automorphism consisting of an ng-cycle which cyclically permutes
the elements P, mapping groups to groups and blocks to blocks. We will
denote a cyclic 3-GDD of type g™ as 3-CGDD of type g". To form this
3-CGDD of type g", we let G; € G, 0 < i < n—1, be defined by G; €
{#,i+n,i4+2n,...,i+ (g9 — 1)n} with |P| = ng. The blocks (triples) b € B
are formed by finding difference triples, {z,y, z}, that cover all remaining
differences d (d # 0 mod n), and then forming the appropriate base blocks
{0,z,z + y} and then the triples {i, z + i,z + y + i} for each base block.
Now, we need to see if we can form a GS(2,3,n,g) from a 3-CGDD
of type g". Unfortunately, Jiang’s construction [6] of 3-CGDD of type
g" do not form Generalized Steiner Systems, GS(2,3,n,9). We need to
find the additional properties necessary for a 3-CGDD of type g” to be a
GS(2,3,n,g); that is, for any two triples to be distance d > 3 apart. The

next theorem establishes when this can be done.

Theorem 3.1 Let (P,G,B) be a 3-CGDD of type g" with P,G and B
defined as above. This 3-CGDD of type g" will be a GS(2,3,n,g) if and
only if the following conditions hold:

(a) for any two triples, {z,y,z} and {z',y, 2’} in different orbits, we have
that the triples reduced (mod n) are not equal;. i.e. {z,y,2} (modn)

# {z',y,%'} (mod n) and

(b) if n =0 (mod 3), say n = 3t, then no orbit contains a block {0, a, b}
with {a,b} = {t,2t} (mod n) unless {a,b} = {gt,2gt}.

Proof: For two triples to have distance d = 2, they must cut across the
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same groups and share a point in common. This means the triples reduced
(mod n) must be equal and thus must come from the same orbit. We have
two types of orbits that are possible. If the orbit is short, which covers the
distance 932, then the blocks are all disjoint. If the orbit is full length, then
because of the extra condition (b), we can be assured that the orbit length
(mod n) is full also and so if any two blocks share a point in common, then
they do not cut across the same three groups. In either of these cases, we

would have d > 3 occurring. 0

4 GS(2,3,n,4)

As stated previously, Etzion completely solved the case g =2 and so g = 4
is the next even case to consider. Recall that if ¢ = 4, then n =0 or 1
(mod 3), n > 6. To apply PBD-closure, we need to establish the existence of
GS(2,3,n,4) for all n € S = {6,7,9,10,12,13, 15,16, 18,19, 21, 22,24, 25,
27,28, 30, 33, 34, 36, 37, 39, 40, 45, 46, 51, 52, 69,93, 94} (see [3], p. 213). We
begin by showing how to construct a GS(2,3,n,4) whenn=6and n=7
since so many of the constructions we have given depend on the existence

of these two systems.

Corollary 4.1 There exists a GS(2,3,n,4), n = 5"'4'1.

Proof: We just apply the comments from Section one when ¢ = 5. This
gives us a GS(2,3,n,4) when n =6,31,.... 0
We now present a construction when n = 7, since this is a specific

construction that we use only in this case.
Lemma 4.1 There exists a GS(2,3,7,4).

Proof: We first take a 4-GDD of type 27 with groups {i,i+7]|0 < ¢ < 6}
and blocks {¢,i +1,i+4,i+6 | 0 < i < 13} where all addition is done
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modulo 14. Now blow up each point by two. Take each of the old blocks
of size four, now with groups of size two and put a GS(2, 3,4, 2) on each.

Now, do we have d > 3?7 We only need to check two points that share
a point in common. This can happen in one of two ways.

Case 1: The first way is for the two triples to cut across groups con-
tained in a block from the 4-GDD of type 27. This argument is the same
as the argument in the proof of Theorem 1.2, Case 1. So d > 3 for any two
triples of this type.

Case 2: The second way for two triples to share a point in common is
for the triples to cut across two different blocks of the PBD, sharing one
group in common. The only way that d < 2 could be possible would be if
in our 4-GDD of type 27, we had combinations of j and k or k + 7 and m
orm+7,0<j#k# m <13, where all addition is done modulo 14, in
two different blocks. But by observing the actual blocks, this never occurs.
Therefore d > 3 for any two triples of this type.

So, we have formed a GS(2,3,7,4). 0

In the next corollary, we give the values of n for which Section three

gives us a GS(2,3,n,4).

Corollary 4.2 There ezists a GS(2,3,n,4) forn=9,10,12,13,15,22, 24,
33,40 and 51.

