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Abstract. For a given graph G, we fix s, and partition the vertex set
into s classes, so that any given class contains few edges. The result gives a
partition (Uy,---,Us), where e (U;) < if—) +4sy/e(G) foreach 1 <i<s.
The error term is compared to previous results for s = 2P [6], and to a
result by Bollobés and Scott [1].

1. Introduction.

For our purposes, graphs are finite and simple. We use the standard
notation as in (2]. For a given graph G, let (Uy, - - - , U,) denote a partition of
V(G) into s-classes; we also refer to (Us,--- ,Us) as an s-coloring of V(G),
where U; denotes the vertices colored j. Let e(U;) denote the number of
edges in the induced subgraph G[U;] and let v, (Un, - -+ ,Us) = Joax {e(U3)}.

The problem is to minimize 7, over all partitions (Uy,---,U,); define
) = e o U8

Paul Erdds conjectured [3] 72(G) < -°(4£ + 0+/e(G), where e(G) de-
notes the number of edges in G. In [4], the present author verified the
conjecture and showed it was best possible. Roger Entringer posed the
problem to find 72(G) and proposed a related matrix discrepancy problem.
The solution of the matrix problem, Porter and Székely (5], gives a bound
asymptotic to 7,(G), however it did not lead to a solution of the partition
problem. In [6], the present author gives an upper bound for v,(G) when
s is a power of 2, i.e, s = 2°. In [1], Bollob4s and Scott, using a prob-
abilistic technique, give various upper bounds on 7,(G) for any s. In this
paper we use a non-constructive, non-probabilistic technique that gives an
upper bound for 7,(G) that depends on the size of G. In [7], Shahrokhi
and Székely show that the computation of v, is N P-hard.
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Let e[Uh, - -- ,Us) = |[{zizj|ziz; € B(G),z; € U, x; € U;}|, and define
M, (Uy,--- ,Us) = e[Uh,---,Us], and Ms(G) = (Umax )M.g U1y -+, Us).

1y ,Vs

We refer to M,(G) as the max s — cutof G. Maximum s-cuts give some
useful partition properties and we state two results from [6]. For U €
V(G), H C V(G) define dy(U) to be the number of vertices in H adjacent
to U.

Lemma A. [6] For a graph G, and a partition (Uy,--- ,Us) of V(G) that
gives the max s-cut, M,(G), for any U;,U; € (U, -+ ,Us), % # j,e[U;, U;] 2
2 max{e(U;),e(U;)}.

|

Let (Uy,---,Us) be a partition where M, (Un,---,Us) = M,(G), by
Lemma A then e[Uy, sL-J;U,] > 2(s — 1)e(U1). We now define a partition.
)=

Definition 1. Let (A,X;,---,X,_;) denote a partition with e(4) >

e(X:),1 <i<s—1, and e[A,TJiX,-] > 2(s — 1)e(A), and over all such
J:

partitions e(A) is minimal.

The following proof is done by induction, the ground case s = 2 is
provided in [6], and we insert that here.

Theorem 1. [4] For any graph G, there exists a bipartition (4, A) of V(G),
so that yp(A,A4) < (e(G) + 2e(G)).

|
Theorem 2. For a given graph G, there exists a partition of V(G) into
s-classes (A, Ay, -+ ,As—1) where v, (A, Ay, , A1) < 3&5"—) +4s\/g(F).
Proof. The proof is by induction on s. The ground case s = 2 is given by
Theorem 1.

Let (A, X1, ---,Xs—1) be given by definition 1. Now S,L_Jin =

Jj=
V(G — A); by the induction hypothesis there is some (s — 1)-coloring
(Al, s ,As-l) of V(G—A) with 71 (Al,Ag, oo :As—l) < —e((:i—_lﬁ,l+4(s_

1)\/e(G — A).
Select such a partition (Ay,---,A,-1); W.L.O.G. let e(4,) > --- >
e(As—1). We then have a partition (A4, A, --,As—1) of V(G) where

elA, sL_J:AJ] > 2(s — 1)e(A), the last inequality since 8'0144]' = S;L_Jin, and
Jj= j= i=
e(A;) = vs—1 (A1, , A1) £ %f_—_l‘;} + 4(s — 1)/e(G — A). Now, notice

e(G) = (G — A) + e(A) + e[A, EA,-]
> (G — A) + (25 — 1)e(A).
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Define A; = e(A) — e(4;),1 £ j £ s — 1. We now consider two cases
on A].

Case 1. Ay < 4sy/e(A).
Suppose A; < 4sy/e(A), we have by the inductive hypothesis that
(1) e(A)) =e(A)-L, < %(_i—_l‘;&)-+4(s—l)\/e(G — A), hence we need

to show,

(2) e(A) < LC-ANQ-NelA) 4 45, /(G — A) + (25 — 1)e(A)
< %—f—l + 4s./e(G), to establish the inductive step.
We have from (1) that

e(A) < Ay + e((f—_l;i) +4(s - 1)/e(G — A)

<ds e(A)+e((G 1;) +4(s — 1)/e(G = A),

we then need to show,

(43 e(A) + e((_G—%)_ +4(s—-1)vVe(G - A)) =

< (e(G A) +s(22s De(4) +4sve(G — A) + (25 —- l)e(A)) =Q
We may assume that = G A < e(G-AH(zs_l)e(A) ,i.e.,
1 e(A)
<
G2 S G- A) )
otherwise we are done, ie., if e(eGA N < ﬁg‘, then < 4 <
C= A)_‘;_((gg oAy < %, and we have Theorem 2. Hence to establish P < Q
we show,

