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ABSTRACT. Letv,k, A and n be positive integers. (zi,z2, ..., Tk)
is defined to be {(z1,z2), (z2,23), ..., (Zk-1,2k), (zk,Z1)}, and
is called a cyclically ordered k-subset of {z1,z2,...,2x}. An
incomplete perfect Mendelsohn design, denoted by (v,n,4, A)-
IPMD, is a triple (X,Y,B), where X is a v-set (of points),
Y is an n-subset of X, and B is a collection of cyclically or-
dered k-subsets of X (called blocks) such that every ordered
pair (a,b) € X x X\ Y x Y appears t-apart in exactly A blocks
of B and no ordered pair (a,b) € Y x Y appears in any block
of B for any ¢, where 1 < ¢ < (k —1). In this paper the neces-
sary condition for the existence of a (v,n,4, A)-IPMD for even
A, namely v 2 (3n + 1), is shown to be sufficient.

1 Introduction

Let v, u, k and A be positive integers. (z1, Z, ..., ) is defined to be {(zy, z2),
(%2, %3), ..., (Tk—1,%k), (Tk, 1)}, and is called a cyclically ordered k-subset

of {x1, z2, ...,zx}. An incomplete holey perfect Mendelsohn design, denoted

by (v, u, k, \)-IHPMD, is a quadruple (X, Y, G, .A) which satisfies the follow-

ing properties:

1. X is a v-set of points, and Y is a u-subset of X;

2. G is a partition of X into groups;

3. Ais a collection of cyclically ordered k-subsets of X (called blocks) each
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of which intersects each group in at most one point;

4. No block contains two points of Y'; and

5. Every ordered pair of points (z,y) from distinct groups such that at
least one of z, ¥ is in X \ Y , appear t-apart in exactly A blocks of A, for
t=1,2,..,k-1.

IfG={Gi:1<i<h},|Gi|=gi and |G; N Y| = u;, we say that
{(g1,u1), (g2, u2), ..., (gn, un)} is the type of the IHPMD .

A (v,k,A)-HPMD can be viewed as an IHPMD with Y = @ and the
vector (g1, g2, ..., gn) is called the type of the HPMD

A (v,n, k, A)-IPMD can be viewed as an HPMD with the type (n,1,1, ..., 1),
and a (v, k, A\)-PMD can be viewed as an IPMD with n =1.

For more details on the above terminology, the reader is referred to [3,4,7).

A O-IPMD is a quadruple (X, Y;, Y5, A) , where Y; is a w;-subset of
X, Yz is a wo-subset of X, and A is a collection of cyclically ordered k-
subsets of X, such that every ordered pair (z,y) appears t-apart in exactly
A blocks of A, unless (z,y) C Y, or (z,y) C Ya, in which case the pair
appears in no block, where 1 <t < (k — 1). We also say that the $-IPMD
is a (v, w1, wa, w, k, A)-O-IPMD where w = [Y; N Ya|.

IPMDs are not only useful tools in the construction of PMDs and other
structures, but finding when they exists is an interesting question itself (see
[3,9,11]). The necessary conditions for the existence of a (v, k, A\)-IPMD
were developed in [2], namely, A(v —n)(v —(k—1)n—1) =0 (mod k) and
v 2 (k—1)n+ 1. In the case of k =4 and even ), it is, v > 3n+ 1. These
basic necessary conditions were shown to be sufficient for the case k = 3
and A = 1, with one exception of v = 6 and n = 1. In this paper, we
shall investigate the case k = 4 and even ), and it will be shown that a
(v,m,4,2)-IPMD exists for even ) if and only if v > 3n + 1.

The existence of (v,4, A)-PMDs forms the basis for most of our construc-
tions. The problem of existence was initially studied by N.S.Mendelsohn,
and now we have a complete result in the form of the following theorem (
see [1,3,4,9] ).

Theorem 1.1 A (v,4,))-PMD exists if and only if dv(v—1) =0 (mod 4)
with the ezception of v=4 and odd )\, and v =8 and A\ =1.

