Minimal Partitions of a Graph

Thomas Dale Porter¹
Department of Mathematics
Southern Illinois University
Carbondale, Illinois 62901 USA

Abstract. For a given graph G, we fix s, and partition the vertex set into s classes, so that any given class contains few edges. The result gives a partition (U_1, \dots, U_s) , where $e(U_i) \leq \frac{e(G)}{s^2} + 4s\sqrt{e(G)}$ for each $1 \leq i \leq s$. The error term is compared to previous results for $s = 2^P$ [6], and to a result by Bollobás and Scott [1].

1. Introduction.

For our purposes, graphs are finite and simple. We use the standard notation as in [2]. For a given graph G, let (U_1, \cdots, U_s) denote a partition of V(G) into s-classes; we also refer to (U_1, \cdots, U_s) as an s-coloring of V(G), where U_j denotes the vertices colored j. Let $e(U_i)$ denote the number of edges in the induced subgraph $G[U_i]$ and let $\gamma_s(U_1, \cdots, U_s) = \max_{1 \le i \le s} \{e(U_i)\}$. The problem is to minimize γ_s over all partitions (U_1, \cdots, U_s) ; define $\gamma_s(G) = \min_{(U_1, \cdots, U_s)} \gamma_s(U_1, \cdots, U_s)$.

Paul Erdös conjectured [3] $\gamma_2(G) \leq \frac{e(G)}{4} + O\sqrt{e(G)}$, where e(G) denotes the number of edges in G. In [4], the present author verified the conjecture and showed it was best possible. Roger Entringer posed the problem to find $\gamma_2(G)$ and proposed a related matrix discrepancy problem. The solution of the matrix problem, Porter and Székely [5], gives a bound asymptotic to $\gamma_s(G)$, however it did not lead to a solution of the partition problem. In [6], the present author gives an upper bound for $\gamma_s(G)$ when s is a power of 2, i.e., $s=2^P$. In [1], Bollobás and Scott, using a probabilistic technique, give various upper bounds on $\gamma_s(G)$ for any s. In this paper we use a non-constructive, non-probabilistic technique that gives an upper bound for $\gamma_s(G)$ that depends on the size of G. In [7], Shahrokhi and Székely show that the computation of γ_s is NP-hard.

¹Research partially supported by NSA Grant MDA 904-92-H-3050

Let $e[U_1, \dots, U_s] = |\{x_ix_j|x_ix_j \in E(G), x_i \in U_i, x_j \in U_j\}|$, and define $M_s(U_1, \dots, U_s) = e[U_1, \dots, U_s]$, and $M_s(G) = \max_{(U_1, \dots, U_s)} M_s(U_1, \dots, U_s)$. We refer to $M_s(G)$ as the max $s - cut \ of \ G$. Maximum s-cuts give some useful partition properties and we state two results from [6]. For $U \in V(G)$, $H \subset V(G)$ define $d_H(U)$ to be the number of vertices in H adjacent to U.

Lemma A. [6] For a graph G, and a partition (U_1, \dots, U_s) of V(G) that gives the max s-cut, $M_s(G)$, for any $U_i, U_j \in (U_1, \dots, U_s)$, $i \neq j, e[U_i, U_j] \geq 2 \max\{e(U_i), e(U_j)\}$.

Let (U_1, \dots, U_s) be a partition where $M_s(U_1, \dots, U_s) = M_s(G)$, by Lemma A then $e[U_1, \bigcup_{j=2}^{s-1} U_j] \ge 2(s-1)e(U_1)$. We now define a partition.

Definition 1. Let (A, X_1, \dots, X_{s-1}) denote a partition with $e(A) \ge e(X_i), 1 \le i \le s-1$, and $e[A, \bigcup_{j=1}^{s-1} X_j] \ge 2(s-1)e(A)$, and over all such partitions e(A) is minimal.

The following proof is done by induction, the ground case s=2 is provided in [6], and we insert that here.

Theorem 1. [4] For any graph G, there exists a bipartition (A, \bar{A}) of V(G), so that $\gamma_2(A, \bar{A}) \leq \frac{1}{4} \left(e(G) + \sqrt{2e(G)} \right)$.

Theorem 2. For a given graph G, there exists a partition of V(G) into s-classes (A, A_1, \dots, A_{s-1}) where $\gamma_s(A, A_1, \dots, A_{s-1}) \leq \frac{e(G)}{s^2} + 4s\sqrt{e(G)}$. **Proof.** The proof is by induction on s. The ground case s = 2 is given by Theorem 1.

