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ABSTRACT. We associate codes with C(n,n,1) designs. The
perfect C(n,n, 1) designs obtained from perfect one-factorizations
of K, yield codes of dimension n — 2 over F3 and n — 1 over Fy
for p # 2. We also demonstrate a method of obtaining another
C(n,n,1) design from a pair of isomorphic perfect C(n,n,1)
designs and determine the dimensions of the resulting codes.

1 Introduction

A C(n,n,1) cycle design consists of a collection of n-cycles selected from
the complete graph on n vertices, K,, so that each vertex occurs between
each possible pair of vertices in precisely one n-cycle. This problem has had
a long history stemming back to Judson [3] and Dudeney (see Problem 273
in [2]). They formulated it as a problem of seating n persons at a round
table on (n — 1)(n — 2)/2 days so that no person sat twice between the
same pair of companions. Solutions are known for sporadic odd values of
n and recently Kobayashi, Kiyasu-Zen'iti, and Nakamura [4] constructed a
solution for every even n.

Although perfect one-factorizations of K, are conjectured to exist for
every even n, they are known to exist whenever n is either one plus or
twice an odd prime, for all even n up to 50, and for a few other even values
of n. See Anderson [1] and Wallis [6] for surveys on one-factorizations.

Perfect C(n,n,1) designs are constructed from perfect one-factorizations.
In this paper, we investigate a code that we associate with these and other
C(n,n, 1) designs. The perfect C(n,n,1) designs yield codes of dimension
n — 2 over F; and n — 1 over FF,, for p # 2. We also demonstrate a method
of obtaining a different C(n,n,1) design from a pair of isomorphic perfect
C(n,n,1) designs and determine the dimensions of the resulting codes.
Basis vectors for these codes are provided as well.
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2 Definitions and Remarks

Let k > 3. A k-cycle (v1,v2,vs,...,vk-1,V) in K, consists of the edges
{v1,v2}, {v2,vs},. .., {vk-1,vk}, {vk,v1} where the k vertices are distinct.
Note that there are 2k ways of writing the same k-cycle. A 2-path (path
of length 2) a — b — ¢ consists of the two edges {a,b} and {b,c} where a
and c are distinct vertices. We take a —b — ¢ = ¢ — b — a. The number
of 2-paths in K, is n{(n — 1)(n — 2)/2. A C(n,k,]) design on a set of n
vertices consists of a collection, D, of k-cycles in K,, so that each 2-path in
K, occurs in precisely A elements of D. Thus, for a C(n,n,1) design, the
number of n-cycles is |D| = (n — 1)(n — 2)/2.

Let n be even for the remainder of this paper.

A one-factor of K, consists of n/2 disjoint edges. A one-factorization
of K, consists of n — 1 disjoint one-factors. That is, a one-factorization
partitions the edge set of K, into n —1 one-factors, each of which partitions
the vertex set of K, into n/2 edges. A one-factorization of K, is perfect
if the union of any two of its one-factors is an n-cycle. A perfect one-
factorization of K, F = {F; | 1 < i < n—1} where each F; is a one-factor,
thereby gives rise to a collection,

D={F;UF;|F,,F;eF,1<i<j<n-1},

of (3') n-cycles that comprise a C(n,n,1) design. We shall call such a
cycle design a perfect C(n,n,1) design.

The incidence matriz M of a C(n,n,1) design is an (®;') x (3) matrix
(mi;) whose rows are indexed by the n-cycles of the design and whose
columns are indexed by the edges of K,, where m;; equals 1 if edge j is in
n~cycle 1 and 0 otherwise.

A linear (m,l) code A over the finite field IF,, p a prime, is an I-dimensional
subspace of 7}, the vector space of all m-tuples with entries from IF,. The
elements of A are called code words or vectors. For a € A, the weight of a
is

wgt(a) = |{i | a; # O};
that is, the number of nonzero components of the vector a = (a4, a2,...,amn).

Let M be the incidence matrix of a C(n,n, 1) design. The p-rank of M,
denoted by Rky(M), is the dimension over [, of the rowspace of M; that
is, the rows of M span an (m,) = ((3), Rkp(M)) code over [y, which we
shall denote by A, or SP,(M).