The following results are from [4,10].
Theorem 1.2 The necessary conditions v = 2,3 (mod 4) and v > 7 for
the ezistence of a (v,n,4,1)-IPMD for n = 2 are sufficient except for v="T
and possibly excepting v = 15,19, 23, 27.
Theorem 1.3 There ezists a (v,n,4,1)-IPMD for n = 3 if and only if
v=2,3 (mod 4) and v > 10.
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We assume that the reader is familiar with the basic concepts in design
theory, such as paiwise balanced design (PBD ), group divisible design
(GDD), incomplete group divisible design (IGDD) and transversal design
(TD). For convenience, the reader can be referred to [6, 8].

The following results can be found in [5].

Lemma 1.4 If m is odd and m # 3,5,15,33, 35, 39,45, 51, then there is a
resolvable TD(6,m).

Lemma 1.5 If m >4, m # 6,10, then there is a TD(5,m).

2 Recursive construction methods

The following theoreem provides a way to obtain an IPMD from an IHPMD
and some $-IPMD, which is a variation of construction 3.3 in [8].

Theorem 2.1 (Filling in groups). Suppose that the following designs exist:
1 a (v: u, k, A)'I'H})]V!D of type {(gla ul)i (92, 1"2): ) (ghy uh)} ’

2. a (gi+b,u; + a,b,a,k,\)-O-IPMD, for 1 <i < h; and

3. @ (gn + b, un + a,k,\)-IPMD, for some n with1 < n < h.

Then there eexists a (v + b, u+ a,k, \)-IPMD

To employ this theorem we need some IHPMDs to start with, which can
be obtained by weighting.

Theorem 2.2 Suppose (X,G, A) isa GDD with A\=1, and let 5, : X —»
Z* U0 be functions such that t(z) < s(z) for every z € X. For every block
A € A, suppose that we have a (3", 4 5(z), Yzeat(z),k,\) —IHPMD of
type {(s(z),¢(z)) : = € A}. Then there ezists a (3, 4 3(2), Yzeat(x), k, N)-
IHPMD Of type {(EzEG s(z)’ ZzEG t(z)) :Ge g}'

Theorem 2.8 There exist (v,n,4,2)-IHPMDs of the following types:
(3, )% 3, 1)%(4, 1)1, (3,1)%(3,0)* and (3,1)5.

Proof: There exist {4,5}-IGDDs of types and A =1: (3,1)*, (3,1)%(4,1)!
and (3,1)%(3,0)! from the proof of Lemma 3.6 in [6]. Replacing each block
in the above IGDDs with a (5,4,2)-PMD and a (4,4,2)-PMD, we obtain
the first three IHPMDs . For the last type, we start with a (5,4,2)-PMD
and replace each block with a {4}-IGDD of type (3,1)? and A = 1 to obtain
an IHPMD of type (3,1)% and A = 2. u]

Theorem 2.4 Let m > 4 and m # 6,10. Suppose there exist a 3m +
b,m + a,b,a,4,2)-O-IPMD and a (r + b,n + a,4, 2)-IPMD. Then there
ezists a (v,u,4,2)-IPMD where v = R2m+r+bu=4m+n+a,0<n<
m,r =0,3,6,...,3m when n = 0,r = 3,4,6,7,..,3m,3m + 1 when n =1
and In<r<3m-+n whenn>2
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Proof: From Lemma 1.5 there exist a TD(5,m) for m > 4 and m # 6, 10.
Let X be the points set of the TD . Partition one group of the TD into
Y1 UY; such that |Y;| = n, |Ya| = m —n, Define 5, : X — Z+ U {0}, such
that

(3,1) or (4,1) if z € Y5;
(s(z), t(z)) = { (3,0) or (0,0) if z € Yz;
(3,1) otherwise.

we apply Theorem 2.2 to obtain an IHPMD of type (3m, m)(r, n)!, here
the required IHPMDs come from Lemma 2.3. Then we obtain the desired
result from Theorem 2.1. (]

The following theorem is essentially from Theorem 2.4 in [9].