Let (A, X_1, \dots, X_{s-1}) be given by definition 1. Now $\bigcup_{j=1}^{s-1} X_j = V(G-A)$; by the induction hypothesis there is some (s-1)-coloring (A_1, \dots, A_{s-1}) of V(G-A) with $\gamma_{s-1}(A_1, A_2, \dots, A_{s-1}) \leq \frac{e(G-A)}{(s-1)^2} + 4(s-1)\sqrt{e(G-A)}$.

Select such a partition (A_1, \dots, A_{s-1}) ; W.L.O.G. let $e(A_1) \geq \dots \geq e(A_{s-1})$. We then have a partition (A, A_1, \dots, A_{s-1}) of V(G) where $e[A, \bigcup_{j=1}^{s-1} A_j] \geq 2(s-1)e(A)$, the last inequality since $\bigcup_{j=1}^{s-1} A_j = \bigcup_{j=1}^{s-1} X_j$, and $e(A_1) = \gamma_{s-1}(A_1, \dots, A_{s-1}) \leq \frac{e(G-A)}{(s-1)^2} + 4(s-1)\sqrt{e(G-A)}$. Now, notice

$$e(G) = e(G - A) + e(A) + e[A, \bigcup_{j=1}^{s-1} A_j]$$

> $e(G - A) + (2s - 1)e(A)$.

Define $\Delta_j = e(A) - e(A_j), 1 \le j \le s - 1$. We now consider two cases on Δ_1 .

Case 1. $\triangle_1 \leq 4s\sqrt{e(A)}$.

Suppose $\Delta_1 \leq 4s\sqrt{e(A)}$, we have by the inductive hypothesis that

- (1) $e(A_1) = e(A) \Delta_1 \le \frac{e(G-A)}{(s-1)^2} + 4(s-1)\sqrt{e(G-A)}$, hence we need to show,
- (2) $e(A) \leq \frac{e(G-A)+(2s-1)e(A)}{s^2} + 4s\sqrt{e(G-A)+(2s-1)e(A)}$ $\leq \frac{e(G)}{s^2} + 4s\sqrt{e(G)}$, to establish the inductive step.

We have from (1) that

$$\begin{split} e(A) & \leq \Delta_1 + \frac{e(G-A)}{(s-1)^2} + 4(s-1)\sqrt{e(G-A)} \\ & \leq 4s\sqrt{e(A)} + \frac{e(G-A)}{(s-1)^2} + 4(s-1)\sqrt{e(G-A)}, \end{split}$$

we then need to show,

$$\left(4s\sqrt{e(A)} + \frac{e(G-A)}{(s-1)^2} + 4(s-1)\sqrt{e(G-A)}\right) = P$$

$$\leq \left(\frac{e(G-A) + (2s-1)e(A)}{s^2} + 4s\sqrt{e(G-A) + (2s-1)e(A)}\right) = Q$$

We may assume that $\frac{e(G-A)}{(s-1)^2} \le \frac{e(G-A)+(2s-1)e(A)}{s^2}$, i.e.,

$$\frac{1}{(s-1)^2} \le \frac{e(A)}{e(G-A)},\tag{3}$$

otherwise we are done, i.e., if $\frac{e(A)}{e(G-A)} < \frac{1}{(s-1)^2}$, then $\frac{e(A)}{e(G)} \leq \frac{e(A)}{e(G-A)+(2s-1)e(A)} \leq \frac{1}{s^2}$, and we have Theorem 2. Hence to establish $P \leq Q$ we show,

$$4s\sqrt{e(G-A)+(2s-1)e(A)}-4(s-1)\sqrt{e(G-A)} \ge 4s\sqrt{e(A)}$$

i.e.,

$$s\sqrt{e(G-A)+(2s-1)e(A)}-(s-1)\sqrt{e(G-A)} \geq s\sqrt{e(A)}$$

so it is sufficient to show $s\sqrt{e(G-A)+(2s-1)e(A)}-s\sqrt{e(G-A)}\geq s\sqrt{e(A)}$, i.e., $\sqrt{e(G-A)+(2s-1)e(A)}\geq \sqrt{e(G-A)+\sqrt{e(A)}}$, squaring

both sides we then need, $2(s-1)e(A) \ge 2\sqrt{e(A)} \cdot \sqrt{e(G-A)}$, i.e., $(s-1)^2e(A) \ge e(G-A)$ and the last inequality follows from (3).