3 Codes of Perfect C(n,n,1) Designs

Say n > 4 is an even integer for which there exists a perfect one-factorization
of K,,.
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Theorem 1. Let 7 = {F; | 1 <i < n—1} be a perfect one-factorization of
K,, and let M be the incidence matrix of the resulting perfect cycle design.

(1) If p=2, then Rko(M) =n — 2 and the n-cycles
B={RUF|2<j<n—1}
form a basis for the code A; = SP;(M).

(2) If p # 2, then Rk,(M) = n —1 and F forms a basis for the code
Ay = SE,(M)

Proof: The perfect cycle design consists of D = {F;UF; |1 <i<j <
n—1}.

(1) The elements of B form a linearly independent set of n — 2 vectors
and, since

(F1 U F,) + (Fl U Fj) =F;u P:-, (mod 2),
each of the n-cycles in D is obtained.

(2) It suffices to show that F C A,. Well, in [, with p # 2,
27N ((FIUF) — (F2UBR)+ (FLUR))=2"Y2F)=F € 4,.

Thus
(—l)Fl + (F1 U F_',) = Fj € Ap,

for2<j<n-1.

Theorem 2. Again, let M be the incidence matrix of a perfect cycle
design D. The weights of the vectors in the code Ay = SPy(M) consist of
{n ] 0 < j < 252}. Moreover, the number of vectors of weight jn in A; is

;J—_zl) + ("_2) for 1 <j<Bz2

Proof: From Theorem 1, B={F;UF; |2 < j <n— 1} is a basis for A,.
Now, |F;| = %, for 1 <i <n —1. Thus the (mod 2) sum of any 2j — 1 of
these basis vectors is of weight |F1|+ (25 —1)3 = (25)% = jn. But F; does
not appear in the (mod 2) sum of an even number of basis vectors, and so
the (mod 2) sum of 2j of these basis vectors is of weight (27)% = jn as
well.

Note that the number of weight-n vectors in SPy(M) is ("72) + (*37) =
(™31 = ID| and so the n-cycles of the perfect C(n,n,1) design comprise
the set of weight-n vectors of the code it spans. Also, the (*~2) + (*22) =

175



::1) =n-1 weight,-v("—;gh vectors of the code are the complements of
the one-factors in the perfect one-factorization.

Now SPy(M) is of codimension 1 in the code over F2 spanned by the
vectors in the perfect one-factorization F. {£ | 0 < j < n — 1} contains
the weights of the vectors in this code and the number of weight—%‘- vectors
is (";.'1) since the (mod 2) sum of j disjoint vectors of weight-3 yields a
vector of weight—izﬁ. The additional vectors in this larger code consist of
the complements of the vectors in SPy(M). By Theorem 2, the number
of weight-jn vectors in SP,(M) is (.27.‘_1) + (".;.2) and this equals (“;jl ,
naturally obtaining the weight-jn vectors in the larger code as the (mod 2)
sum of 27 of the one-factors.

4 Imperfect C(n,n,1) Designs

In this section, let » > 6 be an even integer for which there exists a perfect
one-factorization of K.

Lemma 1. Let F be a perfect one-factorization of K,. Apply the transpo-
sition (a, b) to each one-factor in F and thereby obtain an isomorphic perfect
one-factorization, call it G. Say (a,b) sends F; to G;, for 1 <i <n —1.
Then F and G have exactly one one-factor in common, call it F; = Gy.

Proof: The transposition appears as an edge in a single one-factor of F,
say Fy. (a,b) sends F; to itself, called G; in G. Each other one-factor of
F has @ and b in separate edges with additional edge(s) containing neither,
and so (a, b) sends it to a one-factor different from any of those in F.

Lemma 2. Let F and G be as in Lemma 1. The resulting isomorphic
perfect C(n,n,1) designs

Dr={F;UF;|1<i<j<n-1}
and
Dg:{GiUGj|1Si<an—1}

have no n-cycles in common.

Proof: If they shared an n-cycle, then (a,b) applied to a certain n-cycle
in Dy would yield the common n-cycle which would therefore be in Dr as
well. If a and b are not opposite vertices in these two n-cycles, then the
n~cycles would have common 2-paths and therefore cannot both be in Dx.
If a and b are opposite vertices and n > 6, then again they share 2-paths,
leading to a contradiction.

