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ABSTRACT. In a previous work “Skolem labelled graphs” [4] we
defined the Skolem labelling of graphs, here we prove that the
necessary conditions are sufficient for a Skolem or minimum
hooked Skolem labelling of all k-windmills. A k-windmill is a
tree with k leaves each lying on an edge-disjoint path of length,
m, to the centre. These paths are called the vanes.

1 Imtroduction

If one wishes to test the reliability of a communications network for node
reliability, link reliability and distance reliability one would want a testing
schedule so that

1. Every node is tested.
2. Every link is tested.
3. Every distance (in the network hop sense) is tested.

An efficient schedule for this leads to the concept of a Skolem labelled
graph and where a graph does not have a Skolem labelling, a “hooked” —
Skolem labelled graph with as few hooks (untested nodes) as possible. As a
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hub and spoke system is a common communication network configuration
it makes sense to develop such schedules for these. In this case we restrict
ourselves to spokes of equal length. In the language of trees these are k-
windmills with vanes of length m. Skolem 1957 [11] introduced the concept
of what is now called a Skolem sequence. It can be represented as a sequence
S; of numbers from {1,...,n} of length 2n with each number appearing
exactly twice. We define

a6 = u if Sy = j for the first time
bj = v  if Sy =j for the second time

A sequence is Skolem if bj — a; = j, j = 1,2,...,n. For example the
sequence 4,1,1,3,4,2,3,2 has

= 3,8,7,5
a = 26,41

and thus is a Skolem Sequence. Informally the two 1’s are 1 apart, the two
2’s are 2 apart etc.

He also raised the question of the existence of similar sequences in the
case n = 2,3 mod 4 in which the sequence is of length 2n+1 and a “hook”
0 is placed at Szn,. We normally write a “¢” for “0”. Thus the sequence
31132 «2hasb=3,7,4...; a=2,5,1, and thus is hooked Skolem with
a hook at 6.

O’Keefe [9] proved that for a hooked Skolem Sequence of order n to exist,
n must be = 2,3 (mod 4). The combined works of Skolem and O’Keefe
were used to construct cyclic Steiner triple systems of order v = 1 (mod 6).
Later, the same method was used by Rosa (1966) [10] for the case of v =
3 (mod6). There are several generalizations and applications of Skolem
sequences; for more details the reader may consult [8]. For more details
about cyclic Steiner triple systems the reader may consult [2].

When we introduced the concept of Skolem labelling of graphs (4], we
proved that any tree can be embedded in a Skolem labelled tree with 0(v)
vertices and that this is sharp. Further, any graph can be embedded in an
induced subgraph of a Skolem labelled graph with 0(»®) vertices, and we
exhibited the minimum embedding and labelling of all paths and cycles.

It is natural then to extend the investigation to finding the Skolem or
minimum (hooked) Skolem labelling of trees. Initial discussions seem to
lead to a conjecture as difficult as Ringel’s graceful labelling of trees (5).
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A minimum Skolem labelling of a 4-windmill
with vanes of length 3

We restate the definitions of Skolem and hooked Skolem labelled graph.
Definition 1. A d-Skolem labelled graph is a triple (G, L, d), where

(a) G = (V,FE) is an undirected graph

(b) L:V - {d,d+1,...,d+n—-1}

(¢) L(v) = L(w) = d+1i exactly once fori =0, 1,...,n—1 and d(v,w) =
d+i

(d) If G’ = (V,E') and E’' C E then (G', L, d) violates (c).
Definition 2. A d-hooked Skolem labelled graph is a triple (G, L, d) sat-
isfying Definition 1 with (b’) substituted for (b):
®) L:V-={0}u{d,d+1,...,d+n—-1}.
That is hooked sequences can have some vertices labelled 0 , but every
edge is still (essential) i.e. the removal of that edge violates (c) . Note that
if condition (d) in the above definitions is not satisfied it will be called a

weak (hooked) Skolem labelled graph. A minimum hooked labelling of G
is one with as few hooks as possible. A k-windmill is a tree with k leaves
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or endpoints (vertices of degree one) which are equidistant from a unique
vertex of degree > 2 (the centre). The paths from the leaves to the centre
are called vanes.