Case 2. $\Delta_1 > 4s\sqrt{e(A)}$.

Define $X \cup Y \subset A$ as follows:

$$X = \{x \in A | d_{A_j}(x) > 4s\sqrt{e(A)} \text{ for at least } \lceil \frac{s-2}{2} \rceil$$

$$\text{sets } A_j, 1 \leq j < s-1\}$$

$$Y = \{y \in A | d_A(y) \neq 0 \text{ and } d_{A_j}(y) \leq 4s\sqrt{e(A)}$$

$$\text{for at least } \lceil \frac{s+1}{2} \rceil \text{ sets } A_j, 1 \leq j \leq s-1\}$$

Note $X \cap Y = \phi$, and e(A) = e(X) + e(Y) + e[X,Y]. We may assume that for any $y \in Y$ and any A_j , $1 \le j \le s-1$, where $d_{A_j}(y) \le 4s\sqrt{e(A)}$ that $\gamma_s(A-y,A_1,\cdots,A_j+y,\cdots,A_{s-1}) = \max\{e(A)-d_A(y),e(A_1),e(A_j)+d_{A_j}(y)\} = e(A)-d_A(y)$, otherwise we are back to case 1 and done, i.e., if

$$\gamma_s (A - y, A_1, \dots, A_j + y, \dots, A_{s-1}) = \max\{e(A_1), e(A_j) + d_{A_j}(y)\}$$

$$\leq e(A_1) + 4s\sqrt{e(A)} \leq \frac{e(G)}{s^2} + 4s\sqrt{e(G)},$$

the last inequality by case 1, i.e., $e(A_1) + \Delta \leq \frac{e(G)}{s^2} + 4s\sqrt{e(G)}$ whenever $\Delta \leq 4s\sqrt{e(A)}$. We now have the following Lemma.

Lemma 1. If $y \in Y$ and A_j is such that $d_{A_j}(y) \leq 4s\sqrt{e(A)}$ then $d_{A_j}(y) > (2s-1)d_A(y)$.

Proof. Assume to the contrary, i.e., there is a $y \in Y$ and A_j with $d_{A_j}(y) \le (2s-1)d_A(y)$. Now, sending y to A_j will contradict definition 1. Consider $(A-y,A_1,\cdots,A_j+y,\cdots,A_{s-1})$, recall by definition $e[A, \overset{s-1}{\cup} A_i] \ge 2(s-1)e(A)$ and e(A) is minimal. Then

$$\begin{split} e[A-y, \begin{pmatrix} s^{-1} \\ \cup \\ i=1 \end{pmatrix} + y] &= e[A, \bigcup_{i=1}^{s-1} A_i] - \left(d_{A_j}(y) - d_A(y)\right) \\ &\geq e[A, \bigcup_{i=1}^{s-1} A_i] - 2(s-1)d_A(y) \\ &\geq 2(s-1)e(A) - 2(s-1)d_A(y) = 2(s-1)\left(e(A) - d_A(y)\right) \\ &= 2(s-1)e(A-y) = 2(s-1)\gamma_s \left(A - y, A_1, \dots, A_j + y, \dots, A_{s-1}\right). \end{split}$$

But then, write $(A-y,A_1,\cdots,A_j+y,\cdots,A_s)=(A-y,\bar{X}_1,$ $\tilde{X}_2,\cdots,\tilde{X}_{s-1})$ and we have from above, $e[A-y,\bigcup_{i=1}^{s-1}\tilde{X}_i]\geq 2(s-1)$ e(A-y) and e(A-y) < e(A), contradicting the definition of partition $(A, X_1, \cdots, X_{s-1}).$

From the definitions of X and Y, and Lemma 1. we state the following corollaries.

Corollary 1.
$$e[Y, \bigcup_{j=1}^{s-1} A_j] > (2s-1) \lceil \frac{s+1}{2} \rceil \sum_{y \in Y} d_A(y)$$
.

Corollary 2.
$$e[X, \bigcup_{j=1}^{s-1} A_j] \ge 4s\sqrt{e(A)} \lceil \frac{s-2}{2} \rceil |X|$$
.