Theorem 2.5 Suppose that (X, B) is a (v, k,1)-PBD where B can be par-
titioned into s parallel classes By, Bs, ..., B,. Suppose there ezists a (|B| +
14, N4, ky, A)-IPMD for every B € B; where 1 < i < s. then there erists a
(v + n,n, k,\)-IPMD where n=n; +np + ... + n,.

As an application of Theorem 2.5, we have the following useful lemmas.

Lemma 2.6 Suppose that there ezists a resolvable TD(t, m). Suppose there
ezists the following IPMDs :

1 a (t+n,n,k N)-IPMD for c<n <d;

2. a (m+ w,w,k,\)-IPMD for e <w < f.

Then there exists a (v,u,k,\)-IPMD where v —u=mt and mc+e<u <
md+ f.

Proof: A resolvable TD(t, m) admits m parallel classes of blocks of size
t and one parallel class (of groups) of size m. We can then apply theorem
2.5 to obtain the desired result. o

Lemma 2.7 Suppose that there ezists a resolvable TD(t, m). Suppose there
exists the following IPMDs :

1. a(t—i+n,nkA)-IPMD for i =0,1 and c<n <d;

2. a (m+w,w,k,\)-IPMD fore <w< f;

3. a (m—s+wwk\)-IPMD fore<w< f.

Then there exists a (v, u, k, \)-IPMD where v —u=mt — s and mc+e <
w<md+ f.

Proof: A resolvable PBD obtained by deleting s points in one group of a
resolvable TD(t, m), admits m parallel classes of blocks of size ¢ and ¢ — 1
and one parallel class (of groups) of size m and m — s. We can then apply
theorem 2.5 to obtain the desired result. u}
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Lemma 2.8 Suppose that there ezists a resolvable TD(t, m). Suppose there
exists the following IPMDs :

1. a (t~i+n,n,k A)-IPMD for i =0,1,2 and c < n < d;

2. a (m+w,w,k,))-IPMD fore <w< f;

3. a (m—s;+w,wk,A)-IPMD fori=1,2 and e<w < f.

Then there exists a (v,u,k,\)-IPMD where v — u = mt — 81 — 32 and
mct+eu<md+f.

Proof: The Proof is similar to that of Lemma 2.7. (m}

38 Direct construction methods

We will directly construct some small examples of IPMDs by employing the
effective and easy way which was developed in [10)].

For odd v — u, we always present a set of base blocks B which can be
developed under the cyclic group of G = Z,_,. If B = (0,a,a + b,a +
b+ c) € B, we define B(1) = (a,b,c,—(a + b +c)) and B(2) = (a +
b,b+ ¢, —(a +b), —(b+ c)), that is, the t-apart ordered difference set of B
for t = 1,2, similarly if B = (c0,0,4,a +b), we define B(1) = (a,b) and
B(2) = (a+b, —(a+b)). It is easy tosee if B(t) = {B(t): B B} fort = 1,2
partitions (Z,_y \ {0})U(Z,_4\ {0}), then (X, devB) is a (v,u,4, 2)-IPMD
where X = Z,_4U{o0; : 1 <i <u} and devB = {B+g,B € B,g € Z,_,}.

From Lemma 1.6 in [10], if M = (g, b, ¢, —(a+b+c)) such that a, b, ¢, —(a+
b+c),a+bb+ce Z,_,\ {0}, then there is one and only one base block
B such that B(1) = M and B(2) = (a + b,b+ ¢, —(a + b), —(b + c)), and if
M = (a,b) such that a,b,a+b € Z,_y\ {0}, then there is one and only one
base block B containing co such that B(1) = M and B(2) = (a+b, —(a+b)).
For this reason and convenience we always present B(1) and instead of B.

Lemma 3.1 There ezists a (v,u,4,2)-IPMD for v—u = 2m + 1 and
u=m.

Proof: Let B(1) = {(2k, —k) : k € Zam+1 \ {0}}. |
Lemma 8.2 There exists a (v,u,4,2)-IPMD for v > 4,u=1.

Proof: Since there exists a (v, 4,2)-IPMD for v > 4 from Theorem 1.1. O
A base block B is called a special base blockif B(1) = (a,b,a,—(2a+Db)).