In the final case, n = 6 and a and b are opposite vertices. The two
6-cycles would be of the form Hy = (a,c,d,b,¢, f) and Hy = (a,b)H; =
(b,c,d,a,e, f). For completeness, the argument showing that H; and H,

176



cannot both be in D that appeared in Lemma 1 of [5] will be repeated
here. If H;, Hy € Dy, the 2-path a — f — b must be part of some other
6-cycle H in Dx. Since 2-path c—a— fisin H; and f —b— cis in Hp,
vertex ¢ must be opposite to vertex f in H. But this is impossible since
vertex d would then occur between either vertices a and ¢, or b and ¢, of
H, and 2-path a — d — c is already in Ha and 2-path b — d — ¢ is already in
H,.

Lemma 8. Let Dy and Dg be as in Lemma 2. The 2-paths in
{RUF;|2<j<n-1}
are the same as the 2-paths in

{G1UG;[2<i<n—1).

Proof: Recall F; = G,. Say 2-path z — y — 2 occurs in some F; U F;.
Either {z,y} or {y, 2z} is in F,. Say it is {z,y}. Then {z,y} is in G;. Since
G is a one-factorization, {y, 2} is in some Gx. Thus z —y — z is in G, UGy.

Theorem 3. Let Dr and Dg be as in Lemma 2. The n-cycles in
{F1UF:7|2$J Sn—l}U{G,-UGj I25i<j Sn—l}
form a C(n,n, 1) design which we call an imperfect cycle design denoted
by D].'g.
Proof: Dg is a C(n,n,1) design, and by Lemma 3, the 2-paths in
{G1UG;|2<j<n-1}
are the same as those in
{FRUF;|2<j<n-1}.

Thus this new collection of n-cycles still contains each 2-path precisely once.

Recall from Theorem 1 that the n-cycles {F1UF; |2< j<n—1}form a
basis for the code over F2 spanned by the n-cycles of D. Thus the perfect
cycle design Dy is contained in the code over F; spanned by the n-cycles
of the imperfect design Dxg.

Theorem 4. Let M be the incidence matrix of an imperfect C(n,n,1)
design Dxg.

(1) If p=2, then Rky(M) =2n—6.
(2) If p does not divide (n — 2), then Rkp(M) = 2n — 4.
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(8) If p # 2 but p divides (n — 2), then Rk,(M) = 2n — 5.

Proof: We exhibit a basis for the rowspace of M in each of these cases.
(1) {G2UG; | 3 £ j < n—1} will generate the other n-cycles from Dg
that are in Drg since

(G2 U G.) + (Gz U GJ) =G; U GJ' (mod 2)
Note that the complement of F; = Gy is U"__._; F;=J}=; Gj so that

Z(FIUF)+Z(GQUG,)— U Fj+ UG =0 (mod 2).

=2 =2 =2
Thus a basis consists of
{FiUF;|2<j<n-1}U{G2UG;|3<j<n-2}
and so Rko(M)=(n—-2)+(n—4)=2n—6.
(2) In FFp, where p does not divide (n — 2),
2—1((02 UG3) = (GsUGy) + (G2 UGy)) = 2_1(2G2) = Gy € SP,(M).

Thus
(-1)G2 + (G2 VU G;) = G € SP,(M),
for3<j<n-1. A]so,

Z(FluF) ZG =(n- 2)F1+UFj-UG (n—2)F,.
j=2 =2 i=2
So Fy € SPp,(M) and also
(-1)F1 + (F1U F;) = F; € SPp(M),
for 2 < 5 < n—1. Thus a basis consists of
{Fj11<j<n-1}U{G;|2<j<n-2}

and so Rk,(M)=(n—-1)+(n—-3)=2n-4.
(8) Just as in case (2) we obtain G € SP,(M), for2< j <n —1. But
now p divides (n — 2) and so

n—1 n—1
Y (FiUF;) =) G;j=0 (modp).
i=2 j=2
Thus a basis consists of
{FIUF;|2<i<n-1}U{G;|2<j<n-2}
and so Rk,(M)=(n—-2)+(n-3)=2n-5.
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