45\/e(G — A) + (25 — 1)e(A) — 4(s — 1)1/e(G — A) > 4s/e(A),

ie.,

5ve(G — A) + (25 — 1)e(A) — (s — 1)V/e(G — A) > s\/e(A),

so it is sufficient to show s\/e(G — A) + (25 — 1)e(A) — s\/e(G — A) >
s\/e(A), ie, \/e(G — A) + (25 — 1)e(A) > /e(G — A) + \/e(A), squaring
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both sides we then need, 2(s — 1)e(A) > 2\/e(A) - Ve(G — A), i.e., (s—
1)2¢(A) > e(G — A) and the last inequality follows from (3).
B

Case 2. A > 4sy/e(A).
Define X UY C A as follows:
X = {z € Alda,(z) > 4s\/e(A) for at least [%2-]
sets 4;,1 <j<s—1}
Y = {y € Alda(y) # 0 and da,(y) < 4sV/e(4)

3211 sets A;,1<j<s—1}

for at least [

Note XNY = ¢, and e(A) = e(X) + e(Y) + e[X,Y]. We may assume
that for any y € Y and any 4,1 < j < s—1, where dy,(y) < 4s\/e(A) that
Vs (A — Y A, vAj Y yAs-1) = max{e(A) - dA(y)re(Al)a C(Aj) +
da,(y)} = e(A) — da(y), otherwise we are back to case 1 and done, i.e., if

Vs (A' -y A17 Tty AJ + Yy !As-l) = max{e(.41), e(AJ) + dA,' (y)}
<e(4d;)+4sve(4) < %}- +4sv/e(G),

the last inequality by case 1, i.e., e(4;) + A < -‘—Sgl +4s+/e(G) whenever
A < 4s\/e(A). We now have the following Lemma.

Lemma 1. If y € Y and A; is such that da, (y) < 4s\/e(4) then dg;(y) >
(25 - 1)da(y)

Proof. Assume to the contrary, i.e., thereis a y € Y and A; with d4,(y) <
(2s — 1)d 4 (). Now, sending y to 4; will contradict definition 1. Consider

(A—y, A1, Aj + 9, Aa_r), recall by definition e[4, "U'A;] > 2(s -
1)e(A) and e(A) is minimal. Then
-1 -1
et~ v, ((T:) +9l = e, T - (4, @) ~ da@)
> (4,0 4] - 2(s - 1da(y)

> 2(s — 1)e(A) — 2(s — 1)da(y) = 2(s — 1) (e(4) — da(y))
= 2(3 - 1)6(‘4—'3/) = 2(3 - 1)73 (A_yoAly"' 1AJ' +Y, - rAs—l)-

But then, write (A —y, 41, -, 4j + 9, -+ ,4,) = (A—y,)-{l,
Xa,- - ,)Z'_,_l) and we have from above, e[A — y,:gll}-(g] > 2(s-1)

184



e(A — y) and e(A — y) < e(4), contradicting the definition of partition

(AvXI) e 1X8—1)'
|

From the definitions of X and Y, and Lemma 1. we state the following
corollaries.

Corollary 1. e[Y,;GIA,-] > (25— 1)[Z ¥ daly).
Corollary 2. e[X, SG::AJ] > 4s\/e(A)[5211X).
J=

Define &, by £ 3 da(y) = e(Y) + ¢[X,Y]. Then, 6 =0o0r i <£<1,
vey

where the extreme cases £ = %, 1 indicate e[X,Y] = 0, resp., e(Y') = 0, and
& =0if and only if Y = ¢. We then have

e(X)+€Y daly)
e(A) yeY
O™ e(X) +€ 5 day) +elX, ‘T A +elt, ‘T A +¢(G - 4)
yeY .1= =1
e(X) +€ Y daly)
yeY

e(X) + ds\/e(A)[ 221X |+ € 1 da(y) + (25 - 1)[Z] T daly)
yeY yeY
=H.

We finish case 2 by showing H < %.
<

e(X) 1
Lemma 2. o e S
Proof. We have e(X) = ¢|X|?, for some ¢, 0 < ¢ < £, and e(X) < e(A),
e(X) 1 <l
hence e S5 < BT S 57 fors > 3.
| ]
£ da(y)
yEY 1
Lemma 3. €3 da®)+(2s—1)TE1 Y dalv) <
VEY veEY
€3 daly)
ve€Y 1 1
Proof. We have oy o@D S aat)  #Fgry < o the first
vEY vEY
inequality since £ < 1.
]

Combining Lemma 2 and Lemma 3 yields H < ;1-; and completes case

2, and the proof of Theorem 2.
]
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Conclusions.

We summarize the known results. For any graph G, there is a partition
(Ur,-+- ,Us) of V(G) so that e(U;) < €& + R,1<i < s.
For s = 2°:

(Porter [6]) R =/ -‘(TG)'

For general s:
(Bollobés. Scott [1]) R = min{(Ae(G)log s)¥, (4e(G))¥(log s)}} where A
denotes the largest degree in G.

(Porter) R = 4s5/¢e(G).
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