Lemma 3.3 If B is base blocks of a (v,u,4,2)-IPMD and there is a special
base block of B, then there exists a (v+1,u+1,4,2)-IPMD.
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Proof: Let B be a special base block and B(1) = (g, b,a, —(2a + b)). Let
Ay = (00y+1,0,8,a+ b), Az = (0044+1,0,a, —(a + b)). It is easily seen that
(B\ B) U {A1, A} is base blocks of a (v + 1,u + 1,4, 2)-IPMD. o

Lemma 3.4 There ezists a (v,u,4,2)-IPMD for v —u = 11,19, 23, 31,43,
47,59,67 end 1 Su < (v —u—1)/2.

Proof: For v — u=11,19,23,47,59, 67. Let G = GF(v — u) and

B(1) = {(z%, 2!, 2% —z%+2) : 1 <u < (v—u—1)/2} wherez =2, a
primitive root.

For v — u = 31. Let G = GF(31) and B(1) = {(z%*,z%1}, 2% z%+5):1 <
1 < 15} where = = 3, a primitive root.

For v — u = 43. Let G = GF(43) and

B(1) = {(z%, —z%+14, 2% —z%+2) : 1 < i < 21} where z = 3, a primitive
root. (]

Lemma 3.5 There ezists a (v,u,4,2)-IPMD for v —u=17,9,13,15 and
1<u<(v-u-1)/2, andv—u=21,27,33 and 1 <u < (v—u)/3 1.

Proof: See Lemma 5.1 in the section 5 of this paper. ]

Lemma 3.6 If B is base blocks of a (v,u,4,2)-IPMD and there is a pair
of base blocks B, and By of B such that Bi(1) = (a,a,b, —(2a + b)) and
B3(1) = (—a, —a,—b,2a+b). Then there is a (v+n,u+n,4,2)-IPMD for
n=0,1,2.

Proof: Let A;, A2, A3 be three new base blocks such that A;(1) = (a, b, a,
—(2a + b))*, A2(1) = (-a,—a), A3(1) = (=b,2a +b). It is readily checked
that (B\ {Bl, Bz}) U {Al, Ag, As} isa (v+1,u+1,4, 2)-IPMD. Since A; is
a special base block, we have a (v+2,1u+2,4,2)-IPMD from Lemma 3.3. O

Lemma 3.7 There exists a (v, u,4,2)-IPMD for v —u = 17,29,41, 37, 61
andl1<u<(v—-u-1)/2.

Proof: We present B(1) for each case to obtain the desired result

by applying Lemma 3.6. _

For v —u = 17, B(1) = {*(z¥, 2%, %!, 2%47),: 1 < i < 4} where z =5.
For v —u =29, B(1) = {:(z¥, 2, z%+3,2%19),:1 < i < 7} where z = 2.
For v — u = 37, B(1) = {+(z%, 2%, —2%+3, —2219): 1 < i < 9} where
z=2.

For v — u = 41, B(1) = {&(z?, g%, z2+13, _g%+15) . 1 < § < 10} where
z=T.

For v — u = 61, B(1) = {£(z%, 2%,2%+3, —z21+23) : 1 < i < 15} where
z=2. o
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Lemma 3.8 There ezists a (v,u,4,2)-IPMD for v —u = 6,10,12,14,18
and2<u<(v-u-2)/2,v-2=22,26,30and 3<u<(v —u-—2)/2,
and v —u = 34,38,58,62 and 10 < u < (v —u — 2)/2 (see Theorem 2.13
in [10]).

Lemma 3.9 There exists a (v,u,4,2)-IPMD for v—u = 16,20, 24, 28 and
u=2and v—u=16,20,24,28,32 and 4 < u < (v—u—2)/2 (sec Theorem
2.18 in [10)).

Lemma 8.10 There ezists a (v,u,4,2)-IPMD for v—u € {6,10, 14,18, 22,
26,30, 34,38, 58,62} U {12, 16,20} U {24,28,32,64}, and 2 < u < (v — u —
2)/2.