Define ξ , by $\xi \sum_{y \in Y} d_A(y) = e(Y) + e[X, Y]$. Then, $\xi = 0$ or $\frac{1}{2} \le \xi \le 1$, where the extreme cases $\xi = \frac{1}{2}$, 1 indicate e[X, Y] = 0, resp., e(Y) = 0, and $\xi = 0$ if and only if $Y = \phi$. We then have

$$\begin{split} & \frac{e(X) + \xi \sum\limits_{y \in Y} d_A(y)}{e(G)} \leq \frac{e(X) + \xi \sum\limits_{y \in Y} d_A(y) + e[X, \bigcup\limits_{i=1}^{s-1} A_i] + e[Y, \bigcup\limits_{i=1}^{s-1} A_i] + e(G - A)}{e(X) + \xi \sum\limits_{y \in Y} d_A(y)} \\ & \leq \left(\frac{e(X) + \xi \sum\limits_{y \in Y} d_A(y)}{e(X) + 4s\sqrt{e(A)} \lceil \frac{s-2}{2} \rceil |X| + \xi \sum\limits_{y \in Y} d_A(y) + (2s - 1) \lceil \frac{s+1}{2} \rceil \sum\limits_{y \in Y} d_A(y)} \right) \\ & = H. \end{split}$$

We finish case 2 by showing $H \leq \frac{1}{s^2}$.

Lemma 2.
$$\frac{e(X)}{e(X)+4s\sqrt{e(A)}\lceil\frac{s-2}{2}\rceil|X|} \leq \frac{1}{s^2}.$$

Proof. We have $e(X) = c|X|^2$, for some c, $0 \le c < \frac{1}{2}$, and $e(X) \le e(A)$, hence $\frac{e(X)}{e(X) + 4s\sqrt{e(A)} \lceil \frac{s-2}{2} \rceil |X|} \le \frac{1}{1 + \frac{2s(s-2)}{\sqrt{c}}} \le \frac{1}{s^2}$ for $s \ge 3$.

Lemma 3.
$$\frac{\xi \sum_{y \in Y} d_A(y)}{\xi \sum_{y \in Y} d_A(y) + (2s-1) \lceil \frac{s+1}{2} \rceil \sum_{y \in Y} d_A(y)} \le \frac{1}{s^2}$$

Lemma 3. $\frac{\xi \sum_{y \in Y} d_A(y)}{\xi \sum_{y \in Y} d_A(y) + (2s-1) \lceil \frac{s+1}{2} \rceil \sum_{y \in Y} d_A(y)} \le \frac{1}{s^2}.$ Proof. We have $\frac{\xi \sum_{y \in Y} d_A(y)}{\xi \sum_{y \in Y} d_A(y) + (2s-1) \lceil \frac{s+1}{2} \rceil \sum_{y \in Y} d_A(y)} \le \frac{1}{s^2 + \frac{s}{2} + \frac{1}{2}} < \frac{1}{s^2}, \text{ the first}$ inequality since $\xi \leq 1$.

Combining Lemma 2 and Lemma 3 yields $H \leq \frac{1}{s^2}$ and completes case 2, and the proof of Theorem 2.

Conclusions.

We summarize the known results. For any graph G, there is a partition (U_1, \dots, U_s) of V(G) so that $e(U_i) \leq \frac{e(G)}{s^2} + R, 1 \leq i \leq s$.

For $s = 2^P$:

(Porter [6])
$$R = \sqrt{\frac{e(G)}{s}}$$
.

For general s:

(Bollobás. Scott [1]) $R = \min\{(\Delta e(G)\log s)^{\frac{1}{2}}, (4e(G))^{\frac{2}{3}}(\log s)^{\frac{2}{3}}\}$ where Δ denotes the largest degree in G.

(Porter) $R = 4s\sqrt{e(G)}$.

References

- B. Bollobás and A.D. Scott, Judicious partitions of graphs, Period. Math. Hungar. 26 (1993), 125-137.
- 2. J.A. Bondy and U.S.R. Murty, Graph theory with Applications, North-Holland, 1976.
- 3. P. Erdös, Sixth international conference on the theory and applications of graphs, 1988 (Kalamazoo, Mich.), mentioned during his invited talk.
- 4. T.D. Porter, On a Bottleneck Bipartition Conjecture of Erdős, Combinatorica, 12 (1992), 317-321.
- 5. T.D. Porter and L.A. Székely, On a Matrix Discrepancy Problem, Cong. Numer., 73 (1990), 239-248.
- 6. T.D. Porter, Graph Partitions, J. Combin. Math. Combin. Comput. 15 (1994), 111-118.
- F. Shahrokhi, L.A. Székely, The complexity of the bottleneck graph bipartition problem, J. Combin. Math. Combin. Comput. 15 (1994), 221-226.