2 The necessary conditions

There are two necessary conditions for a tree to be Skolem labelled, called
parity and degeneracy. In this section we establish the parity condition for
a Skolem labelling for an arbitrary tree and a degeneracy condition for a
(hooked) Skolemn labelling for k-windmills.
The parity condition

We define the Skolem parity of a vertex u of a tree T = (V, E), to be
the sum (over all v; € V) Z d(u,v) mod 2. If |V] is even, this parity is

independent of » and is called the Skolem parity of the tree.

Lemma 2.1. Let T = (V, E) be a tree with 2n vertices. Then the Skolem
parity is independent of u € V.

Proof: Consider a vertex » and let P, = Z d(u,v) mod 2. Let w be

adjacent to u, by edge e = {u,w}. The components of T — e partition V

into disjoint sets, A which contains » and B which contains w. If z ¢ B

then d(z,u) = d(z,w) + 1. If z € A then d(z,u) = d(z,w) — 1. Thus

Py, = Py +|B| - |A| mod 2. Since |V|is even |B| — |A| is even. Thus
w = Py,

Note that in case of a tree with an odd number of vertices the number
|B] - 14| is odd, so that adjacent vertices will be of opposite parity. (Hence
for trees with an even number of vertices we can define the (Skolem) parity
of the tree to be the parity of any of its vertices.

Lemma 2.2. Let T = (V,E) be a tree and V; and V, subsets of V
satisfying |V1| = [V2|+2 and V} = VU {u,w}. Foranyz €V and W C V
define D(z,W) = Y d(z,v) mod 2. Then for every z € V

veEW

D(z,Vy) — D(z,V,) = d(u,w) mod 2.

Proof: For V] and V, as described we observe that
Z d(z,v) = Z d(z,v) — d(z, u) + d(z, w)

vEV) veEV,

= z d(z,v) + d(u, w) + 2d(z, z)
veEV,

where z is that vertex on the u,w path closest to z. The assertion follows
immediately.
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We observe that D(z,v) equals the Skolem parity of T when |V| is even.
Now we can prove the necessary parity condition for all trees.

Lemma 2.3. Necessary conditions for the existence of a Skolem labelling
of any tree with 2n vertices are as follows:

1) If n=0,3 (mod 4) the parity of T must be even.
2) ifn=1,2 (mod4) the parity of T must be odd.

Proof: Assume vertices a;, b; are labelled 2, 1 < i < n, with d(a;, ;) = .
Apply Lemma 2.2 repeatedly, first with V] = V and Vo = V — {an, b, },
with z chosen arbitrarily, to obtain D(z,V) = D(z,V —{an,bn})+n mod 2.
Repeat this process, removing successive pairs, to obtain D(x, V) = Skolem
parity of T = D(z, V—{an, bn, @n—1,bn-1})+n+(n—1) = n(n+1)/2 mod 2.
The conditions follow immediately from these equalities.

The degeneracy conditions

It is obvious that a graph with 2n vertices must have a path of length
n if it is to be Skolem labelled. Thus we see that all windmills with more
than 4 vanes cannot have such a labelling.

For a (possibly hooked) Skolem labelling of a k-windmill, given that the
largest label is 2m, the maximum number of edges in the corresponding
path, none used in any other path, is 2m, this covering all edges of 2 vanes.
Labels greater than m must cover parts of 2 vanes, with the label in each
case acting as an upper bound on the number of edges used by that label
and by no other label. The label m may cover all of a single vane. Thus for
all labels m; with m < m; < 2m the maximum number of edges covered is
no more than

2m+@m—1)+---+m] = g(m2+m). 1)

In order to satisfy property (d), the labels that are n; < m must cover at
least one edge covered by another label, so that the total number of edges
for these labels is at most

m? - 3m
[m—2) 4+ +1] = = F2, @

Thus the maximum number of edges is < (1) +(2) = 2m? + 1. Since the
total number of edges in a k-windmill is km we have

km < 2m?4+1 or k < 2m,
k being an integer, except for the case k = 3 and m = 1. This is called the

degeneracy condition.
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3 Sufficiency

In this section we show that the above conditions necessary for obtaining
the minimum (hooked) Skolem labelling for all n-windmills are sufficient
except for a few small cases. For a k-windmill with k vanes we arbitrarily
number the vanes (say clockwise) 1 to k, let m denote the length of the vane
of the windmill, then to every vertex v we associate two coordinates (%, )
where i is the vane number and j is its distance from the centre, denote
the vertex v;;. In the following tables the centre of the windmill has the

coordinates (0, 0) or (%,0).
3-windmills

Lemma 38.1. All 3-windmills with vane length = 1,7 (mod8), have a

Skolem labelling.