Proof: For v — u = 22,26,30,32,u = 2, a (v,u,4,2)-IPMD exists, since
there is & (v,7,4,2)-IPMD for each v and there is a (7, 2,4, 2)-IPMD. For
v—u = 16,20,24,28,32,u = 3, a (v,u,4,2)-IPMD exists from Theo-
rem 1.3. For v —u = 34,38,58,62,2 < u < 9, to obtain a (v,u,4, 2)-
IPMD, we apply Lemma 2.7 with ¢t = 5,c = e = 0,d = 1,f = 2 and
(m,s) = (7,1),(8,2),(12,2),(13,3). For v —u = 64,2 < u < 31. Let
X be the points set of a TD(5,8). Partition one group of this TD into
YoUY1UY> UYs. Define s: X — Z+ U {0} such that

o(z) = iifzeY;
" ] 2 otherwise.

We apply Theorem 2.2 to obtain an HPMD of type 16%1,0 < r < 24,
where the required HPMDs come from [10). It is easy to see that we have a
(v,u,4,2)-IPMD for v —u = 64,0 < u < r +a if there are a (16+aq,a,4,2)-
IPMD and a (r + a,a,4,2)-IPMD. Thus we have a (v,u,4,2)-IPMD for
v —u = 64,0 < u < 31. By combining the above results with Lemma 3.8
and 3.9 we have obtain the desired results. (|

4 (v,u,4,2)-IPMDs

In this section, it is shown there exists a (v,u,4,2)-IPMD for v > 3u + 1
where

u 2 1. It is fairly obvious that {(v,u) :v > 3u+1,u > 1}

={(v,u):1 < < [(v-u)/2],v—u > 3} where [a/2] = a/2 when a is even
and [a/2] = (a — 1)/2 when a is odd.

Lemma 4.1 There ezists a (v,u,4,2)-IPMD for v — u=3m,m > 4,m#
6,m<u<[Bm-1)/2.

Proof: We apply Lemma 2.6 with t = 3,c = d = l,e = 0 and J =
[(m —1)/2] to obtain the desired result. o
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Lemma 4.2 There ezists a (v,u,4,2)-IPMD for v—u=4m,m >4, m #
6,10,0 <u<m+[(m—-1)/2].

Proof: We apply Lemma 2.6 with t = 4,c =0,d =1l,e =0and f =
[(m —1)/2] to obtain the desired result. o

Lemma 4.3 There exists a (v,u,4,2)-IPMD for v—u = 25, 35,40, 45, 49, 55,
56,60, 63,65,75,77 and 80, and 1 <u < [(v—u—1)/2].

Proof: We apply Lemma 2.6 with t = 5,m = 5,7,8,9,11,12,13,15 and
16, ¢ = 0,d = 2,e = 0 and f = [(m — 1)/2] to obtain the desired result
for v — u = 25, 35,40, 45, 55, 60, 65,75 and 80. Similarly we can obtain
the desired result for v — u = 49,56, 63,77 by applying Lemma 2.6 with
t=7,m=717,38911. (u]

Let K = {v—u:3 < v—u < 80} and L = {44, 46,50, 52, 53, 68, 70, 71, 73,
74,76, 79}.

Theorem 4.4 There ezists a (v,u,4,2)-IPMD for v—u € K\ L and
1<ug(v-u-1)/2.

Proof: It is easily seen that there exists a (v,u,4,2)-IPMD for v — u =
3,4,5,8and 1 < u < [(v—u—1)/2] from Lemma 3.1 and 3.2 and Theorem
1.2 and 1.3, and there exists a (v,u,4,2)-IPMD for v — u = 36,48 and
72 from Lemma 4.1 and 4.2. By combining the results in the section 3
and this section, it is readily verified there esists a (v,u,4,2) — IPM D for
v—u € K\ (LU{3,4,5,8,36,48,72}) and 1 < u < [(v —u —1)/2]. Th1s
completes the proof.

Lemma 4.5 There exists a (3m+b,m+a,b,a,4,2)<) -IPMD forb—a =
l,a=0.