Proof: We apply Theorem 3.1 from section three to get these. The base
blocks with the properties needed are listed below.
Base Blocks for a GS(2,3,9,4)
{0,1,3}, {0,4,11}, {0, 5,19}, {0, 6,26}, {0, 8, 21}, {0, 12, 24}
Base Blocks for a GS(2,3,10,4)
{0,1,8}, {0,2,19}, {0, 3, 14}, {0, 4, 16}, {0, 5, 18}, {0, 6, 15}
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Base Blocks for a GS(2, 3,12,4)
{o,1,9}, {0,2,23}, {0, 3,22}, {0, 4, 18}, {0, 5, 15}, {0, 6,17}, {0, 7, 20},
{0, 16,32}

Base Blocks for a GS(2,3,13,4)
{0,1,24}, {0, 2,14}, {0, 3, 22}, {0, 4, 25}, {0, 5, 20}, {0, 6, 16}, {0,7,18},
{0,8,17}

Base Blocks for a GS(2, 3,15, 4)
{0,1,12}, {0, 2,16}, {0, 3,13}, {0, 4, 27}, {0, 5, 24}, {0, 6, 28}, {0,7, 25},
{0, 8,29}, {0, 9,26}, {0, 20, 40}

Base Blocks for a GS(2, 3,22,4)
{0,1,3},{0,4,9}, {0,6,13}, {0,8,18}, {0, 11,23}, {0, 14, 45}, {0, 15,47},
{0, 16, 46}, {0, 17,50}, {0, 19,53}, {0, 20, 49}, {0, 21, 48}, {0, 24,52},
{0, 25,51},

Base Blocks for a GS(2, 3, 24, 4)
{0,1,18}, {0,2,29}, {0, 3,25}, {0, 4, 23}, {0, 5, 42}, {0, 6,47}, {0,7,43},
{0, 8,46}, {0, 9, 30}, {0, 10,45}, {0, 11,44}, {0, 12,40},
{0,13, 39}, {0, 14, 34}, {0, 15, 31}, {0, 32, 64}

Base Blocks for a GS(2, 3, 33,4)
{0, 44, 88}, {0, 1,57}, {0, 2,47}, {0,3, 62}, {0,4,27}, {0, 5,55}, {0, 6,37},
{0,7,32},{0,8,61}, {0,9,63}, {0, 10, 39}, {0, 11,60}, {0, 12, 42},
{0,13, 35}, {0, 14, 38}, {0, 15,41}, {0, 16, 52}, {0, 17,51}, {0, 18, 58},
{0, 19, 65}, {0, 20, 48}, {0, 21,64}

Base Blocks for a GS(2, 3,40, 4)
{0,1,62}, {0,2,76}, {0, 3, 73}, {0, 4,60}, {0,5, 37}, {0, 6,72}, {0, 7,71},
{0, 8,39}, {0,9,78}, {0, 10, 44}, {0, 11,47}, {0, 12,79}, {0, 13, 48},
{0,14, 52}, {0, 15,57}, {0, 16,59}, {0, 17, 63}, {0, 18,51}, {0,19,77},
{0,20, 49}, {0, 21,75}, {0, 22,50}, {0, 23, 68}, {0, 24, 65}, {0, 25, 55},
{0, 26,53}
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Base Blocks for a GS(2,3,51,4)
{0,1,77},{0,2,38}, {0,3, 48}, {0, 4,86}, {0,5, 100}, {0, 6,43}, {0, 7,92},
{0,8,99}, {0,9,97}, {0, 10,49}, {0, 11,101}, {0, 12, 70}, {0, 13, 96},
{0,14, 89}, {0, 15, 62}, {0, 16,71}, {0, 17, 67}, {0, 18,52}, {0, 19, 54},
{0,20,79}, {0, 21,78}, {0, 22,63}, {0, 23, 87}, {0, 24, 84}, {0, 25,81},
{0,26,72}, {0, 27, 80}, {0, 28,93}, {0, 29, 69}, {0, 30, 74}, {0, 31,73},
{0, 32,98}, {0, 33,94} 1]

Corollary 4.3 There ezists a GS(2,3,n,4) forn = 16,18, 19,21, 25,27, 28,
30, 34, 36, 39, 45.

Proof: Apply the product constructions of Theorem 2.2, 2.1 for m = 3
and n =6,7,9,10,12,13,15. a

Corollary 4.4 There exist a GS(2,3,n,4) for n = 46,52, 69,93.

Proof: Same as before. Use product constructions for m = 3 and appro-

priate values of n < 45. 1]
Lemma 4.2 There exists a GS(2, 3,94, 4).

Proof: First, we note that there exists a GS(2, 3, 36,4) with asub GS(2,3,7,4)
by applying Theorem 2.2 using a GS(2,3,7,4) and a GS(2,3,6,4) (i.e.
36=7-(6—1)+1). Second, we apply the general product construction of
Corollary 2.1 with p=7,m=3,n =236 (i.e. 94=3-(36 —7)+ 7). 1]

Theorem 4.1 A GS(2,3,n,4) exists if and only if n = 0 or 1 (mod 3),
n > 6.

Proof: PBD closure. 0
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5 Conclusions and Open Problems

In this paper we have shown that a GS(2, 3, n, 4) exists if and only if n = 0
or 1 (mod 3) and n > 6. The discussion in this paper leads to many open
problems, such as:

1. Find more constructions for generalized Steiner Triple Systems.

2. Find t-partitions for other g-values.

3. Find constructions for generalized Steiner Quadruple Systems,
GS(3,4,n,g). Etzion [4) has a few constructions in his paper for g = 2.

The reader is referred to Etzion [4] and to Phelps and Yin [8] for even

more open problems dealing with Generalized Steiner Systems.
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