Proof:

Case (1) m=1(mod8), m>9

855 b..',' S S label
(l,m—-r+1) 3, g(m+1)—r) 1<r<3(m-1) | 5(3m +3)-2r
LEm-1)-r+2) [ 2,3((m-1)-r+2) | 1<r<i(m+3) ;(3m+5)—2r
(1,r) 3, r+1) 1<r<4(m=5) | 2r+1
2,r-1) 2m—r+1) 1<r<La(m=-1) | m—-2r+2
3,1) (3, 4(m +3)) - §<m+ 1)

@, g(m+1) 3, g(m-1)+1) - -f(m -1

3, 3(m+3)+7r) Bm-r+1) 1€r<i(m—-9) g(m —1) —2r
@3, %(Sm-i- 1)-r) 3, %(3"! +1)+71) 1<r< §(m -9) | 2r

(3, g(tm +9)) (3, g(tm +1)) - 1

Form=1

label (1,1),(2,1) by 2;

Form=29

label (0,0),(3,9) by 9;
(1,1),(1,2) by 3;
(1,4),(3,4) by 8;
(1,6),(3,6) by 12;
(1,8),(2,3) by 11;
(3,2),(2,1) by 3;
(2,5),(2,9) by 4;

(0,0),(3,1) by 1

(3,1),(3,8) by 7;
(1,3),(3,3) by 6;
(1,5),(3,5) by 10;
(1,7),(3,7) by 14;
(1,9),(2,4) by 13;
(2,2),(2,7) by 5;
(2,6),(2,8) by 2.

Case (2) m=7 (mod8), m>7
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Gg 5 STS label
(l,m-r+1) é(m+3)—r) 1<r<i(m+1) #(3m+5) 2r
(Lim+1)-r | @gm+1)-r) |1LrL 5(m+1) (3m+3) 2r
(4,n) (3,7) 1<r< %(m -3)

2,r-1) 2,m—-r+1) 1€r<3(m+1) m—-2r+2
3, 3(m+1)) @, i(am -1)) - (m-1)
(3.¥("t+3)) (3,2(3m +3)) - ¥(m 3)
@B, 5(m+3)+r) B,m—r+1) 1<r<3i(m-17) g(m—-1)-2r
(3,2(3m -1)—r) (3,3(3m+3)+f) 1srsg(m-15) 2r +1
3, §(m+1)) 3, g(tm-1) - 1
Form=17
label (1,7),(3,4) by 11; (1,5),(2,5) by 10;

(1,6),(3,3) by 9;

(0,0),(2,7) by 7;
(2,1),(2,6) by 5;

(1,4),(2,4) by 8;
(3,2),(3,6) by 4;

(2,2),(3,1) by 3;
(1,1),(1,2) by 1.

(3,5),(3,7) by 2;

Lemma 3.2. For all 3windmills with vane length m = 0,2,4,6 (mod 8),
there is a minimum hooked Skolem labelling (i.e. with one hook), with the

exception of m = 2.

Proof:
Case (1) m=2,6 (mod8), m >2

Gii b; <r< label
(LD (1,m) - (m-1)
(1,m—r) 1L im+r) ISrg%(m—G) m—2r
(1,7+1) (3,§m+r—1) 1<r< 3(m-86) ‘fm+2r
(1, 2(m+2) (1,3(3m +2)) - i
L sm+2)~-r) | Bm~r+1) 1Sr<3i(m-2) | gm—2r+2
(3,%(3m +2)) (2, 4(m +2)) - m+1
@24m+2)-n | @ im+2)+r) lSrSi(m+2) 2r
3,7 @2, im4r+1) 1<r<im-—1 jm+2r+1
(8! %(3""—6)) (31 (3m—2)) - 1

m = 2 does not satisfy (d).
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Case (2) m=0,4 (mod8), m >4

aij bss <r< label
,r) Bgm+r+l) [1Sr<im—1 m+2r+1
3, §m+ 1) 3,m~1) - gm—2
(2,1) (3,m) - m+1
(1,m) 2, 35m~1) - 3m/2-1
@m-r-1) (1,¥m-r) 15,-5%".-2 3m/2—2r—1
2,4m-r) 2,z2m+7r) 1<r<im-—-2{ 2r
(3,r) (2,gm+r) 0L<r<am m+ 2r
(1L, im+r-1) (1.§m-r+2) 1<r<2 2m—2r+3
(1L,3m/4+r+1) (1,?m—r) 1<r<im-2| 2r+1
(1, im) (lv 3™ + 1) - 1

Form=4

label  (2,2),(1,4) by 6; (2,4),(3,1) by 5;
(0,0),(3,4) by 4; (3,2),(1,1) by 3;
(2,1),(2,3) by 2; (1,2),(1,3) by 1.