Proof: Since there esists a (3m + 1,m, 4, 2)-IPMD from Lemma 3.1. O

Lemma 4.6 Let m > 4, m # 6,10,. If there is an (m+a, a,4,2)-IPMD for
0 < a < [(m —1)/2], then there exists a (3m + b, m + a, b, a, 4, 2)-O>-IPMD
forb—a=mand 0<a<[(m~-1)/2.

Proof: Since there is a (4,4, 2)-PMD and there is a TD(4,m), we have a
(4m,4,2)-HPMD of type m* ( see Theorem 2.2 in [9]), say, G; and G are
two groups of the HPMD, and B is its blocks. Let H = {001,002, ...,00,}
and A; be blocks of a (m +a, a,4, 2)-IPMD based on G;UH fori =1,2. It
is readily verified that Bt .4; U A; is the blocks of the desired {-IPMD. O
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Lemma 4.7 There ezists a (v,u,4,2)-IPMD for v — u = 39,42, 51,54, 57,
66,69,78 and 1 < u < [(v —u —1)/2].

Proof: For each case of v —u = 3m, we only need to show that there
exists a (v,,4,2)-IPMD for 1 < u < m —1 from Lemma 4.1. To obtains
the desired result, let c=0,d =2,e = f =0. For v —u = 42,56,66,78,
we apply Lemma 2.6 with ¢ = 6,m = 7,9,11,13. For v —u = 39,51, 69,
we apply Lemma 2.7 with ¢t = 6,(m,s) = (7,3),(9,3), (13,9). And for
v —u =57, we apply Lemma 2.8 witht =7,m =9,5; =3, = 3. |

Lemma 4.8 There exists a (v,u,4,2)-IPMD for v—u = 44,46, 50, 52, 53, 68,
70,71,73,74,76,79 and 1 <u < [(v —u — 1)/2].

Proof: For each pair (v — u,u) shown in the table 1, it is readily checked
there exists a (v, u,4,2)-IPMD from Lemma 5.2 in the section 5.

v-u uifv-u u
MU|18<u<21| 70| 30<u<34
46 [18<u<22| 71| 30<u<35
50 21<u<24| 73| 30<u<36
[ 52]22<u<25| 4| 30<u<36
53] 22<u<26| 76 |30<u<37
“68 30<u<33| 79| 30<u<38

Table 1

To obtain the other desired results, for v — u = 44,46, 50,53, we apply
Lemma 2.7 with t = 6,c =0,d =2,e =1 and (m, s, f) = (8,4,1),(8,2,1),
(9,4,2),(9,1,3). For v — u = 68,70,71, we apply Lemma 2.7 with ¢ =
8,c=0,d=3,e=0,f=2and (m,s) = (9,4),(9,2),(9,1). Forv—u =
73,74,76,79, we apply Lemma 2.8 with t = 9,c = 0,d = 3,e = 0,f =
2,m =9 and (84, 83) = (4,4), (4, 3),(3,2),(1,1). O

Lemma 4.9 Let v—u=12h —g > 80,h > 7,0 < g < 11. There exists a
(v,u,4,2)-IPMD for 1 <u<4h+1.

Proof: We apply Lemma 2.8 with ¢t = 7,m = 2h + 1,c = 0,d =2,e =
1,f=3,0<s1,52<h-—1 (since 33 +32=2h+g—-7and0<g<4)to
obtain a (v,u,4,2)-IPMD for h = 7,0 < g <4 (since 12h—g > 80 ). In the
following, we always let c=0,d=2,t =6,e=1,f = [(m-s — 1)/2] and
8 = 6m—2h+g and present m for each case of h and g . It is readily checked
that there exists a (v,u,4,2)-IPMD for v—u = 12h—gand1 < u < 4h+1.
For h = 8,16 and 0 < g < 11, we put m = 2h, forh=9and 0 < g <5,
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weput m =2h+1,for h =9 and 6 < g <11, we put m = 2h — 1, and
for h =17,19,22,25 and 0 < g < 11, we put m = 2k + 3. Finally for the
remain cases of h, and 0 < g < 11, we put m = 2k +1. We have completed
the proof. (]

Lemma 4.10 There exists a (v,u,4,2)-IPMD for 120 < v —u < 109 and
42 < u < 45.

Proof: We apply Lemma 2.8 with ¢t = 11,m = 11,0 < 51,83 < 6,¢ =
0,d =4,e= f =1 to obtain the desired results. O

Lemma 4.11 Let m > 4,m # 6,10 and 2 < n < m, there exisis a
(v,2,4,2)-IPMD for Im+2n < v—u < 12mand dm+n < u <
dm+n+[(m—-1)/2].

Proof: Apply Theorem 2.4 withb—a=m,0<a < [(m-1)/2],n >2,3n <
r < 3m+n to obtain a (v, 1,4, 2)-IPMD for v—u = 9m+r—n,u = 4m+n+a,
that is, for Im+2n <v—u < 12mand dm+n < u <4dm+n+[(m—1)/2),
here the required $-IPMD comes from Lemma 4.6. (n]

Lemma 4.12 Let v—u=12h—g > 80,h > 7,0 < g <11. There erists a
(v,,4,2)-IPMD for 4h+2 <u<|[(v —u—-1)/2).

Proof: For k > 11, by applying Lemma 4.11 with m = h,n = 2,3, ...,m,
we obtain a (v,u,4,2)-IPMD for 4k +2 < u < 4h+ h+ [(h — 1)/2] when
v—u>1llhor4h+2 < u £ [(v—u—1)/2] when v —u < 11h. If
v —u > 11h, then 9(h+ 1) +4 < v —u < 12(h+ 1), we apply Lemma 4.11
with m = h+1 to obtain a (v, u,4,2)-IPMD for 4h+6 < u < 5h+5+ [h/2]
when v—u > 11(h+1) or 4h+6 < u < [(v—u—1)/2] when v—u < 11(h+1).
Obviously, we can obtain the desired result by applying Lemma 4.11 for
finite times. For 7 < h < 10 and v — u = 12h — g > 80 there exists a
(v,u,4,2) -IPMD for 4h +2 < u < [(v — u — 1)/2] from Lemma 5.2 in the
section 5 and Lemma 4.10. We have completed the proof. o

The main result of this paper can be sumarized by combining Theorem
4.4 and Lemma 4.7, 4.8, 4.9 and 4.12,

Theorem 4.13 There ezists a (v, u,4,2)-IPMD if and only if v > 3u+1.
We have essentially established the following:

Theorem 4.14 There exists a (v,u,4,))-IPMD for even X if and only if
v>3u+1.
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8 Appendix

Lemma 5.1 There ezists a (v,u,4,2)-IPMD for v —u = 7,9,13,15 and
1<u<(v-u—1)/2, and v —u=21,27,33 and 1<u<(v-—u)/3-1.

Proof: For each v — u, we let G = Zy—y and present B(1). It is easy to
obtain the base blocks B and B(2) from B(1), and check that B(t)(t=1,2)
partitions (Z,_u \ {0}) U (Z,—. \ {0}). From the number of special base
blocks which indicate with *, we can obtain the desired result.

Forv-4=79,13,15andu=1,(v—u— 1)/2, there exists a (v, u,4, 2)-
IPMD from Lemma 3.1 and 3.2.

Forv—u="74=2. Let
B(l) = {(2v 2,-1,-3),(3, -1), (—2’ 1), (lv 3): (_2! —3)}

Forv—u=09,u=2,3. Let
B(1) ={(1,2,1, -4)*, (3, -1, -4, 2),(4,-3),(4,-3),(3,-1), (-2, -2)}

Forv—u=13,u=2,3,4,5. Let
B(1) = {(5,1, —4,-2), (~1,6,~1,—4)*,(~5,4, —5,6)*, (—6, 2, -6, —3)*,
(5) —'3)v (41 "'2): (1: 2), (3’ 3)}

For v —u=15,4=2,3,4,5,6. Let
B(l) = {(31 2,3, 7)‘v (—3: 2,-3, 4)‘a (6$ —4,6, 7)*’ (—6, -1,-6, _2)‘v
(5, 1,5, 4)*, (—2, -—1), (—5, -7), (—7, —4), (—'5, 1)}

For v—u = 21,27, 33, u = 1, there exists a (v, u, 4, 2)-IPMD from Lemma
3.2.