Lemma 3.3. All 3windmills with vane length = 3,5 (mod8), have a
minimum hooked Skolem labelling with 2 hooks, with the exception of

m=3.

Proof: In this case m = 3 does not satisfy condition (d).

We subdivide into two cases
Case (1) m=3(mod8), m >3

a3; bi4 <r< label
T(m-{-l)—r) ¥(m+l)+r) 1<r<z(m-3) | 2r
(83m —1)) ¥(m +1)) - m
(2m—r+1) (m+1)~r) lSrS%(m-{-l) (m+1)—2r
(1,r) (3 (m-1+7) | 1<r<z(m-3) | g(m—-1) +2r
Bm-r+1) (Lgm—-1)~7r) | 1<r<3(m-3) (m~1)—2r+2
(i,m—r+1) (l,;(m—1)+r) 15r$§(m—3) i(m+8)—2r
G.36m-1) [ @36m+3) |- 1
Case (2) m=5 (mod 8 and m > 5
Gi; b <r< label
(2,i(m+3)—r) 2.3m+3)+7) [ 1<r<I(m-1) | 2r
(1,2(3m +5)) (2, (m + 3)) - m+2
2,m-r+1) Gigm—1D-r) | 1<r<im~1) | $(m—-1)—2r+2
(1,r) 3, 5(m—-3)+r) 1$r5§(m+3) §(m+1)+2r——2
Bm-—r+1) (L, 3(m+1)-r) | 1<r< 3(m-5) (m+1)—2r
(l,m—r+1) (Lgm+1)+r) | 1<r< (m—5) (m+1)-2r

(3,3(3m +1)) (3, 1(3m +85) -
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Form=5

label (1,5),(2,2) by 7; (2,5),(3,1) by 6;
(0,0),(3,5) by 5; (1,1),(2,3) by 4;
(2,1),(3,2) by 3; (3,3),(3,4) by 1.
(1,2),(1,4) by 2
4-windmills
All 4 windmills have odd number of vertices. So the minimum hooked
Skolem labelling in this case has at least one hook.
Lemma 8.4. All 4windmills with m > 2, have a minimum hooked Skolem
labelling with exactly one hook.

Proof: All the following cases have this construction in common: In vanes
2,4 we distribute the even numbers as follows

Gij | bij I <r< | label
4r)f@r)|18r<m| 2r
Case (1) m =0 (mod3)
aij | bi; | <r< | label
B,m—-r+1) 1,m—r) 1<r<2m/3 -1 | 2m—-2r+1
(1,m) (1,(m —3)/3) - (2m +3)/3
1,r-2) 3,1+7) 1<r<m/3 2r—1
Note that (1, —z) is the same as (3, z).
Case (2) m=1 (mod3)
@ij I bij Sr< |  label
3,m-r+1) Q,m-r) 1<r<2(m-1)/3|2m-2r+1
1,m) = | (1,(m-1)/3) = (2m+1)/3
(1,7-2) (3,1+7) 1<r<(m-1)/3 2r—1
Case (8) m =2 (mod6), m >2
aij bi; <r< label
Bm-r+1)|{QA,m—-r)| 1<r<m/2 |[2m-2r+1
(1, m) (1 1) - m—1
(3,4m 1) (3,4m) - 1
3,7) (1, r+l) 1<7<3m-—2 2r+1




Case (4) m =5 (mod 6)

a;j | b.’j <r< l label
@m-r+1)[ (Am-r) [1<r<zm-1)[2m-2r+1
(1,m) (0,0) - m

(3,3(m—1)) | (3,3(m+1)) - 1
(3,7) (Lr+1) |1<r<3(m-3) 2r+1

k-windmills k > 4
In this case there is no Skolem labelling, thus the only possibility is a
minimum hooked Skolem labelling.