Forv—u=21,2<u<6.Let
B(1) = {(1,-6,1,4)*, (2,8,2,9)*,(7,-4,7,-10)*,(3,5, 3, 10)*,
(_lv '—3: 10’ "'6)7 (_2v 4’ —10, 8): (_5: —7’ _8: _l)a (6: -7s 9’ _8)7
(--3, _9)7 (53 "'4): (6! —2)» (—5: —9)}

For v —u=27,2<u<8.Let
B(1) = {(3,-8,3,2)*, (6, -2, 6, —10)*, (-6,5,—6,7)*, (9, —2,9,11)*,
(-9,1,-9,-10)*,(12, -1, 12,4)*, (-12,2, -12, -5)*,(-3,-3,1,5)*,
(4,10, -7,-7), (—4, -8, -4, —11)*, (10,8, -5, —13), (13,8), (11, 7),
(13, —ll)v (_11 ’—13)}

For v —u = 33,2 < u < 16. Let

B(l) = {(3: 2,3, _8)‘: (—37 1,-3, 5)‘7 (_6v 5, -6, 7)‘1 (_9: —4,-9, —11)‘$
(12, -1,12, 10)‘, (-12,2, -12, —11)*, (—15, -1,-15, -2)*, (6, 8,6,13)*,
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(9, -2,9,-16)*, (15, —7,15,10)*, (16, —13, 16, 14)*,

(-14, 8, —14, -13)*, (-5, -7, -5, -16)*, (11,4,11,7)*, (14, -10),

(—8) 4)’ (1, —10)1 (—47 13)} o
By applying Theorem 2.4 in conjunction with Lemma 4.5 and 4.6, we

have

Lemma 5.2 There ezists a (v,u,4,2)-IPMD for (v — u,u) shown in the
table 2, table 3 and table 4.

Let [4, 5] indicates {¢,i+1,44+2,...,5}.
In the table 2, 2 < n <mb—a=m0<a < [(m-1)/2,9m+2n <
v—u<12mdm+n<u<dm+n+|m-1)/2.
Inthetable3,2<n<m,b=1,a=0,8m+1+2n<v—-u<llm+l,u=
4m +n)
Inthetable4, n=1,v—u=8m+b—a+r—n,u=4m+n+a)

m|n (vv-u,u) | m| n (v-u, u)
4] 2 40, 48] x [18, 19 41 3 42, 48] x [19, 20
44| (44,48 x [20,21] [ 6| 2| (49, 60] x 22, 24] |
53| (51,60 x 23,25 | 5] 4| [53,60] x [24, 26] ||
5|5 55, 60] x [25, 27 71 2 67, 84] x [30, 33
713 69, 84] x [31, 34 71 6 75, 84} x [34, 37|
717 77, 84] x [35, 38 8| 2 76, 96] x [34, 37
8|3 78, 96| x (35, 38 8| 7 86, 96] x [39, 42
88| [88 96 x [40,43] | 9 2| [85, 108] x [38, 42
9 [ 3] [87,108] x [39,43] | 9. 9| [99, 108] x [45, 49
11 | 2 | [103, 132] x [46, 51] | 11 | 11 | [121, 132] x [55, 60
Table 2

m| n (vvu,u) | m| n (v-u, u)

4] 2 37,45 x 18| 4| 3 39, 45] x 19

4| 4 41,45 x 20} 5] 2 45, 56] x 22

5| 3 47,56) x 23| 5| 4 49, 56] x 24

5] 5 51,56] x25 |11 | 2 [93, 122] x 46

11| 3 [95, 122] x 47 | 11 | 10 | [109, 122] x 54

11 | 11 | {111, 122] x 55

Table 3

fm[bla]r]|(vuu)l
. 5]5[0]6](5021) ]

Table 4
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