Lemma 3.5. For any k-windmill the condition k < 2m is sufficient for a
minimum hooked Skolem labelling.
Proof: Fix m
Case (1) k=2t,k<2m
Label the vanes Ly, Lom, L, Lom—1, . - -, L¢, Lay1—¢. For k < 2m:

aij b; <r< label

Cm-—rm) [ r+1,m-7r) 0<r<t-1 2m —r
(r,m) (r,m-—r) 2<r<t r
(2m,r) 1,r) t+1<2r<2m-—t¢ 2r

Cm-1,r) |2m—-2,74+1) | t+1<2r+1<2m—t | 2r+1
(0,0) (2m —1,1) - 1

For k = 2m, use only the first two rows, with label 1 in (1,1), (1, 2).

Case(2) k=2t+1,k<2m—1,t>2.
Label the vanes Ll) L2ﬂh LZ» L2m—l: vevy Lh L2m+l—h L2m-t-

aij bi; <r< label
Cm—-rm)| r+1,m~-7) 0<r<t-1 2m —r
(r,m) (rym—r) 2<r<t T
(2m —t,m) (2,m-1t) - 2m —t
(2m, ) (1,r) t+1<2r<2m—-¢t -1 2r
2m-1,7) | @m—-2,7+1) |t4+1<2r+1<2m—t—1]| 2r+1
(0,0) @m—-1,1) - 1

For k = 2m—1 use only one of the 4** or 5°* lines of the table, depending
on the parity of m.
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Case (8) k=5.
Label the vanes Ll, Lzm, L2, L2m—l: Lzm_z.

i b;; <r< label
@2m—-r,m)| (r—1,m-—r) 0<r<1 2m —r
2m—-2,m) | (2m,m-2) - 2m —2

(2,m) (2,m—2) - 2
2m,r —-1) (1,7+1) 3<2r<2m-3 2r
@Cm-1,7) |(2m—-2,7r+1) | 1<2r+1<2m -3 | 2r+1

This completes the proof.
Note that the case k = 2 is included in the results obtained in [4].
Thus we have,

Theorem I. All n-windmills satisfying k < 2m can be Skolem labelled
or hooked Skolem Iabelled with the minimum number of hooks. With the
exceptions:
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There are many scattered results on special classes of trees such as cater-
pillars, or trees with exactly one vertex of maximum degree 3, but this is
the first class to be completely settled.

Acknowledgement. We would like to acknowledge the fruitful conversa-
tions we held with Alex Rosa on this tree labelling problem.

We also acknowledge the referee’s careful reading of this paper and his/her
many helpful suggestions.

References

[1] J.-C. Bermond, A.E. Brouwer and A. Germa, Systémes des triplets
et différences associées, Collog. CNRS, Problémes combinatoires et
théorie des graphes, Orsay 1976 (1976), 35-38.

[2] M.J. Colbourn and R.A. Mathon, On cyclic Steiner 2-designs: A sur-
vey, Annals of Discrete Math. 7 (1980), 215-253.

[3] R.O. Davies, On Langford’s problem (II), Math. Gaz. 43 (1959), 253—
255.

[4] E. Mendelsohn and N. Shalaby, Skolem labelled graphs, Discrete Math.
97 (1991), 301-317.

171



[5] J.A. Gallian, A survey: recent results, conjectures and open problems
in labeling graphs, Journal of Graph Theory 13, No. 4, (1989), 491-
504.

(6] C.D. Langford, Problem, Math. Gaz. 42 (1958), 228.

[7] S.Lee, L. Quach and S. Wang, Skolem-gracefulness of graphs which are
union of paths and stars, Congresses Numerniium 61 (1988), 59-64.

[8] R.J. Nowakowski, Generalizations of the Langford-Skolem problem,
Thesis, University of Calgary, Calgary. AB. (1975).

[9] E.S. O’Keefe, Verification of a conjecture of Th. Skolem, Math. Scand.
9 (1961), 80-82.

[10] A. Rosa, A remark on cyclic Steiner triple systems (in Slovak), Math.-
Fyz. as. 16 (1966), 285-290.

[11] Th. Skolem, On certain distributions of integers in pairs with given
differences, Math. Scand. 5 (1957), 57-68.

[12] Th. Skolem, Some remarks on the triple systems of Steiner, Math.
Seand. 6 (1958), 237-280.

[13] J.E. Simpson, Langford sequences: perfect and hooked, Discrete Math.
44 (1983), 97-104.

172



